Skip to main content

Stable Carbon Isotopic Composition of the C37:2 Alkenone: A Proxy for CO2(aq) Concentration in Oceanic Surface Waters?

  • Chapter
The South Atlantic in the Late Quaternary

Abstract

We tested the applicability of the carbon isotopic composition of C37:2 alkenones (δ13C37:2) as a proxy for dissolved carbon dioxide CO2(aq) in oceanic surface waters. For this purpose we determined (δ13C37:2 in suspended particulate organic matter (POM) and surface sediments from the South Atlantic. In opposite of what would be expected from a diffusive CO2 uptake model for marine algae we observed a positive correlation between 1/[CO2(aq)] and the isotopic fractionation (εp) calculated from (δ13C37:2. This clearly demonstrates that CO2(aq) is not the primary factor controlling εp at the sites studied. On the other hand we found a negative correlation between εp and the phosphate concentration in the surface waters (0–10 m) supporting the assumption of (1997) that εp is primarily related to nutrient-limited algal growth rather than to [CO2(aq)]. Reconstructing past CO2(aq) levels from (δ13C37:2 thus requires additional proxy information in order to correct for the influence of haptophyte growth on the isotopic fractionation. In the eastern Angola Basin, we previously used δ15N of bulk organic matter as proxy for nutrient-limited growth rates. As an alternative the Sr/Ca ratio of coccoliths has been recently suggested as growth-rate proxy which should be tested in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen N, Müller PJ, Kirst G, Schneider RR (1999) Alkenone δ13C as a proxy for past PCO2 in surface waters: Results from the Late Quaternary Angola current. In: Fischer G, Wefer G (eds) Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 469–488

    Chapter  Google Scholar 

  • Altabet MA, Pilskahn C, Thunell R, Pride C, Sigman D, Chavez F, Francois R (1999) The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res 46: 655–679

    Google Scholar 

  • Arthur MA, Dean WE, Claypool GE (1985) Anomalous C-13 enrichment in modem marine organic carbon. Nature 315: 216–218

    Article  Google Scholar 

  • Bentaleb I, Fontugne M, Descolas-Gros C, Girardin C, Mariotti A, Pierre C, Brunet C, Poisson A (1996) Organic carbon isotopic composition of phytoplankton and sea-surface pCO2 reconstructions in the Southern Indian Ocean during the last 50,000 yr. Organic Geochem 24: 399–410

    Article  Google Scholar 

  • Bentaleb I, Fontugne M, Descolas-Gros C, Girardin C, Mariotti A, Pierre C, Brunet C, Poisson A (1998) Carbon isotopic fractionation by plankton in the Southern Indian Ocean: Relationship between δ13C of particulate organic carbon and dissolved carbon dioxide. J MarSys 17: 39–58

    Google Scholar 

  • Benthien A, Müller PJ (2000) Anomalously low alkenone temperatures caused by lateral particle and sediment transport in the Malvinas Current region, western Argentine Basin. Deep-Sea Res 47: 2369–2393

    Article  Google Scholar 

  • Benthien A, Andersen N, Schulte S, Müller PJ, Schneider RR, Wefer G (2002) Carbon isotopic composition of the C37:2 alkenone in core-top sediments of the South Atlantic Ocean: Effects of CO2 and nutrient concentrations. Glob Biogeochem Cycl 16: 1012: doi 10.1029/2001GB001433

    Article  Google Scholar 

  • Bidigare RR, Flügge A, Freeman KH, Hanson KL, Hayes JM, Hollander D, Jasper JP, King LL, Laws EA, Milder J, Millero Fl, Pancost R, Popp BN, Steinberg PA, Wakeham SG (1997) Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae. Glob Biogeochem Cycl 11: 279–292

    Article  Google Scholar 

  • Bidigare RR, Flügge A, Freeman KH, Hanson KL, Hayes JM, Hollander D, Jasper JP, King LL, Laws EA, Milder J, Millero Fl, Pancost R, Popp BN, Steinberg PA, Wakeham SG (1999) Correction to “Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae”. Glob Biogeochem Cycl 13: 251–252

    Article  Google Scholar 

  • Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G (eds) Use of Proxies in Paleocea-nography: Examples from the South Atlantic. Springer, Berlin, pp 489–512

    Chapter  Google Scholar 

  • Burkhardt S, Riebesell U, Zondervan I (1999) Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochim Cosmochim Acta 63: 3729–3741

    Article  Google Scholar 

  • Burns BD, Beardall J (1987) Utilization of inorganic carbon by marine microalgae. J Experiment Mar Bioi Ecol 107: 75–86

    Article  Google Scholar 

  • Conkright ME, Levitus S, Boyer TP (1994) World Ocean Atlas 1994 Vol. 1: Nutrients, NOOA Atlas NESDIS 1. US Government Printing Office

    Google Scholar 

  • Conte MH, Thompson A, Eglinton G, Green JC (1995) Lipid biomarker diversity in the coccolithophorid Emiliania huxleyi (Prymnesiophycae) and the related species Gephyrocapsa oceanica. J Phycol 31: 272–282

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289: 270–277

    Article  Google Scholar 

  • Curry WB, Crowley TJ (1987) The δ13C of equatorial Atlantic surface waters: Implications for ice age pCO2 levels. Paleoceanography 2: 489–517

    Article  Google Scholar 

  • Davies JC (1986) Statistics and Data Analysis in Geology. J Wiley & Sons, New York, 646 p

    Google Scholar 

  • Degens ET, Behrendt M, Gotthardt B, Reppmann E (1968) Metabolic fractionation of carbon isotopes in marine plankton — II. Data on samples collected off the coasts of Peru and Ecuador. Deep-Sea Res 15: 11–20

    Google Scholar 

  • Eek MK, Whiticar Ml, Bishop JKB, Wong CS (1999) Influence of nutrients on carbon isotope fractionation by natural populations of Prymnesiophyte algae in NE Pacific. Deep-Sea Res II 46: 2863–2876

    Google Scholar 

  • Fairbanks RG, Sverdlove M, Free R, Wiebe PH, Bé AWE (1982) Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama basin. Nature 298: 841–844

    Article  Google Scholar 

  • Feely RA, Sabine CL, Takahashi T, Wannikhof R (2001) Uptake and storage of carbon dioxide in the ocean: The global CO2 survey. Oceanography 14: 18–32

    Article  Google Scholar 

  • Fischer G, Schneider R, Müller PJ, Wefer G (1997) Anthropogenic CO2 in Southern Ocean surface waters: Evidence from stable organic carbon isotopes. Terra Nova 9: 153–157

    Article  Google Scholar 

  • Fischer G, Müller PJ, Wefer G (1998) Latitudinal δ13Corg variations in sinking matter and sediments from the South Atlantic: Effects of anthropogenic CO2 and implications for paleo-PCO2 reconstructions. J Mar Sys 17: 471–495

    Article  Google Scholar 

  • Fontugne MR, Calvert SE (1992) Late Pleistocene variability of the carbon isotopic composition of organic matter in the eastern Mediterranean: Monitor of changes in carbon sources and atmospheric CO2 concentrations. Paleoceanography 7: 1–20

    Article  Google Scholar 

  • Francois R, Altabet MA, Goericke R, McCorkle DC, Brunet C, Poisson A (1993) Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean. Glob Biogeochem Cycl 7: 627–644

    Article  Google Scholar 

  • Freeman K, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob Biogeochem Cycl 6: 185–198

    Article  Google Scholar 

  • Fry B, Wainright SC (1991) Diatom sources of 13C-rich carbon in marine food webs. Mar Ecol Prog Ser 76: 149–157

    Article  Google Scholar 

  • Gervais F, Riebesell U (2001) Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different CO2 concentrations. Limnol Oceanogr 46: 497–504

    Article  Google Scholar 

  • Gonzáles EL, Riebesell U, Hayes JM, Laws EA (2001) Effects of biosynthesis and physiology on relative abundances and isotopic compositions of alkenones. Geochem Geophys Geosyst 2: doi 2000GC 000052

    Google Scholar 

  • Groupe CITHER 1 (1994) Recueil des données, campagne CITHER 1, NO L’Atalante (2 janvier-19 mars 1993). Volume 1: Mesures «en route» — Cou-ranto-métrie ADCO et Pegasus, Documents Scientifiques, OP 14, 161 pp, Centre ORSTOM, Cayenne

    Google Scholar 

  • Jasper JP, Hayes JM (1990) Acarbon isotope record of CO2 levels during the late Quaternary. Nature 347: 462–464

    Article  Google Scholar 

  • Jasper JP, Hayes JM, Mix AC, Prahl FG (1994) Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. Paleoceanography 9: 781–798

    Article  Google Scholar 

  • Johnson KM, Wallace DWR, Wilke RJ, Goyet C (1995) Carbon dioxide, hydrographic, and chemical data obtained during RV Meteor cruise 15/3 in the South Atlantic Ocean (WOCE Section A9, Feburary–March 1991), ORNL/CDIAC-82, NDP-051, Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Google Scholar 

  • Johnson KM, Schneider B, Mintrop L, Wallace DWR, Kozyr A (1998) Carbondioxide, hydrographic, and chemical data obtained during RV Meteor cruise 22/ 5 in the South Atlantic Ocean (WOCE Section A10, December 1992, January 1993), ORNL/CDIAC-113, NDP-066, Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Google Scholar 

  • Jouzel J, Barkov NI, Bamola JM, Bender M, Chappelaz J, Genthon C, Kotlyakov VM, Lipenkov V, Lorius C, Petit J R, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stievenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record of paleoclimate to the penultimate glacial record. Nature 364: 407–412

    Article  Google Scholar 

  • Keller K, Morel FMM (1999) A model of carbon isotopic fractionation and active carbon uptake in phyto-plankton. Mar Ecol Prog Ser 182: 295–298

    Article  Google Scholar 

  • Kienast M, Calvert SE, Pelejero C, Grimalt JO (2001) A critical review of marine sedimentary δ13Corg-pCO2 estimates: New paleorecords from the South China Sea and a revisit of lower-latitude δ13Corg-pCO2 records. Glob Biogeochem Cycl 15: 113–127

    Article  Google Scholar 

  • Kroopnick PM (1985) The distribution of 13C of CO2 in the world oceans. Deep-Sea Res 32: 57–84

    Article  Google Scholar 

  • Laws EA, Thompson PA, Popp BN, Bidigare RR (1997) Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum. Limnol Oceanogr 42: 1552–1560

    Article  Google Scholar 

  • Laws EA, Popp BN, Bidigare RR, Riebesell D, Burkhardt S, Wakeham SG (2001) Controls on the molecular distribution and carbon isotopic composition of aIkenones in certain haptophyte algae. Geochem Geophys Geosyst 2: doi 2000GC000057

    Google Scholar 

  • Lee K, Millero FJ, Wanninkof R (1997) The carbon dioxide system in the Atlantic Ocean. J Geophys Res 102 (C7): 15693–15707

    Article  Google Scholar 

  • Longhurst A (1993) Seasonal cooling and blooming in tropical oceans. Deep-Sea Res 40: 2145–2165

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochem 27: 213–250

    Article  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous dioxide. Earth Planet Sci Lett 2: 169–176

    Article  Google Scholar 

  • Morel A, Berthon JF (1989) Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol Oceanogr 34: 1545–1562

    Article  Google Scholar 

  • Müller PJ, Schneider RR, Ruhland G (1994) Late Quaternary PCO2 variations in the Angola current: evidence from organic carbon δ13C and alkenone temperatures. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon Cycling in the Glacial Ocean: Constrains on the Ocean’s Role in Global Change. NATO ASI Series I 17, Springer, Berlin, pp 343–366

    Chapter  Google Scholar 

  • Müller PJ, Kirst G, Ruhland G, von Stroch I, Rosell-Melé A (1998) Calibration of the alkenone paleotemperature index based on core tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim Cosmochim Acta 62: 1757–1772

    Article  Google Scholar 

  • Müller PJ, Fischer G (2001) A 4-year sediment trap record of alkenones from the filamentous upwelling region off Cape Blanc, NW Africa and a comparison with distributions in underlying sediments. Deep-Sea Res 48: 1877–1903

    Article  Google Scholar 

  • Pagani M, Arthur MA, Freeman KH (1999) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14: 273–292

    Article  Google Scholar 

  • Partridge TC, Scott L, Hamilton JE (1999) Synthetic reconstructions of southern African environments during the Last Glacial Maximum (21-18 kyr) and the Holocene altithermal (8-6 kyr). Quat Int 57/58: 207–214

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzmann, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436

    Article  Google Scholar 

  • Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW (1989) The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter. J Ameri Sci 289: 436–454

    Article  Google Scholar 

  • Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62: 69–77

    Article  Google Scholar 

  • Popp BN, Hanson KL, Dore JE, Bidigare RR, Laws EA, Wakeham SG (1999) Controls on the carbon isotopic composition of phytoplankton. In: Abrantes F, Mix AC (eds) Reconstructing Ocean History: A Window into the Future. Kluwer Academics/ Plenum Publishers, New York, pp 381–398

    Chapter  Google Scholar 

  • Prahl FG, Muehlhausen LA, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52: 2303–2310

    Article  Google Scholar 

  • Rau GH, Takahashi T, DesMarais DJ (1989) Latitudinal variations in plankton δ13C: implications forCO2 and productivity in past oceans. Nature 341: 516–518

    Article  Google Scholar 

  • Rau GH, Takahashi T, DesMarais DJ, Repeta DJ, Martin JH (1992) The relationship between the δ13C of organic matter and ce in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56: 1413–1419

    Article  Google Scholar 

  • Rau GH (1994) Variations in sedimentary organic carbon δ13C as a proxy for past changes in ocean and atmospheric CO2 concentrations. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon Cyclingin the Glacial Ocean: Constrains on the Ocean’s Role in Global Change. NATO ASI Series 117, Springer, Berlin, pp 307–321

    Chapter  Google Scholar 

  • Rau GH, Riebesell U, Wolf-Gladrow D (1996) A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Mar Ecol Prog Ser 133: 275–285

    Article  Google Scholar 

  • Rickaby REM, Elderfield H (1999) Planktonic Cd/Ca: Paleonutrients or Paleotemperature? Paleoceanography 14: 293–303

    Article  Google Scholar 

  • Rickaby REM, Schrag DP, Zondervan I, Riebesell U (2002) Growth rate dependence of Sr incorporation during calcification of Emiliania huyleyi. Glob Biogeochem Cycl 16: doi 10.1029/2001GB001408

    Google Scholar 

  • Riebesell U, Burkhardt S, Dauelsberg A, Kroon B (2000a) Carbon isotope fractionation by a marine diatom: Dependence on the growth rate limiting resource. Mar Ecol Prog Ser 193: 295–303

    Article  Google Scholar 

  • Riebesell U, Revill AT, Holdsworth DG, Volkman JK (2000b) The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim Cosmochim Acta 64: 4179–4192

    Article  Google Scholar 

  • Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol 36: 87–96

    Article  Google Scholar 

  • Rost B, Zondervan I, Riebesell U (2003) Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol Oceanogr, in press

    Google Scholar 

  • Schneider RR, Müller PJ, Ruhland G (1995) Late Quaternary surface circulation in the east equatorial south Atlantic: Evidence from alkenone sea-surface temperatures. Paleoceanography 10: 197–219

    Article  Google Scholar 

  • Schneider RR, Müller PJ, Meinecke G, Schmidt H, Wefer G (1996) Late Quaternary surface temperatures and productivity in the east-equatorial South Atlantic: Response to changes in trade/ monsoon wind forcing and surface water advection. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin, pp 527–551

    Chapter  Google Scholar 

  • Spero H, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390: 497–500

    Article  Google Scholar 

  • Stoll HM, Schrag DP (2000) Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem Geophys Geosyst 1: doi 1999 GC000015

    Google Scholar 

  • Stoll HM, Rosenthal Y, Falkowski P (2002) Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi. Geochim Cosmochim Acta 66: 927–936

    Article  Google Scholar 

  • Stouffer RJ, Manabe S, Vinnikov KY (1994) Model assessment of the role of natural variability in recent global warming. Nature 367: 634–636

    Article  Google Scholar 

  • Takahashi T, Tans PP, Fung I (1992) Balancing the budget — carbon dioxide sources and sinks, and effects of the industry. Oceanus 35: 18–28

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constrains on the global atmospheric CO2 budget. Science 247: 1431–1438

    Article  Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS, Sargent JR (1989) Novel unsaturated straight-chain methyl and ethyl ketones in marine sediments and a coccolthophore Emiliania huxleyi. In: Douglas AG and Maxwell JR (eds) Advances in Organic Geochemistry. Pergamon, New York, pp 219–227

    Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochim Cosmochim Acta 59: 513–520

    Article  Google Scholar 

  • Weiss RF, van Woy FA, Salameh PK (1992) Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1999. Scripps Institution of Oceanography Reference, SIO 92-11, 124pp, University of California, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulte, S., Benthien, A., Andersen, N., Müller, P.J., Rühlemann, C., Schneider, R. (2003). Stable Carbon Isotopic Composition of the C37:2 Alkenone: A Proxy for CO2(aq) Concentration in Oceanic Surface Waters?. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics