Skip to main content

Selective Estrogen Receptor Modulators as Therapeutic Agents in Breast Cancer Treatment

  • Chapter
Transcription Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 166))

  • 437 Accesses

Abstract

Breast cancer is the most commonly diagnosed cancer in women of the Western world. Breast tumors are initially dependent upon estrogens for their growth. Drugs with antiestrogenic activity, e.g., tamoxifen, are used clinically both to prevent and treat breast cancer. Estrogens stimulate breast cancer cell proliferation by binding to estrogen receptors alpha and beta (ERα and ERβ) that are ligand-activated transcription factors. Estrogen-activated ER either binds directly to DNA sequences called estrogen response elements (EREs), or interacts with other DNA-bound transcription factors in the promoters of target genes to regulate transcription. Selective estrogen receptor modulators (SERMs) compete with estrogens for binding ER and act as a mixed ER agonist/antagonists depending on the cell type, e.g., antiestrogenic in breast and estrogenic in bone. Examples of SERMs in current clinical use are tamoxifen and raloxifene. This chapter discusses the effect of SERMs on the structure and function of ERα and ERβ. Structural studies indicate that ER occupied by SERMs has a different conformation from estradiol-occupied ER. This structural difference prevents the interaction of SERM-occupied ER with coactivator proteins necessary for chromatin remodeling involved in the initiation of gene transcription. Instead, SERM-occupied ER interacts with the corepressors NCoR and SMRT in vitro and when SERM-occupied ER is bound to ERE-containing genes in breast cancer cells. Corepressors interact with histone deacetylase (HDAC) complexes that maintain chromatin in a repressed state that precludes initiation of target gene transcription. Recent data from chromatin immunoprecipitation assays indicate that SERM-occupied ERα interacts with coactivators when tethered to the promoters of AP-1-regulated estrogen target genes in endometrial cancer cells, thus providing a mechanism for the agonist activity of tamoxifen in endometrial cells. The applicability of these findings to other cell types in which tamoxifen has agonist activity remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalfs JD, Kingston RE (2000) What does ‘chromatin remodeling’ mean? Trends Biochem Sci 25:548–555

    Article  PubMed  CAS  Google Scholar 

  • Aldous WK, Marean AJ, DeHart MJ, Matej LA, Moore KH (1999) Effects of tamoxifen on telomerase activity in breast carcinoma cell lines. Cancer 85:1523–1529

    Article  PubMed  CAS  Google Scholar 

  • Allred DC, Baum M, Buzdar AU, Carlson RW, Dowsett M, Elledge RM, Gradishar WJ, Grana G, Howell A, Mamounas EP (2003) A Roundtable discussion of aromatase inhibitors as therapy for breast cancer. Breast J 9:213–222

    Article  PubMed  CAS  Google Scholar 

  • Ariazi EA, Clark GM, Mertz JE (2002) Estrogen-related receptor alpha and estrogen-related receptor gamma associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer Res 62:6510–6518

    PubMed  CAS  Google Scholar 

  • Bai Y, Giguere V (2003) Isoform-selective interactions between estrogen receptors and steroid receptor coactivators promoted by estradiol and ErbB-2 signaling in living cells. Mol Endocrinol 17:589–599

    Article  PubMed  CAS  Google Scholar 

  • Beatson GT (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet 2:104–107, 162–167

    Article  Google Scholar 

  • Belandia B, Orford RL, Hurst HC, Parker MG (2002) Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21:4094–4103

    Article  PubMed  CAS  Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohma L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  PubMed  CAS  Google Scholar 

  • Buzdar A (2003) Anastrozole as adjuvant therapy for early-stage breast cancer: implications of the ATAC Trial. Clin Breast Cancer 4 Suppl 1: S42–S48

    Article  PubMed  CAS  Google Scholar 

  • Carroll JS, Prall OW, Musgrove EA, Sutherland RL (2000) A pure estrogen antagonist Inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence. J Biol Chem 275:38221–38229

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Danes C, Lowe M, Herliczek TW, Keyomarsi K (2000) Activation of the estrogensignaling pathway by p21(WAF1/CIP1) in estrogen receptor-negative breast cancer cells. J Natl Cancer Inst 92:1403–1413

    Article  PubMed  CAS  Google Scholar 

  • Clarke R, Skaar TC, Bouker KB, Davis N, Lee YR, Welch IN, Leonessa F (2001) Molecular and pharmacological aspects of antiestrogen resistance. J Steroid Biochem Mol Biol 76:71–84

    Article  PubMed  CAS  Google Scholar 

  • Couse JF, Korach KS (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20:358–417

    Article  PubMed  CAS  Google Scholar 

  • Coward P, Lee D, Hull MV, Lehmann JM (2001) 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor gamma. Proc Natl Acad Sci USA 98:8880–8884

    Article  PubMed  CAS  Google Scholar 

  • Cowley SM, Hoare S, Mosselman S, Parker MG (1997) Estrogen receptors alpha and beta form heterodimers on DNA. J. Biol. Chem. 272:19858–19862

    Article  PubMed  CAS  Google Scholar 

  • Cowley SM, Parker MG (1999) A comparison of transcriptional activation by ER alpha and ER beta. J Steroid Biochem Mol Biol 69:165–175

    Article  PubMed  CAS  Google Scholar 

  • Crewe HK, Ellis SW, Lennard MS, Tucker GT (1997) Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 53:171–178

    Article  PubMed  CAS  Google Scholar 

  • Cuzick J, Powles T, Veronesi U, Forbes J, Edwards R, Ashley S, Boyle P, Baum M, Cawthorn S, Coates A, Hamed A, Howell A (2003) Overview of the main outcomes in breast-cancer prevention trials: First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 361:296–300

    Article  PubMed  CAS  Google Scholar 

  • De Leo V, la Marca A, Morgante G, Lanzetta D, Setacci C, Petraglia F (2001) Randomized control study of the effects of raloxifene on serum lipids and homocysteine in older women. Am J Obstet GynecoI 184:350–353

    Article  Google Scholar 

  • Delaunay F, Pettersson K, Tujague M, Gustafsson JA (2000) Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Mol Pharmacol 58:584–590

    PubMed  CAS  Google Scholar 

  • Devlin-Leclerc J, Meng X, F. D, Leclerc P, Baulieu EE, Catelli MG (1998) Interaction and dissociation by ligands of estrogen receptor and Hsp90: the antiestrogen RU 58668 induces a protein synthesis-dependent clustering of the receptor in the cytoplasm. Mol Endocrinol 12:842–854

    Article  Google Scholar 

  • Dowsett M, Harper-Wynne C, Boeddinghaus I, Salter J, Hills M, Dixon M, Ebbs S, Gui G, Sacks N, Smith I (2001) HER-2 amplification impedes the antiproliferative effects of hormone therapy in estrogen receptor-positive primary breast cancer. Cancer Res 61:8452–8458

    PubMed  CAS  Google Scholar 

  • Dudley MW, Sheeler CQ, Wang H, Khan S (2000) Activation of the human estrogen receptor by the antiestrogens ICI 182,780 and tamoxifen in yeast genetic systems: Implications for their mechanism of action. Proc Natl Acad Sci USA 97:3696–3701

    PubMed  CAS  Google Scholar 

  • Eisen SF, Brown HA (2002) Selective estrogen receptor (ER) modulators differentially regulate phospholipase D catalytic activity in ER-negative breast cancer cells. Mol Pharmacol 62:911–920

    Article  PubMed  CAS  Google Scholar 

  • Ellis PA, Saccani-Jotti G, Clarke R, Johnston SR, Anderson E, Howell A, A’Hern R, Salter J, Detre S, Nicholson R, Robertson J, Smith IE, Dowsett M (1997) Induction of apoptosis by tamoxifen and ICI 182780 in primary breast cancer. Int J Cancer 72:608–613

    Article  PubMed  CAS  Google Scholar 

  • Elsby R, Ashby J, Sumpter JP, Brooks AN, Pennie WD, Maggs JL, Lefevre PA, Odum J, Beresford N, Paton D, Park BK (2000) Obstacles to the prediction of estrogenicity from chemical structure: assay-mediated metabolic transformation and the apparent promiscuous nature of the estrogen receptor. Biochem Pharmacol 60:1519–1530

    Article  PubMed  CAS  Google Scholar 

  • Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363–5372

    PubMed  CAS  Google Scholar 

  • Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (2001) Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 20:77–87

    Article  PubMed  CAS  Google Scholar 

  • Fisher B, Dignam J, Bryant J, DeCillis A, Wickerham DL, Wolmark N, Costantino J, Redmond C, Fisher ER, Bowman DM, Deschenes L, Dimitrov NV, Margolese RG, Robidoux A, Shibata H, Terz J, Paterson AH, Feldman MI, Farrar W, Evans J, Lickley HL (1996) Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J Natl Cancer Inst 88:1529–1542

    Article  PubMed  CAS  Google Scholar 

  • Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, Sonntag-Buck V, Gannon F (2000) Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J 19:4688–4700

    Article  PubMed  CAS  Google Scholar 

  • Frasor J, Barnett DH, Danes JM, Hess R, Parlow AF, Katzenellenbogen BS (2003) Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) alpha activity by ERbeta in the uterus. Endocrinology 144:3159–3166

    Article  PubMed  CAS  Google Scholar 

  • Freedman AN, Graubard BI, Rao SR, McCaskill-Stevens W, Ballard-Barbash R, Gail MH (2003) Estimates of the Number of U.S. Women Who Could Benefit From Tamoxifen for Breast Cancer Chemoprevention. J Natl Cancer Inst 95:526–532

    Article  PubMed  CAS  Google Scholar 

  • Fuchs-Young R, Glasebrook AL, Short LL, Draper MW, Rippy MK, Cole HW, Magee DE, Termine JD, Bryant HU (I995) Raloxifene is a tissue-selective agonist/antagonist that functions through the estrogen receptor. Ann NY Acad Sci 761:355–360

    Article  Google Scholar 

  • Fuqua SA, Schiff R, Parra I, Friedrichs WE, Su JL, McKee DD, Slentz-Kesler K, Moore LB, Willson TM, Moore JT (I999) Expression of wild-type estrogen receptor beta and variant isoforms in human breast cancer. Cancer Res 59:5425–5428

    Google Scholar 

  • Green S, Chambon P (1987) Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325:75–78

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson J, Warner M (2000) Estrogen receptor beta in the breast: role in estrogen responsiveness and development of breast cancer. J Steroid Biochem Mol Biol 74:245–248

    Article  PubMed  CAS  Google Scholar 

  • Hager GL, Smith CL, Fragoso G, Wolford R, Walker D, Barsony J, Hunt H (I998) Intranuclear trafficking and gene targeting by members of the steroid/nuclear receptor superfamily. J. Steroid Biochem Mol Biol 65:125–132

    Article  Google Scholar 

  • Hall JM, Chang CY, McDonnell DP (2000) Development of peptide antagonists that target estrogen receptor beta-coactivator interactions. Mol Endocrinol 14:2010–2023

    Article  PubMed  CAS  Google Scholar 

  • Hall JM, Korach KS (2003) Stromal cell-derived factor I, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17:792–803

    Article  PubMed  CAS  Google Scholar 

  • Hall JM, McDonnell DP (I999) The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140:5566–5578

    Article  Google Scholar 

  • Hall JM, McDonnell DP, Korach KS (2002) Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol Endocrinol 16:469–486

    Article  PubMed  CAS  Google Scholar 

  • Hodges LC, Cook JD, Lobenhofer EK, Li L, Bennett L, Bushel PR, Aldaz CM, Afshari CA, Walker CL (2003) Tamoxifen functions as a molecular agonist inducing cell cycleassociated genes in breast cancer cells. Mol Cancer Res 1:300–311

    PubMed  CAS  Google Scholar 

  • Horwitz KB (1994) How do breast cancers become hormone resistant? J Steroid Biochem Mol Biol 49:295–302

    Article  PubMed  CAS  Google Scholar 

  • Huang ZQ, Li J, Sachs LM, Cole PA, Wong J (2003) A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and mediator for transcription. EMBO J 22:2146–155

    Article  PubMed  CAS  Google Scholar 

  • Iwao K, Miyoshi Y, Egawa C, Ikeda N, Noguchi S (2000) Quantitative analysis of estrogen receptor-beta mRNA and its variants in human breast cancers. Int J Cancer 88:733–736

    Article  PubMed  CAS  Google Scholar 

  • Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung I, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol. 11:693–705

    Article  PubMed  CAS  Google Scholar 

  • Jensen EV (1996) Steroid hormones, receptors, and antagonists. Ann NY Acad Sci 784:117

    Article  Google Scholar 

  • Jordan VC (1997) Tamoxifen treatment for breast cancer: concept to gold standard. Oncology: 7–13

    Google Scholar 

  • Jordan VC (2001) Selective estrogen receptor modulation: a personal perspective. Cancer Res 61:5683–5687

    PubMed  CAS  Google Scholar 

  • Jordan VC (2002) A new day dawns: women without oestrogen or is a balance best? Breast Cancer Res 4:218–221

    Article  PubMed  Google Scholar 

  • Jordan VC, Pappas SG (2003) Is tamoxifen the Rosetta stone for breast cancer? Tamoxifen: a most unlikely pioneering medicine: Chemoprevention of breast cancer: current and future prospects. J Natl Cancer Inst 95:338–340

    Article  PubMed  Google Scholar 

  • Katzenellenbogen BS, Montano MM, Ediger TR, Sun J, Ekena K, Lazennec G, Martini PG, McInerney EM, Delage-Mourroux R, Weis K, Katzenellenbogen JA (2000) Estrogen receptors: selective ligands, partners, and distinctive pharmacology. Recent Prog Horm Res 55:163–193; discussion 194-195

    PubMed  CAS  Google Scholar 

  • Katzenellenbogen BS, Norman MJ, Eckert RL, Peltz SW, Mange WF (1984) Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxytamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res. 44:112–119

    PubMed  CAS  Google Scholar 

  • Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU (1986) An estrogen-responsive element derived from the 5′ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Klinge CM (2000) Estrogen receptor interaction with co-activators and co-repressors. Steroids 65:227–251

    Article  PubMed  CAS  Google Scholar 

  • Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919

    Article  PubMed  CAS  Google Scholar 

  • Klinge CM, Bambara RA, Hilf R (1992) What differentiates antiestrogen-liganded versus estradiol-liganded estrogen receptor action? Oncology Res 4:1073–1081

    Google Scholar 

  • Klinge CM, Jernigan SC, Smith SL, Tyulmenkov VV, Kulakosky PC (2001) Estrogen response element sequence impacts the conformation and transcriptional activity of estrogen receptor α. Mol Cell Endocrinol 174:151–166

    Article  PubMed  CAS  Google Scholar 

  • Koh SS, Chen D, Lee YH, Stallcup MR (2001) Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem 276:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Koszewski NJ, Notides AC(1991) Phosphate-sensitive binding of the estrogen receptor to its response elements. Mol Endocrinol 5:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Kraichely DM, Sun J, Katzenellenbogen JA, Katzenellenbogen BS (2000) Conformational changes and coactivator recruitment by novel ligands for estrogen receptor-alpha and estrogen receptor-beta: correlations with biological character and distinct differences among SRC coactivator family members. Endocrinology 141:3534–3545

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien J, Enmark E, Haggblad J, Nilsson S, Gustafsson J-A (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863–870

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA (1998) The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 19:253–286

    Article  PubMed  CAS  Google Scholar 

  • Kulakosky PC, Jernigan SC, McCarty MA, Klinge CM (2002) Response element sequence regulates estrogen receptor alpha and beta affinity and activity. J Mol Endocrinol 29:137–152

    Article  PubMed  CAS  Google Scholar 

  • Kushner PJ, Agard D, Feng WJ, Lopez G, Schiau A, Uht R, Webb P, Greene G (2000) Oestrogen receptor function at classical and alternative response elements. Novartis Found Symp 230:20–26; discussion 27-40

    Article  PubMed  CAS  Google Scholar 

  • Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids 68:1–9

    Article  PubMed  CAS  Google Scholar 

  • Laudet V (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19:207–226

    Article  PubMed  CAS  Google Scholar 

  • Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F (2001) ERbeta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142:4120–4130

    Article  PubMed  CAS  Google Scholar 

  • Lefstin JA, Yamamoto KR (1998) Allosteric effects of DNA on transcriptional regulators. Nature 392:885–888

    Article  PubMed  CAS  Google Scholar 

  • Lerner LJ, Jordan VC (1990) Development of antiestrogens and their use in breast cancer: Eighth Cain memorial award lecture. Cancer Res 50:4177–4189

    PubMed  CAS  Google Scholar 

  • Leygue E, Dotzlaw H, Watson PH, Murphy LC (1999) Expression of estrogen receptor beta1, beta2, and beta5 messenger RNAs in human breast tissue. Cancer Res 59:1175–1179

    PubMed  CAS  Google Scholar 

  • Lieberman ME, Jordan VC, Fritsch M, Santos MA, Gorski J (1983) Direct and reversible inhibition of estradiol-stimulated prolactin synthesis by antiestrogens in vitro. J Biol Chem 258:4734–4740

    PubMed  CAS  Google Scholar 

  • Liu J, Knappenberger KS, Kack H, Andersson G, Nilsson E, Dartsch C, Scott CW (2003) A homogeneous in vitro functional assay for estrogen receptors: Coactivator recruitment. Mol Endocrinol 17:346–355

    Article  PubMed  CAS  Google Scholar 

  • Llopis J, Westin S, Ricote M, Wang J, Cho CY, Kurokawa R, Mullen TM, Rose DW, Rosenfeld MG, Tsien RY, Glass CK (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci USA 97:4363–4368

    Article  PubMed  CAS  Google Scholar 

  • Lonard DM, Nawaz Z, Smith CL, O’Malley BW (2000) The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptoralpha transactivation. Mol Cell 5:939–948

    Article  PubMed  CAS  Google Scholar 

  • Long BJ, Tilghman SL, Yue W, Thiantanawat A, Grigoryev DN, Brodie AM (1998) The steroidal antiestrogen ICI 182,780 is an inhibitor of cellular aromatase activity. J Steroid Biochem Mol Biol 67:293–304

    Article  PubMed  CAS  Google Scholar 

  • Maglich JM, Sluder A, Guan X, Shi Y, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT (2001) Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2: RESEARCH0029

    Google Scholar 

  • Martin AM, Weber BL (2000) Genetic and hormonal risk factor s in breast cancer. J Natl Cancer Inst 92:1126–1135

    Article  PubMed  CAS  Google Scholar 

  • Maruvada P, Baumann CT, Hager GL, Yen PM (2003) Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J Biol Chem 278:12425–12432

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Ochiai I, Nishi M, Kawata M (2002) Colocalization and ligand-dependent discrete distribution of the estrogen receptor (ER)alpha and ERbeta. Mol Endocrinol 16:2215–2230

    Article  PubMed  CAS  Google Scholar 

  • McGuire WL, Clark GM, Dressler LG, Owens MA (1986) Role of steroid hormone receptors as prognostic factors in primary breast cancer. NCI Monogr: 19–23

    Google Scholar 

  • McInerney EM, Tsai M-J, O’Malley BW, Katzenellenbogen BS (1996) Analysis of estrogen receptor transcriptional enhancement by a nuclear receptor coactivator. Proc Natl Acad Sci USA 93:10069–10073

    Article  PubMed  CAS  Google Scholar 

  • McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators-an update. Endocrinology 143:2461–2465

    Article  PubMed  CAS  Google Scholar 

  • Metivier R, Stark A, Flouriot G, Hubner MR, Brand H, Penot G, Manu D, Denger S, Reid G, Kos M, Russell RB, Kah O, Pakdel F, Gannon F (2002) A dynamic structural model for estrogen receptor-alpha activation by ligands, emphasizing the role of interactions between distant A and E domains. Mol Cell 10:1019–1032

    Article  PubMed  CAS  Google Scholar 

  • Meyers MJ, Sun J, Carlson KE, Marriner GA, Katzenellenbogen BS, Katzenellenbogen JA (2001) Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem 44:4230–4251

    Article  PubMed  CAS  Google Scholar 

  • Montano MM, Muller V, Trogaugh A, Katzenellenbogen BS (1995) The carboxy-terminal F domain of the human estrogen receptor: Role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol. Endocrinol. 9:814–825

    Article  PubMed  CAS  Google Scholar 

  • Morris C, Wakeling A, Robertson JF, Nicholson RI, Bundred NJ, Anderson E, Rayter Z, Dowsett M, Fox IN, Gee JM, Webster A, Wakeling AE, Dixon M, Howell A, Osborne CK (2002) Fulvestrant (‘Faslodex’)—a new treatment option for patients progressing on prior endocrine therapy. Comparison of the short-term biological effects of 7alpha-[9-(4,4,5,5,5-pentafluoropentylsulfinyl)-nonyl]estra-l,3,5, (10)-triene-3,17betadiol (Faslodex) versus tamoxifen in postmenopausal women with primary breast cancer. ICI 182,780 (Faslodex): development of a novel, ‘pure’ antiestrogen. Endocr Relat Cancer 9:267–276

    Article  PubMed  CAS  Google Scholar 

  • Naar AM, Beaurang PA, Robinson KM, Oliner JD, Avizonis D, Scheek S, Zwicker J, Kadonaga JT, Tjian R (1998) Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev 12:3020–3031

    Article  PubMed  CAS  Google Scholar 

  • Nardulli AM, Shapiro DJ (1992) Binding of the estrogen receptor DNA-binding domain to the estrogen response element induces DNA bending. Mol Cell Biol 12:2037–2042

    PubMed  CAS  Google Scholar 

  • Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565

    PubMed  CAS  Google Scholar 

  • Norris JD, Fan D, Sherk A, McDonnell DP (2002) A negative coregulator for the human ER. Mol Endocrinol 16:459–468

    Article  PubMed  CAS  Google Scholar 

  • Norris JD, Paige LA, Christensen DJ, Chang CY, Huacani MR, Fan D, Hamilton PT, Fowlkes DM, McDonnell DP (1999) Peptide antagonists of the human estrogen receptor. Science 285:744–746

    Article  PubMed  CAS  Google Scholar 

  • Oesterreich S, Zhang Q, Hopp T, Fuqua SA, Michaelis M, Zhao HH, Davie JR, Osborne CK, Lee AV (2000) Tamoxifen-bound estrogen receptor (ER) strongly interacts with the nuclear matrix protein HET/SAF-B, a novel inhibitor of ER-mediated transactivation. Mol Endocrinol 14:369–381

    Article  PubMed  CAS  Google Scholar 

  • Omoto Y, Inoue S, Ogawa S, Toyama T, Yamashita H, Muramatsu M, Kobayashi S, Iwase H (2001) Clinical value of the wild-type estrogen receptor beta expression in breast cancer. Cancer Lett 163:207–212

    Article  PubMed  CAS  Google Scholar 

  • Osborne CK, Coronado-Heinsohn EB, Hilsenbeck SG, McCue BL, Wakeling AE, McClelland RA, Manning DL, Nicholson RI (1995) Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J Natl Cancer Inst 87:746–750

    Article  PubMed  CAS  Google Scholar 

  • Ouatas T, Salerno M, Palmieri D, Steeg PS (2003) Basic and translational advances in cancer metastasis: Nm23. J Bioenerg Biomembr 35:73–79

    Article  PubMed  CAS  Google Scholar 

  • Pace P, Taylor J, Suntharalingam S, Coombes RC, Ali S (1997) Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor alpha. J Biol Chem 272:25832–25838

    Article  PubMed  CAS  Google Scholar 

  • Pakdel F, Le Goff P, Katzenellenbogen BS (1993a) An assessment of the role of domain F and PEST sequences in estrogen receptor half-life and bioactivity. J Steroid Biochem Mol Biol 46:663–672

    Article  PubMed  CAS  Google Scholar 

  • Pakdel F, Reese JC, Katzenellenbogen BS (1993b) Identification of charged residues in an N-terminal portion of the hormone-binding domain of human estrogen receptor important in transcriptional activity of the receptor. Mol Endocrinol 7:1408–1417

    Article  PubMed  CAS  Google Scholar 

  • Pike AC, Brzozowski AM, Hubbard RE (2000) A structural biologist’s view of the oestrogen receptor. J Steroid Biochem Mol Biol 74:261–268

    Article  PubMed  CAS  Google Scholar 

  • Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustafsson JA, Carlquist M (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18:4608–4618

    Article  PubMed  CAS  Google Scholar 

  • Pike AC, Brzozowski AM, Walton J, Hubbard RE, Thorsell A, Li Y, Gustafsson J, Carlquist M (2001) Structural insights into the mode of action of a pure antiestrogen. Structure 9:145–153

    Article  PubMed  CAS  Google Scholar 

  • Pink JJ, Jordan VC (1996) Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res 56:2321–2330

    PubMed  CAS  Google Scholar 

  • Ramsey TL, Klinge CM (2001) Estrogen response element binding induces alterations in estrogen receptor a conformation as revealed by susceptibility to partial proteolysis. J. Mol. Endocrinol. 27:275–292

    Article  PubMed  CAS  Google Scholar 

  • Reddel RR, Murphy LC, Hall RE, Sutherland RL (1985) Differential sensitivity of human breast cancer cell lines to the growth-inhibitory effects of tamoxifen. Cancer Res 45:1525–1531

    PubMed  CAS  Google Scholar 

  • Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11:695–707

    Article  PubMed  CAS  Google Scholar 

  • Rich RL, Hoth LR, Geoghegan KF, Brown TA, LeMotte PK, Simons SP, Hensley P, Myszka DG (2002) Kinetic analysis of estrogen receptor/ligand interactions. Proc Natl Acad Sci USA 99:8562–8567

    Article  PubMed  CAS  Google Scholar 

  • Romine LE, Wood JR, Lamia LA, Prendergast P, Edwards DP, Nardulli AM (1998) The high mobility group protein 1 enhances binding of the estrogen receptor DNA binding domain to the estrogen response element. Mol Endocrinol 12:664–674

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Hu YF, Tahin Q, Mihaila D, Slater C, Lareef MH, Russo IH (2001) Carcinogenicity of estrogens in human breast epithelial cells. Apmis 109:39–52

    Article  PubMed  CAS  Google Scholar 

  • Safe S (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62:231–252

    Article  PubMed  CAS  Google Scholar 

  • Samuni AM, Chuang EY, Krishna MC, Stein W, DeGraff W, Russo A, Mitchell JB (2003) Semiquinone radical intermediate in catecholic estrogen-mediated cytotoxicity and mutagenesis: chemoprevention strategies with antioxidants. Proc Natl Acad Sci USA 100:5390–5395

    Article  PubMed  CAS  Google Scholar 

  • Schwabe JWR, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements. Cell 75:567–578

    Article  PubMed  CAS  Google Scholar 

  • Segnitz B, Gehring U (1995) Subunit structure of the nonactivated human estrogen receptor. Proc Natl Acad Sci USA 92:2179–2183

    Article  PubMed  CAS  Google Scholar 

  • Shang Y, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295:2465–2468

    Article  PubMed  CAS  Google Scholar 

  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103:843–852

    Article  PubMed  CAS  Google Scholar 

  • Shapiro CL, Henderson IC (1994) Adjuvant therapy of breast cancer. Hematol Oncol Clinics of North America 8:213–231

    CAS  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  PubMed  CAS  Google Scholar 

  • Shiau AK, Barstad D, Radek JT, Meyers MJ, Nettles KW, Katzenellenbogen BS, Katzenellenbogen JA, Agard DA, Greene GL (2002) Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol 9:359–364

    PubMed  CAS  Google Scholar 

  • Shibutani S, Ravindernath A, Suzuki N, Terashima I, Sugarman SM, Grollman AP, Pearl ML (2000) Identification of tamoxifen-DNA adducts in the endometrium of women treated with tamoxifen. Carcinogenesis 21:1461–1467

    Article  PubMed  CAS  Google Scholar 

  • Simoncini T, Varone G, Fornari L, Mannella P, Luisi M, Labrie F, Genazzani AR (2002) Genomic and nongenomic mechanisms of nitric oxide synthesis induction in human endothelial cells by a fourth-generation selective estrogen receptor modulator. Endocrinology 143:2052–2061

    Article  PubMed  CAS  Google Scholar 

  • Smigel K (1998) Breast cancer prevention trial shows major benefit, some risk. J Natl Cancer Inst 90:647–648

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Baudry J, Katzenellenbogen JA, Katzenellenbogen BS (2003) Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile. Mol Endocrinol 17:247–258

    Article  PubMed  CAS  Google Scholar 

  • Tanenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 95:5998–6003

    Article  PubMed  CAS  Google Scholar 

  • Thornton JW (2001) Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci USA 98:5671–5676

    Article  PubMed  CAS  Google Scholar 

  • Toi M, Bando H, Saji S (2003) Decision tree and paradigms of primary breast cancer: changes elicited by preoperative therapy. Med Sci Monit 9: RA90–RA95

    PubMed  Google Scholar 

  • Tremblay GB, Bergeron D, Giguere V (2001) 4-Hydroxytamoxifen is an isoform-specific inhibitor of orphan estrogen-receptor-related (ERR) nuclear receptors beta and gamma. Endocrinology 142:4572–4575

    Article  PubMed  CAS  Google Scholar 

  • Tsai KS, Yen ML, Pan HA, Wu MH, Cheng WC, Hsu SH, Yen BL, Huang KE, Anderson PW, Cox DA, Sashegyi A, Paul S, Silfen SL, Walsh BW, Godsland IF, De Leo V, la Marca A, Morgante G, Lanzetta D, Setacci C, Petraglia F, Johnston CC, Jr., Bjarnason NH, Cohen FJ, Shah A, Lindsay R, Mitlak BH, Huster W, Draper MW, Harper KD, Heath H, 3rd, Gennari C, Christiansen C, Arnaud CD, Delmas PD, Hozumi Y, Kawano M, Jordan VC (2001) Raloxifene versus continuous combined estrogen/progestin therapy: densitometric and biochemical effects in healthy postmenopausal Taiwanese women. Effects of raloxifene and hormone replacement therapy on markers of serum atherogenicity in healthy postmenopausal women. Effects of postmenopausal hormone replacement therapy on lipid, lipoprotein, and apolipoprotein (a) concentrations: analysis of studies published from 1974–2000. Randomized control study of the effects of raloxifene on serum lipids and homocysteine in older women. Long-term effects of raloxifene on bone mineral density, bone turnover, and serum lipid levels in early postmenopausal women: three-year data from 2 double-blind, randomized, placebo-controlled trials. In vitro study of the effect of raloxifene on lipid metabolism compared with tamoxifen. Osteoporos Int 12:1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker M, Stein R, B., Pike JW, McDonnell DP (1994) Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 8:21–30

    Article  PubMed  CAS  Google Scholar 

  • Urnov FD, Wolffe AP (2001) A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol 15:1–16

    Article  PubMed  CAS  Google Scholar 

  • Wahli W, Martinez E (1991) Superfamily of steroid nuclear receptors: Positive and negative regulators of gene expression. FASEB J 5:2243–2249

    PubMed  CAS  Google Scholar 

  • Wakeling AE (1989) Comparative studies on the effects of steroidal and nonsteroidal oestrogen antagonists on the proliferation of human breast cancer cells. J Steroid Biochem 34:183–188

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE (1993) Are breast tumours resistant to tamoxifen also resistant to pure antioestrogens? J Steroid Biochem Mol Biol 47:107–114

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE, Bowler J (1992) ICI 182,780, a new antioestrogen with clinical potential. J Steroid Biochem Mol Biol 43:173–177

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE, Dukes M, Bowler J (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res 51:3867–3873

    PubMed  CAS  Google Scholar 

  • Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG (2001) Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 276:18375–18383

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Kyo S, Maida Y, Takakura M, Tanaka M, Yatabe N, Kanaya T, Nakamura M, Koike K, Hisamoto K, Ohmichi M, Inoue M (2002) Tamoxifen regulates human telomerase reverse transcriptase (hTERT) gene expression differently in breast and endometrial cancer cells. Oncogene 21:3517–3524

    Article  PubMed  CAS  Google Scholar 

  • Weatherman RV, Scanlan TS (2001) Unique protein determinants of the subtype-selective ligand responses of the estrogen receptors (ERalpha and ERbeta) at AP-l sites. J Biol Chem 276:3827–3832

    Article  PubMed  CAS  Google Scholar 

  • Webb P, Nguyen P, Kushner PJ (2003) Differential SERM effects on corepressor binding dictate ERalpha activity in vivo. J Biol Chem 278:6912–6920

    Article  PubMed  CAS  Google Scholar 

  • Webb P, Nguyen P, Shinsako J, Anderson C, Feng W, Nguyen MP, Chen D, Huang SM, Subramanian S, McKinerney E, Katzenellenbogen BS, Stallcup MR, Kushner PJ (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol 12:1605–1618

    Article  PubMed  CAS  Google Scholar 

  • Weihua Z, Andersson S, Cheng G, Simpson ER, Warner M, Gustafsson JA (2003) Update on estrogen signaling. FEBS Lett 546:17–24

    Article  PubMed  CAS  Google Scholar 

  • Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stabil ity is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276:35684–35692

    Article  PubMed  CAS  Google Scholar 

  • Wolff MS, Weston A (1997) Breast cancer risk and environmental exposures. Environ. Health Perspect. 105:891–896

    PubMed  CAS  Google Scholar 

  • Wood JR, Greene GL, Nardulli AM (1998) Estrogen response elements function as allosteric modulators of estrogen receptor conformation. Mol Cell Biol 18:1927–1934

    PubMed  CAS  Google Scholar 

  • Wood JR, Likhite VS, Loven MA, Nardulli AM (2001) Allosteric modulation of estrogen receptor conformation by different estrogen response elements. Mol Endocrinol 15: 1114–1126

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Wu Y, Gathings B, Wan M, Li X, Grizzle W, Liu Z, Lu C, Mao Z, Cao X (2003) Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem 278: 15192–15200

    Article  PubMed  CAS  Google Scholar 

  • Xing W, Archer TK (1998) Upstream stimulatory factors mediate estrogen receptor activation of the cathepsin D promoter. Mol Endocrinol 12:1310–1321

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Wada O, Suzawa M, Yogiashi Y, Yano T, Kato S, Yanagisawa J (2001) The tamoxifen-responsive estrogen receptor alpha mutant D351Y shows reduced tamoxifen-dependent interaction with corepressor complexes. J Biol Chem 276:42684–42691

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Annab LA, Afshari CA, Lee WH, Boyer TG (2001) BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc Natl Acad Sci USA 98:9587–9592

    Article  PubMed  CAS  Google Scholar 

  • Zou A, Marschke KB, Arnold KE, Berger EM, Fitzgerald P, Mais DE, Allegretto EA (1999) Estrogen receptor beta activates the human retinoic acid receptor alpha-1 promoter in response to tamoxifen and other estrogen receptor antagonists, but not in response to estrogen. Mol Endocrinol 13:418–430

    Article  PubMed  CAS  Google Scholar 

  • Zwijsen RML, Buckle RS, Hijmans EM, Loomans CJM, Bernards R (1998) Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D. Genes Dev 12:3488–3498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Klinge, C.M. (2004). Selective Estrogen Receptor Modulators as Therapeutic Agents in Breast Cancer Treatment. In: Gossen, M., Kaufmann, J., Triezenberg, S.J. (eds) Transcription Factors. Handbook of Experimental Pharmacology, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18932-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18932-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62361-5

  • Online ISBN: 978-3-642-18932-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics