Skip to main content

Multiple Mechanisms of Transcriptional Repression in Eukaryotes

  • Chapter
Transcription Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 166))

Abstract

The selective transcription of eukaryotic genes is regulated by both positive and negative inputs from sequence-specific DNA-binding factors. These proteins provide the information essential for correct temporal and spatial control of transcription. The activities of transcriptional repressors have been characterized by a variety of methods, but in many cases the physiological relevance of proposed mechanisms has not been established. This chapter reviews pathways of repression, critically evaluates criteria by which repression mechanisms can be analyzed, and discusses recent progress in identifying the functional relevance of multiple repression activities of transcriptional repressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter M, Marty T, Vigano MA, Jazwinska A (2001) Nuclear interpretation of Dpp signaling in Drosophila. EMBOJ 13:3298–3305

    Google Scholar 

  • Ahringer J (2000) NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 16:351–356

    PubMed  CAS  Google Scholar 

  • Akhtar A (2003) Dosage compensation: an intertwined world of RNA and chromatin remodelling. Curr Opin Genet Dev 13:161–169

    PubMed  CAS  Google Scholar 

  • Ansari AZ, Reece RJ, Ptashne M (1998) A transcriptional activating region with two contrasting modes of protein interaction. Proc Natl Acad Sci USA 95:13543–13548

    PubMed  CAS  Google Scholar 

  • Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304

    PubMed  CAS  Google Scholar 

  • Arnosti DN (2003) Analysis and function of transcriptional regulatory elements: insights from Drosophila. Annu Rev Entomol 48: 579–602

    PubMed  CAS  Google Scholar 

  • Arnosti DN, Barolo S, Levine M, Small S (1996a) The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. Development 1:205–214

    Google Scholar 

  • Arnosti DN, Gray S, Barolo S, Zhou J, Levine M (1996b) The gap protein knirps mediates both quenching and direct repression in the Drosophila embryo. EMBO J 14:3659–3666

    Google Scholar 

  • Attwood JT, Yung RL, Richardson BC (2002) DNA methylation and the regulation of gene transcription. Cell Mol Life Sci 59:241–257

    PubMed  CAS  Google Scholar 

  • Bakke M, Lund J (1995) Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3′,5′-monophosphate-responsive sequence in the bovine CYP17gene. Mol Endocrinol 9:327–339

    PubMed  CAS  Google Scholar 

  • Ballestar E, Wolffe AP (2001) Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem 268:1–6

    PubMed  CAS  Google Scholar 

  • Banerji J, Rusconi S, Schaffner W (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 2:299–308

    Google Scholar 

  • Barolo S, Posakony JW (2002) Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 16:1167–1181

    PubMed  CAS  Google Scholar 

  • Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 6:993–1004

    Google Scholar 

  • Bourc’his D, Bestor TH (2002) Helicase homologues maintain cytosine methylation in plants and mammals. BioEssays 24:297–299

    CAS  Google Scholar 

  • Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7:592–604

    PubMed  CAS  Google Scholar 

  • Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 16:4349–4356

    PubMed  CAS  Google Scholar 

  • Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854

    PubMed  CAS  Google Scholar 

  • Brumby AM, Zraly CB, Horsfield JA, Secombe J, Saint R, Dingwall AK, Richardson H (2002) Drosophila cyclin E interacts with components of the Brahma complex. EMBO J 21:3377–3389

    PubMed  CAS  Google Scholar 

  • Busturia A, Wightman CD, Sakonju S (1997) A silencer is required for maintenance of transcriptional repression throughout Drosophila development. Development 21:4343–4350

    Google Scholar 

  • Cai HN, Arnosti DN, Levine M (1996) Long-range repression in the Drosophila embryo. Proc Natl Acad Sci USA 18:9309–9314

    Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD, Grenier J, Wetherbee S (2001) From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Scientific, Malden

    Google Scholar 

  • Carrozza MJ, John S, Sil AK, Hopper JE, Workman JL (2002) Gal80 confers specificity on HAT complex interactions with activators. J Biol Chem 277:24648–24652

    PubMed  CAS  Google Scholar 

  • Chen G, Courey AJ (2000) Groucho/TLE family proteins and transcriptional repression. Gene 112:1–16

    Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299:721–725

    PubMed  CAS  Google Scholar 

  • Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 2:213–224

    Google Scholar 

  • Christian M, Tullet JM, Parker MG (2004) Characterisation of four autonomous repression domains in the corepressor RIP140. J Biol Chem (in press)

    Google Scholar 

  • Clyde DE, Corado MS, Wu X, Pare A, Papatsenko D, Small S (2003) A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 426:849–853

    PubMed  CAS  Google Scholar 

  • Collins RT, Treisman JE (2000) Osa-containing Brahma chromatin remodeling complexes are required for the repression of wingless target genes. Genes Dev 24:3140–3152

    Google Scholar 

  • Courey AJ, Jia S (2001) Transcriptional repression: the long and the short of it. Genes Dev 15:2786–2796

    PubMed  CAS  Google Scholar 

  • Dahiya A, Wong S, Gonzalo S, Gavin M, Dean DC (2001) Linking the Rb and polycomb pathways. Mol Cell 8:557–569

    PubMed  CAS  Google Scholar 

  • Dai SM, Chen HH, Chang C, Riggs AD, Flanagan SD (2000) Ligation-mediated PCR for quantitative in vivo footprinting. Nat Biotechnol 18:1108–1111

    PubMed  CAS  Google Scholar 

  • Davidson EH (2001) Genomic Regulatory Systems: Development and Evolution

    Google Scholar 

  • Davie JK, Edmondson DG, Coco CB, Dent SY (2003) Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278:50158–50162

    PubMed  CAS  Google Scholar 

  • Davis RL, Turner DL (2001) Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 58:8342–8357

    Google Scholar 

  • Deckert J, Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 8:2726–2735

    Google Scholar 

  • Deckert J, Struhl K (2002) Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol Cell Biol 18:6458–6470

    Google Scholar 

  • DeRisi JL, Iyer VR, Brown BO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HPI protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204–210

    PubMed  CAS  Google Scholar 

  • Flores-Saaib RD, Courey AJ (2000) Analysis of Groucho-histone interactions suggests mechanistic similarities between Groucho-and Tup1-mediated repression. Nucl Acids Res 21:4189–4196

    Google Scholar 

  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    PubMed  CAS  Google Scholar 

  • Furriols M, Bray S (2001) A model Notch response element detects Suppressor of Hairless-dependent molecular switch. Curr Biol 11:60–64

    PubMed  CAS  Google Scholar 

  • Furuyama T, Tie F, Harte PJ (2003) Polycomb group proteins ESC and E(Z) are present in multiple distinct complexes that undergo dynamic changes during development. Genesis 35:114–124

    PubMed  CAS  Google Scholar 

  • Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 6874:910–913

    Google Scholar 

  • Gaston K, Jayaraman PS (2003) Transcriptional repression in eukaryotes: repressors and repression mechanisms. Cell Mol Life Sci 60:721–741

    PubMed  CAS  Google Scholar 

  • Gerasimova TI, Corces VG (2001) Chromatin insulators and boundaries: effects on transcription and nuclear organization. Annu Rev Genet 35:193–208

    PubMed  CAS  Google Scholar 

  • Giangrande PH, Hallstrom TC, Tunyaplin C, Calame K, Nevins JR (2003) Identification of E-box factor TFE3 as a functional partner for the E2F3 transcription factor. Mol Cell Biol 23:3707–3720

    PubMed  CAS  Google Scholar 

  • Gray S, Levine M (1996) Transcriptional repression in development. Curr Opin Cell Biol 3:358–364

    Google Scholar 

  • Grummt I (2003) Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17:1691–1702

    PubMed  CAS  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 5205:1788–1792

    Google Scholar 

  • Hanna-Rose W, Hansen U (1996) Active repress ion mechanisms of eukaryotic transcription repressors. Trends Genet 12:229–234

    PubMed  CAS  Google Scholar 

  • Hasson P, Muller B, Basler K, Paroush Z (2001) Brinker requires two corepressors for maximal and versatile repression in Dpp signalling. EMBO J 20:5725–5736

    PubMed  CAS  Google Scholar 

  • He GP, Muise A, Li AW, Ro HS (1995) A eukaryotic transcriptional repressor with carboxypeptidase activity. Nature 378:92–96

    PubMed  CAS  Google Scholar 

  • Henikoff S (2000) Heterochromatin function in complex genomes. Biochim Biophys Acta 1470:O1–O8

    PubMed  CAS  Google Scholar 

  • Hoch M, Gerwin N, Taubert H, Jackie H (1992) Competition for overlapping sites in the regulatory region of the Drosophila gene Kruppel. Science 5053:94–97

    Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 5:717–728

    Google Scholar 

  • Huang Y (2002) Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucl Acids Res 30:1465–1482

    PubMed  CAS  Google Scholar 

  • Hyman CA, Bartholin L, Newfeld SJ, Wotton D (2003) Drosophila TGIF proteins are transcriptional activators. Mol Cell Biol 23:9262–9274

    PubMed  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Hill CS (2002) Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10:283–294

    PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl:245–254

    PubMed  CAS  Google Scholar 

  • Jaynes JB, O’Farrell PH (1991) Active repression of transcription by the engrailed homeodomain protein. EMBO J 6:1427–1433

    Google Scholar 

  • Jepsen K, Rosenfeld MG (2002) Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 4:689–698

    Google Scholar 

  • Jones PL, Shi YB (2003) N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors. Curr Top Microbiol Immunol 274:237–268

    PubMed  CAS  Google Scholar 

  • Kang H, Cui K, Zhao K (2004) BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol Cell Biol 24:1188–1199

    PubMed  CAS  Google Scholar 

  • Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–663

    PubMed  CAS  Google Scholar 

  • Keller SA, Mao Y, Struffi P, Margulies C, Yurk CE, Anderson AR, Arney RL, Moore S, Ebels JM, Foley K, Corado M, Arnosti DN (2000) dCtBP-dependent and-independent repression activities of the Drosophila Knirps protein. Mol Cell Biol 19:7247–7258

    Google Scholar 

  • King IF, Francis NJ, Kingston RE (2002) Native and recombinant polycomb group complexes establish a selective block to template accessibility to repress transcription in vitro. Mol Cell Biol 22:7919–7928

    PubMed  CAS  Google Scholar 

  • Klose R, Bird A (2003) Molecular biology. MeCP2 repression goes nonglobal. Science 302:793–795

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12:198–209

    PubMed  CAS  Google Scholar 

  • Kulkarni MM, Arnosti DN (2003) Information display by transcriptional enhancers. Development 130:6569–6575

    PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 19:425–433

    PubMed  CAS  Google Scholar 

  • Lai EC (2002) Keeping a good pathway down: transcriptional repression of Notch path way target genes by CSL proteins. EMBO Rep 9:840–845

    Google Scholar 

  • Leuther KK, Johnston SA (1992) Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335

    PubMed  CAS  Google Scholar 

  • Li B, Reese JC (200l) Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. J Biol Chem 276:33788–33797

    Google Scholar 

  • Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 6769:564–567

    Google Scholar 

  • Lunyak VV, Burgess R, Prefontaine GG, Nelson C, Sze SH, Chenoweth J, Schwartz P, Pevzner PA, Glass C, Mandel G, Rosenfeld MG (2002) Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 5599:1747–1752

    Google Scholar 

  • Makeev VJ, Lifanov AP, Nazina AG, Papatsenko DA (2003) Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information. Nucl Acids Res 31: 6016–6026

    PubMed  CAS  Google Scholar 

  • Malicki J, Cianetti LC, Peschle C, McGinnis W (1992) A human HOX4B regulatory element provides head-specific expression in Drosophila embryos. Nature 358:345–347

    PubMed  CAS  Google Scholar 

  • Martens JA, Winston F (2003) Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13:136–142

    PubMed  CAS  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T (2000) Regulation of E2F1 activity by acetylation. EMBO J 19:662–671

    PubMed  CAS  Google Scholar 

  • Merika M, Thanos D (2001) Enhanceosomes. Curr Opin Genet Dev 11:205–208

    PubMed  CAS  Google Scholar 

  • Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17:1823–1828

    PubMed  CAS  Google Scholar 

  • Moqtaderi Z, Bai Y, Poon D, Weil PA, Struhl K (1996) TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 6596:188–191

    Google Scholar 

  • Morrison AJ, Sardet C, Herrera RE (2002) Retinoblastoma protein transcriptional repression through histone deacetylation of a single nucleosome. Mol Cell Biol 22:856–865

    PubMed  CAS  Google Scholar 

  • Muller-Hill B (1996) The Lac Operon: A Short History of a Genetic Paradigm.

    Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 4:475–487

    Google Scholar 

  • Nibu Y, Senger K, Levine M (2003) CtBP-independent repression in the Drosophila embryo. Mol Cell Biol 23:3990–3999

    PubMed  CAS  Google Scholar 

  • Nibu Y, Zhang H, Bajor E, Barolo S, Small S, Levine M (1998) dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. EMBO J 23:7009–7020

    Google Scholar 

  • Nibu Y, Zhang H, Levine M (2001) Local action of long-range repressors in the Drosophila embryo. EMBO J 9:2246–2253

    Google Scholar 

  • Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O’Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T (200l) Rb targets histone H3 methylation and HP1 to promoters. Nature 412:561–565

    Google Scholar 

  • Nissen RM, Yamamoto KR (2000) The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 18:2314–2329

    Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155

    PubMed  CAS  Google Scholar 

  • Olave I, Reinberg D, Vales LD (1998) The mammalian transcriptional repressor RBP (CBF1) targets TFIID and TFIIA to prevent activated transcription. Genes Dev 11:1621–1637

    Google Scholar 

  • Orlando V (2003) Polycomb, epigenomes, and control of cell identity. Cell 112:599–606

    PubMed  CAS  Google Scholar 

  • Pearson A, Greenblatt J (1997) Modular organization of the E2FI activation domain and its interaction with general transcription factors TBP and TFIIH. Oncogene 15:2643–2658

    PubMed  CAS  Google Scholar 

  • Pereira FA, Tsai MJ, Tsai SY (2000) COUP-TF orphan nuclear receptors in development and differentiation. Cell Mol Life Sci 57:1388–1398

    PubMed  CAS  Google Scholar 

  • Peterson CL (2002) Chromatin remodeling: nucleosomes bulging at the seams. Curr Biol 12:R245–R247

    PubMed  CAS  Google Scholar 

  • Postigo AA, Dean DC (1999) Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol Cell Biol 12:7961–7971

    Google Scholar 

  • Pufall MA, Graves BJ (2002) Autoinhibitory domains: modular effectors of cellular regulation. Annu Rev Cell Dev Biol 18:421–462

    PubMed  CAS  Google Scholar 

  • Roberts SG (2000) Mechanisms of action of transcription activation and repression domains. Cell Mol Life Sci 57:1149–1160

    PubMed  CAS  Google Scholar 

  • Robertson KD (2002) DNA methylation and chromatin—unraveling the tangled web. Oncogene 21:5361–5379

    PubMed  CAS  Google Scholar 

  • Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR (2002) Alternate surfaces of transcriptional coregulator GRIPI function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci USA 26:16701–16706

    Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Box protein mutation and macroevolution of the insect body plan. Nature 6874:914–917

    Google Scholar 

  • Ross JF, Liu X, Dynlacht BD (1999) Mechanism of transcriptional repression of E2F by the retinoblastoma tumor suppressor protein. Mol Cell 3:195–205

    PubMed  CAS  Google Scholar 

  • Ross JF, Naar A, Cam H, Gregory R, Dynlacht BD (2001) Active repression and E2F inhibition by pRB are biochemically distinguishable. Genes Dev 15:392–397

    PubMed  CAS  Google Scholar 

  • Ruden DM, Jackie B (1995) Mitotic delay dependent survival identifies components of cell cycle control in the Drosophila blastoderm. Development 1:63–73

    Google Scholar 

  • Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13:410–418

    PubMed  CAS  Google Scholar 

  • Ryu JR, Arnosti DN (2003) Functional similarity of Knirps CtBP-dependent and CtBP-independent transcriptional repressor activities. Nucl Acids Res 31:4654–4662

    PubMed  CAS  Google Scholar 

  • Ryu JR, Olson LK, Arnosti DN (2001) Cell-type specificity of short-range transcriptional repressors. Proc Natl Acad Sci USA 23:12960–12965

    Google Scholar 

  • Saurin AJ, Shao Z, Erdjument-Bromage B, Tempst P, Kingston RE (2001) A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 6847:655–660

    Google Scholar 

  • Schuller J, Lehming N (2003) The cyclin in the RNA polymerase holoenzyme is a target for the transcriptional repressor Tup1p in Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 5:199–205

    PubMed  Google Scholar 

  • Scully KM, Jacobson EM, Jepsen K, Lunyak V, Viadiu B, Carriere C, Rose DW, Hooshmand F, Aggarwal AK, Rosenfeld MG (2000) Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science 5494:1127–1131

    Google Scholar 

  • Sekinger EA, Gross DS (2001) Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 105:403–414

    PubMed  CAS  Google Scholar 

  • Senawong T, Peterson VJ, Avram D, Shepherd DM, Frye RA, Minucci S, Leid M (2003) Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem 278:43041–43050

    PubMed  CAS  Google Scholar 

  • Senger K, Merika M, Agalioti T, Yie J, Escalante CR, Chen G, Aggarwal AK, Thanos D (2000) Gene repression by coactivator repulsion. Mol Cell 6:931–937

    PubMed  CAS  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 1: 37–46

    Google Scholar 

  • Shibata H, Kobayashi S, Kurihara I, Saito I, Saruta T (2003a) Nuclear receptors and coregulators in adrenal tumors. Horm Res 59 Suppl 1:85–93

    CAS  Google Scholar 

  • Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, Saito I, Saruta T (2003b) Regulation of differential COUP-TF-coregulator interactions in adrenal cortical steroidogenesis. J. Steroid Biochem. Mol Biol 85:449–456

    PubMed  CAS  Google Scholar 

  • Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE (1999) The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80pGal4p complex in response to galactose and ATP. Mol Cell Biol 19:7828–7840

    PubMed  CAS  Google Scholar 

  • Simon JA, Tamkun JW (2002) Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 12:210–218

    PubMed  CAS  Google Scholar 

  • Sims RJr, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629–639

    PubMed  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479

    PubMed  CAS  Google Scholar 

  • Small S, Kraut R, Hoey T, Warrior R, Levine M (1991) Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev 5:827–839

    PubMed  CAS  Google Scholar 

  • Smirnov DA, Hou S, Ricciardi RP (2000) Association of histone deacetylase with COUPTF in tumorigenic Ad12-transformed cells and its potential role in shut-off of MHC class I transcription. Virology 268:319–328

    PubMed  CAS  Google Scholar 

  • Smith CL, Nawaz Z, O’Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11:657–666

    PubMed  CAS  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330

    PubMed  CAS  Google Scholar 

  • Stanojevic D, Small S, Levine M (1991) Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 5036:1385–1387

    Google Scholar 

  • Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN, Knudsen ES (2000) BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 97:7748–7753

    PubMed  CAS  Google Scholar 

  • Struhl K (2001) Gene regulation. Aparadigm for precision. Science 5532:1054–1055

    Google Scholar 

  • Struffi P, Corado M, Kulkarni M, Arnosti DN (2004) Quantitative contributions of CtBP dependent and-independent repression activities of Knirps. Development 131:2419–2429

    PubMed  CAS  Google Scholar 

  • Sudarsanam P, Iyer VR, Brown PO, Winston F (2000) Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:3364–3369

    PubMed  CAS  Google Scholar 

  • Sutrias-Grau M, Arnosti DN (2004) CtBP contributes quantitatively to Knirps repression activity in an NAD binding dependent manner. Mol Cell Biol (in press)

    Google Scholar 

  • Szymanski P, Levine M (1995) Multiple modes of dorsal-bHLH transcriptional synergy in the Drosophila embryo. EMBO J 10:2229–2238

    Google Scholar 

  • Tamaru H, Selker EU (200l) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Google Scholar 

  • Taya Y (1997) RB kinases and RB-binding proteins: new points of view. Trends Biochem Sci 22:14–17

    PubMed  CAS  Google Scholar 

  • Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 983:84–100

    PubMed  CAS  Google Scholar 

  • Tolkunova EN, Fujioka M, Kobayashi M, Deka D, Jaynes JB (1998) Two distinct types of repression domain in engrailed: one interacts with the groucho corepressor and is preferentially active on integrated target genes. Mol Cell Biol 5:2804–2814

    Google Scholar 

  • Tran HG, Steger DJ, Iyer VR, Johnson AD (2000) The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J 19:2323–2331

    PubMed  CAS  Google Scholar 

  • Turner J, Crossley M (2001) The CtBP family: enigmatic and enzymatic transcriptional co-repressors. BioEssays 8:683–690

    Google Scholar 

  • Valentine SA, Chen G, Shandala T, Fernandez J, Mische S, Saint R, Courey AJ (1998) Dorsal-mediated repression requires the formation of a multi protein repression complex at the ventral silencer. Mol Cell Biol 11:6584–6594

    Google Scholar 

  • Wang S, Zhang B, Faller DV (2002) Prohibitin requires Brg-1 and Brm for the repression of E2F and cell growth. EMBOJ 21:3019–3028

    CAS  Google Scholar 

  • Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, Seto E (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA 13:7202–7207

    Google Scholar 

  • White RJ (2004) RNA polymerase III transcription-a battleground for tumour suppressors and oncogenes. Eur J Cancer 40:21–27

    PubMed  CAS  Google Scholar 

  • Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM (2001) A transcriptional switch mediated by cofactor methylation. Science 294:2507–2511

    PubMed  CAS  Google Scholar 

  • Young AP, Longmore GD (2004) Differences in stability of repressor complexes at promoters underlie distinct roles for Rb family members. Oncogene 23:814–823

    PubMed  CAS  Google Scholar 

  • Zelhof AC, Yao TP, Chen JD, Evans RM, McKeown M (1995) Seven-up inhibits ultraspiracle-based signaling pathways in vitro and in vivo. Mol Cell Biol 15:6736–6745

    PubMed  CAS  Google Scholar 

  • Zhang HS, Dean DC (2001) Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene 20:3134–3138

    PubMed  CAS  Google Scholar 

  • Zhang Y, Reinberg D (200l) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 18:2343–2360

    Google Scholar 

  • Zhao B, Hou S, Ricciardi RP (2003) Chromatin repression by COUP-TFII and HDAC dominates activation by NF-kappaB in regulating major histocompatibility complex class I transcription in adenovirus tumorigenic cells. Virology 306: 68–76

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Arnosti, D.N. (2004). Multiple Mechanisms of Transcriptional Repression in Eukaryotes. In: Gossen, M., Kaufmann, J., Triezenberg, S.J. (eds) Transcription Factors. Handbook of Experimental Pharmacology, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18932-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18932-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62361-5

  • Online ISBN: 978-3-642-18932-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics