Skip to main content

Radionuclides as Tracers for Particle Flux and Transport of Water Masses in the Atlantic Sector of the Southern Ocean

  • Chapter
The South Atlantic in the Late Quaternary

Abstract

The natural uranium decay series provide a suite of tracers to study transport processes in the ocean. We have used nuclides of the particle-reactive elements Th, Pa, Pb and Po for studies of particle flux in the Southern Ocean, whereas isotopes of the elements Ra and Ac served as tracers for the transport of water masses. Here we summarize the specific aspects of the behaviour of these nuclides in the Southern Ocean and give some examples of their application. We review the important influence of exchange between ocean basins by advection and upwelling on the long-lived nuclides. We show how the distribution of 234Th in surface waters across the ACC represents the export production, whereas in the benthic nepheloid layer this tracer is used to Ilustrate how the resuspension regime in the ACC is linked to the position of the oceanographic fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson HL, Francois R, Moran SB (1992) Experimental evidence for differential adsorption of Th and Pa on different solid phases in seawater. EOS 73 (43S, fall meeting), 270 p

    Google Scholar 

  • Anderson RF, Bacon MP, Brewer PG (1983a) Removal of 230Th and 231Pa at ocean margins. Earth Planet Sci Lett 66: 73–90

    Article  Google Scholar 

  • Anderson RF, Bacon MP, Brewer PG (1983b) Removal of 230Th and 231Pa from the open ocean. Earth Planet Sci Lett 62: 7–23

    Article  Google Scholar 

  • Andersson PS, Gustafsson O, Roos P, Broman D, Toneby A (2000) Particle mediated surface water export: comparison of estimates from 238U-234Th disequilibria and sediment traps in a continental shelf region. EOS AGU/ASLO Ocean Sciences Meeting, San Antonio, abstract only

    Google Scholar 

  • Asmus T, Frank M, Koschmieder C, Frank N, Gersonde R, Kuhn G, Mangini A (1999) Variations of biogenic particle flux in the southern Atlantic section of the Subantarctic Front during the late Quaternary: Evidence from sedimentary 231Paex and 230Thex. Mar Geol 159: 63–78

    Article  Google Scholar 

  • Bacon MP (1976 ) Applications ofPb-210/Ra-226 and Po-210/Pb-210 disequilibria in the study of marine geo-chemical processes. PhD thesis, Woods Hole Oceanographic Institution

    Google Scholar 

  • Bacon MP, Anderson RF (1982) Distribution of thorium isotopes between dissolved and particulate forms in the deep-sea. J Geophys Res 87: 2045–2056

    Article  Google Scholar 

  • Bacon MP, Rosholt IN (1982) Accumulation rates of 230Th and 231Pa and some transition metals on the BermudaRise. Geochim Cosmochim Acta 46: 651–666

    Article  Google Scholar 

  • Bacon MP, Rutgers van der Loeff MM (1989) Removal of Thorium-234 by scavenging in the bottom nepheloid layer of the ocean. Earth Planet Sci Lett 92: 157–164

    Article  Google Scholar 

  • Bacon MP, Spencer DW, Brewer PG (1976) 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter. Earth Planet Sci Lett 32: 277–296

    Article  Google Scholar 

  • Bacon MP, Huh C-A, Fleer AP, Deuser WG (1985) Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Deep-Sea Res 32: 273–286

    Article  Google Scholar 

  • Bathmann UV, Scharek R, Klaas C, Dubischar CD, Smetacek V (1997) Spring development of phytoplankton biomass and composition in major water masses of the Atiantic sector of the Southern Ocean. Deep-Sea Res II 44: 51–67

    Article  Google Scholar 

  • Benitez-Nelson C, Buesseler KO, Rutgers van der Loeff MM, Andrews J, Ball L, Crossin G, Charette MA (2001) Testing a new small-volume technique for determining thorium-234 in seawater. J RadioanaIytical Nuclear Chem 248: 795–799

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the Sea. Lamont-Doherty Geol Obs, Columbia University 690 p

    Google Scholar 

  • Broecker WS, Goddard J, Sarmiento JL (1976) The distribution of 226Ra in the Atlantic Ocean. Earth Planet Sci Lett 32: 220–235

    Article  Google Scholar 

  • Broecker WS, Peacock SL, Walker S, Weiss R, Fahrbach E, Schroeder M, Mikolajewicz U, Heinze C, Key R, Peng T-H, Rubin S (1998) How much deep water is formed in the Southern Ocean. J Geophys Res 103(C8): 15833–15843

    Article  Google Scholar 

  • Buesseler K O (1998) The decoupling of production and particulate export in the surface ocean. Glob Biogeochem Cycl 12: 297–310

    Article  Google Scholar 

  • Buesseler KO, Bacon MP, Cochran JK, Livingston HD (1992) Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th:238U disequilibria. Deep-Sea Res 39: 1115–1137

    Article  Google Scholar 

  • Buesseler KO, Andrews JA, Hartman MC, Belastock R, Chai F (1995) Regional estimates of the export flux of particulate organic carbon derived from thorium-234 during the JGOFS EqPac program. Deep-Sea Res 1142: 777–804

    Google Scholar 

  • Buesseler KO, Benitez-Nelson C, Rutgers van der Loeff MM, Andrews J, Ball L, Crossin G, Charette MA (2001) A comparison of methods with a new small-volume technique for thorium-234 in seawater. Mar Chem 74: 15–28

    Article  Google Scholar 

  • Chase Z (2001) Trace elements as regulators (Fe) and recorders (U, Pa, Th, Be)of biological productivity in the ocean. PhD, Columbia University

    Google Scholar 

  • Chase Z, Anderson RF, Fleisher MQ, Kubik P (2002) The influence of particle composition on scavenging of Th, Pa and Be in the ocean. Earth Planet Sci Lett 204: 215–229

    Article  Google Scholar 

  • Chase Z, Anderson RF, Fleisher MQ, Kubik P (2003) Scavenging of 230Th, 231Pa and 10Be in the Southern Ocean (SW Pacific sector): The importance of particle flux and advection. Deep-Sea Res II 50: 739–768

    Article  Google Scholar 

  • Chen JH, Edwards LR, Wasserburg GJ (1986) 238U, 234U and 232Th in seawater. Earth Planet Sci Lett 80: 241–251

    Article  Google Scholar 

  • Chung Y (1981) 210Pb and 226Ra distributions in the Circumpolar waters. Earth Planet Sci Lett 55: 205–216

    Article  Google Scholar 

  • Chung Y, Applequist MD (1980) 226Ra and 210Pb in the Weddell Sea. Earth Planet Sci Lett 49: 401–410

    Article  Google Scholar 

  • Coale KH, Bruland KW (1985) 234Th:238U disequilibria within the California current. Limnol Oceanogr 30: 22–33

    Article  Google Scholar 

  • Cochran JK (1992) Theoceanic chemistry of the Uranium and Thorium-series nuclides. In: Ivanovich M and Harmon RS (eds) Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. 2nd edition, Clarendon Press, pp 334–395

    Google Scholar 

  • Cochran JK, Krishnaswami S (1980) Radium, Thorium, Uranium and 210Pb in deep-sea sediments and sediment pore waters from the North Equatorial Pacific. Am J Sci 280: 849–889

    Article  Google Scholar 

  • Cochran JK, Buesseler KO, Bacon MP, Wang HW, Hirschberg DJ, Ball L, Andrews J, Crossin G, Fleer A (2000) Short-lived thorium isotopes (234Th, 228Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean. Deep-Sea Res II 47: 3451–3490

    Article  Google Scholar 

  • De Baar HJW, De Jong JTM, Bakker DCE, Löscher BM, Veth C, Bathmann U, Smetacek V (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373: 412–415

    Article  Google Scholar 

  • De Baar HJW, de Jong JTM, Nolting RF, Timmermans KR, van Leeuwe MA, Bathmann U, Rutgers van der Loeff M, Sildam J (1999) Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean. Mar Chem 36: 1–34

    Article  Google Scholar 

  • Farley KA, Turekian KK (1990) Lead-210 in the circumpolar South Atlantic. Deep-Sea Res 37(12): 1849–1860

    Article  Google Scholar 

  • Francois R, Bacon MP, Altabet MA, Labeyrie LD (1993) Glacial/Interglacial changes in sediment rain rate in the SW Indian sector of subantarctic waters as recorded by 230Th, 231Pa, U, and δ15N. Paleoceanography 8: 611–629

    Article  Google Scholar 

  • Francois R, Frank M, Rutgers van der Loeff MM, Bacon MP (2003) 230Th-normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography, submitted

    Google Scholar 

  • Frank M, Gersonde R, Mangini A (1999) Sediment redistribution, 230Thex-normalization and implications for the reconstruction of particle flux and export paleoproductivity. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography. Springer, Berlin, pp 409–426

    Chapter  Google Scholar 

  • Frank M, Gersonde R, Rutgers van der Loeff MM, Bohrmann G, Nürnberg CC, Kubik PW, Suter M, Mangini A (2000) Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography 15: 642–658

    Article  Google Scholar 

  • Friedrich J (1997) Polonium-210 und Blei-210 im Südpolarmeer: Natürliche Tracer für biologische und hydrographische Prozesse im Oberflächenwasser des Antarktischen Zirkumpolarstroms und des Weddellmeeres. Ber Polarforsch 235: 1–155

    Google Scholar 

  • Friedrich J, Rutgers van der Loeff MM (2002) A two-trace (210Po-234Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current. Deep-Sea ResI 49: 101–120

    Article  Google Scholar 

  • Geibert W (2001) Actinium-227as tracer for advection and mixing in the Deep-Sea. Reports on Polar and Marine Research 385, 112 p

    Google Scholar 

  • Geibert W, Usbeck R (2003) The adsorption of Thorium and Protactinium onto different particle types: Experimental findings. Geochim Cosmochim Acta, In press

    Google Scholar 

  • Geibert W, Rutgers van der Loeff MM, Hanfland C, Dauelsberg H-J (2002) Actinium-227 as a Deep-Sea Tracer: Sources, Distribution and Applications. Earth Planet Sci Lett 198: 147–165

    Article  Google Scholar 

  • Gustafsson Ö, Duker A, Larsson J, Andersson P, Ingri J (2000) Functional separation of colloids and gravitoids in surface waters based on differential settling velocity: Coupled cross-flow filtration-split flow-thin cell fractionation (CFF-SPLITT). Limnol Oceanogr 45: 1731–1742

    Article  Google Scholar 

  • Hanfland C (2002) Radiwn-226 and Radiwn-228 in the Atlantic sector of the Southern Ocean. Reports on Polar and Marine Research. PhD Thesis Univ Bremen, Germany 431,135 p

    Google Scholar 

  • Henderson GM, Heinze C, Anderson RF, Winguth AME (1999) Global distribution of the 230Th flux to ocean sediments constrained by GCM modelling. Deep-Sea Res I 46: 1861–1893

    Article  Google Scholar 

  • Hoppema M, Fahrbach E, Schröder M (1997) On the total carbon dioxide and oxygen signature of the Circum-polar Deep Water in the Weddell Gyre. Oceanol Acta 20: 783–798

    Google Scholar 

  • Ku TL, Lin MC (1976) 226Ra distribution in the Antarctic Ocean. Earth Planet Sci Lett 32: 236–248

    Article  Google Scholar 

  • Ku TL, Knauss KG, Mathieu GG (1977) Uranium in the open ocean: Concentration and isotopic composition. Deep-Sea Res 24: 1005–1017

    Article  Google Scholar 

  • Kumar N, Gwiazda R, Anderson RF, Froelich PN (1993) 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity. Nature 362: 45–48

    Article  Google Scholar 

  • Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik P, Dittrich-Hannen B, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378: 675–680

    Article  Google Scholar 

  • Li Y-H, Feely HW, Toggweiler JR (1980) 228Ra and 228Th concentrations in GEOSECS Atlantic surface waters. Deep-Sea Res 27A: 545–555

    Article  Google Scholar 

  • Löscher BM, de Jong JTM, de Baar HJW, Veth C, Dehairs F (1997) The distribution of Fe in the Antarctic Circumpolar Current. Deep-Sea Res II 44(1/ 2): 143–187

    Article  Google Scholar 

  • Luo S, Ku T-L (1999) Oceanic 231Pa/230Th ratio influence by particle composition and remineralization. Earth Planet Sci Lett 167: 183–195

    Article  Google Scholar 

  • Marchal O, Francois R, Stocker TF, Joos F (2000) Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio. Paleoceanography 15: 625–641

    Article  Google Scholar 

  • Nozaki Y, Horibe Y, Tsubota H (1981) The water column distributions of thorium isotopes in the western North Pacific. Earth Planet Sci Lett 54: 203–216

    Article  Google Scholar 

  • Nozaki Y, Yamada M, Nikaido H (1990) The marine geochemistry of Actiniwn-227: Evidence for its migration through sediment pore water. Geophys Res Lett 17: 1933–1936

    Article  Google Scholar 

  • Rutgers van der Loeff MM (1994) 228Ra and 228Th in the Weddell Sea. In: Johannessen OM, Muench RD, Overland JE (eds) The Polar Oceans and their Role in Shaping the Global Environment: The Nansen Centennial Volume, Geophysical Monograph 85, American Geophysical Union, pp 177–186

    Google Scholar 

  • Rutgers van der Loeff MM (2001) Uranium-Thorium decay series in the water column. In: Steele J, Thorpe S, Turekian K (eds) Encyclopedia of Ocean Sciences. Vol. MS 168, Academic Press

    Google Scholar 

  • Rutgers van der Loeff MM, Berger GW (1991) Scavening and particle flux: Seasonal and regional variations in the South Ocean (Atlantic sector) Mar Chem 35: 553–567

    Article  Google Scholar 

  • Rutgers van der Loeff MM, Berger GW (1993) Scavenging of 230Th and 231Pa near the Antarctic Polar Front in the South Atlantic. Deep-Sea Res 140: 339–357

    Google Scholar 

  • Rutgers van der Loeff MM, Boudreau BP (1997) The effect of resuspension on chemical exchanges at the sediment water interface-A modelling and natural radiotracer approach. J Mar Syst 11: 305–342

    Article  Google Scholar 

  • Rutgers van der Loeff MM, Moore WS (1999) Determination of natural radioactive tracers. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of Seawater Analysis. Wiley-VCH, Weinheim, pp 365–397

    Chapter  Google Scholar 

  • Rutgers van der Loeff MM, Westernströer U (2000) Export production measured through the 234Th/238U disequilibrium in surface waters. In: Bathmann U, Smetacek V, Reinke M (eds) The Expeditions ANTARKTIS XVI/3–4 of the RV Polarstern in 1999. Rep Polar Res 364, pp 114–118

    Google Scholar 

  • Rutgers van der Loeff MM, Friedrich J, Bathmann UV (1997) Carbon export during the spring bloom at the southern Polar Front, determined with the natural tracer 234Th. Deep-Sea Res II 44: 457–478

    Article  Google Scholar 

  • Rutgers van der Loeff MM, Buesseler KO, Bathmann U, Hense I, Andrews J (2002) Comparison of carbon and opal export rates between summer and spring bloom periods in the region of the Antarctic Polar Front, SE Atlantic. Deep-Sea Res II 49: 3849–3869

    Article  Google Scholar 

  • Schlitzer R (2000) Applying the Adjoint Method for Global Biogeochemical Modeling. In: Kasibhatla P, Heimann M, Hartley D, Mahowald N, Prinn R, Rayner P (eds) Inverse Methods in Biogeochemical Cycles. AGU, pp 107–124

    Google Scholar 

  • Schlitzer R (2002) Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite based estimates. Deep-Sea Res 1149: 1623–1644

    Google Scholar 

  • Scholten JC, Fietzke J, Vogler S, Rutgers van der Loeff MM, Mangini A, Koeve W, Stoffers P, Antia A, Neuer S, Waniek J (2001) Trapping efficiencies of sediment traps from the deep waster north Atlantic: The 230Th calibration. Deep-Sea Res II JGOFS North Atlantic Synthesis 48: 2383–2408

    Article  Google Scholar 

  • Suman DO, Bacon MP (1989) Variations in Holocene sedimentation in the North American Basin determined from 230Th measurements. Deep-Sea Res 36: 869–878

    Article  Google Scholar 

  • Usbeck R (1999) Modeling of marine biogeochemical cycles with an emphasis on vertical particle fluxes. Ber Polarforsch 332, 105 p

    Google Scholar 

  • Usbeck R, Rutgers van der Loeff MM, Hoppema M, Schlitzer R (2002) Shallow mineralization in the Weddell Gyre. Geochem Geophys Geosyst 3, 1: 10.1029/2001GC000182

    Google Scholar 

  • Usbeck R, Schlitzer R, Fischer G, Wefer G (2003) Particle fluxes in the ocean: Comparison of sediment trap data with results from inverse modeling. J Mar Syst 39: 167–183

    Article  Google Scholar 

  • van Franeker J (1994) Sea-ice cover and icebergs. In: Bathmann UV, Smetacek V, de Baar HJW (eds) The Expedition Antarktis X/6-8 of the research vessel Polarstern in 1992/1993. Ber Polarforsch 135, AWI, Bremerhaven, pp 17–22

    Google Scholar 

  • Vogler S, Scholten J, Rutgers van der Loeff M, Mangini A (1998) 230Th in the eastern North Atlantic: The importance of water mass ventilation in the balance of 230Th. Earth Planet Sci Lett 156: 61–74

    Article  Google Scholar 

  • Walter HJ, Rutgers van der Loeff MM, Höltzen H (1997) Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the Polar Front: Implications for the use of the 231Pa/230Th ratio as a paleo-productivity proxy. Earth Planet Sci Lett 149: 85–100

    Article  Google Scholar 

  • Walter HJ, Rutgers van der Loeff MM, Francois R (1999) Reliability of the 231Pa/230Th activity ratio as a tracer for bioproductivity of the ocean. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography — Examples from the South Atlantic. Springer, Berlin, pp 393–408

    Chapter  Google Scholar 

  • Walter HJ, Rutgers van der Loeff MM, Höltzen H, Bathmann U (2000) Reduced scavenging of 230Th in the Weddell Sea: Implications for paleoceanographic reconstructions in the South Atlantic. Deep-Sea Res I 47: 1369–1387

    Article  Google Scholar 

  • Whitworth T, Nowlin WD (1987) Water masses and currents of the Southern Ocean at the Greenwich meridian. J Geophys Res 92(C6): 6462–6476

    Article  Google Scholar 

  • Yu E-F, Francois R, Bacon MP (1996) Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379: 689–694

    Article  Google Scholar 

  • Yu E-F, Francois R, Bacon MP, Honjo S, Fleer AP, Manganini SJ, Rutgers van der Loeff MM, Ittekot V (2001) Trapping efficiency of bottom-tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa. Deep-Sea Res I 48: 865–889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Rutgers Loeff, M. et al. (2003). Radionuclides as Tracers for Particle Flux and Transport of Water Masses in the Atlantic Sector of the Southern Ocean. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics