Skip to main content

Electronic Theory for Superconductivity in High-T c Cuprates and Sr2RuO4

  • Chapter
The Physics of Superconductors

Abstract

Superconductivity remains one of the most interesting problems in Solid State Physics. During the last years in particular high-transition temperature superconductivity in the cuprates with non-s-wave pairing symmetry and unconventional superconductivity in the isostructural strontiumruthenate (Sr2RuO4) also with a non-s-wave symmetry of the superconducting order parameter and triplet Cooper-pairing have been studied. Cuprates and ruthenates have an oxide layered structure with CuO2-and RuO2-planes, respectively. These seem to play an important role regarding superconductivity and magnetic activity. For an illustration we show in Fig. 9.1 the crystal structures (in Sr2RuO4 the basic element is a RuO2-plane and the superconducting transition temperature for triplet pairing is T c =1.5K). Undoped La2CuO4 is an antiferromagnetic insulator. Superconductivity occurs only upon doping (Ba instead of La) and reaches a maximum for hole doping x = 0.15 with a transition temperature T c ≈ 40K [1]. The different behavior of Sr2RuO4 and La2−x Ba x CuO4 is definitely related to the electronic structure of RuO2 and CuO2-planes.

(a) Cuprate singlet superconductor La2−x Ba x CuO4. (b) Layered perovskite structure of the triplet superconductor Sr2RuO4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Bednorz and K.A. Müller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  2. A.W. Hewat, In: Materials and Crystallographic Aspects of High-T c Superconductivity, edited by E. Kaldis, NATO ASI Series, Vol. 263 (Kluwer-Dordrecht 1994), p. 17.

    Google Scholar 

  3. Y. Kitaoka, K. Ishida, F. Fujiwara, T. Kondo, K. Asayama, M. Horvatic, Y. Berthier, P. Butaud, P. Segransan, C Berthier, H. Katayana-Yoshida, Y. Okabe, and T. Takahashi, In: Strong Correlations and Superconductivity, Springer series in Solid-State Sciences 89, edited by H. Fukuyama, S. Maekawa, and A.P. Malozemoff, (Springer, Berlin 1989) p. 262.

    Chapter  Google Scholar 

  4. D. A. Wollmann, D. J. van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134 (1993).

    Article  ADS  Google Scholar 

  5. J.R. Kirtley, C.C. Tsuei, J.Z. Sun, C.C. Chi, L.S. Yu-Jahnes, A. Gupta, M. Rupp, and M.B. Ketchen, Nature (London) 373, 225 (1995).

    Article  ADS  Google Scholar 

  6. C.C. Tsuei, J.R. Kirtley, M. Rupp, J.Z. Sun, A. Gupta, and M.B. Ketchen, Science 272, 329 (1996).

    Article  ADS  Google Scholar 

  7. C. C. Tsuei, J. R. Kirtley, Rev. of Mod. Phys. 72, 969 (2000).

    Article  ADS  Google Scholar 

  8. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1994).

    Article  ADS  Google Scholar 

  9. S. Kamal, Ruixing Liang, A. Hosseini, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 58, R8933 (1998); S, Kamal, D. A. Bonn, Nigel Goldenfeld, P. J. Hirschfeld, Ruixing Liang, and W. N. Hardy, Phys. Rev. Lett. 73, 1845 (1994).

    Article  ADS  Google Scholar 

  10. Z. X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993).

    Article  ADS  Google Scholar 

  11. M. C. Krantz and M. Cardona, J. Low Temp. Phys. 99 205 (1995).

    Article  ADS  Google Scholar 

  12. D. Einzel and R. Hackl, J. Raman Spectroscopy 27, 307 (1996).

    Article  ADS  Google Scholar 

  13. T. P. Devereaux and D. Einzel, Phys. Rev. B 51, 16336 (1995); 54, 15547 (1996).

    Article  ADS  Google Scholar 

  14. D. Manske, C. T. Rieck, R. Das Sharma, A. Bock, and D. Fay, Phys. Rev. B 56, R2940 (1997).

    Article  ADS  Google Scholar 

  15. Y.J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).

    Article  ADS  Google Scholar 

  16. For a review, see C. P. Slichter in Strongly Correlated Electronic Systems, edited by K. S. Bedell et al. (Addison Wesley, Reading, MA, 1994)

    Google Scholar 

  17. L.P. Regnault, P. Bourges, P. Burlet, J.Y. Henry, J. Rossat-Mignod, Y. Sidis, C. Vettier, Physica B 213–214, 48 (1995).

    Article  Google Scholar 

  18. D.S. Marshall, D.S. Dessau, A.G. Loeser, C-H. Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  19. J.M. Harris, Z.-X. Shen, P.J. White, D.S. Marshall, M.C. Schabel, J.N. Eckstein, and I. Bozovic, Phys. Rev. B 54, R15655 (1996).

    Article  ADS  Google Scholar 

  20. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).

    Article  ADS  Google Scholar 

  21. J.W. Loram, K.A. Mirza, J.R. Cooper, and W.Y. Liang, Phys. Rev. Lett. 71, 1740 (1993); J. W. Loram et al., J. Superconductivity 7, 234 (1994).

    Article  ADS  Google Scholar 

  22. B. Batlogg, H. Y. Hwang, H. Takagi, R. J. Cava, H. L. Kao, and J. Kwo, Physica C 235–240, 130 (1994).

    Article  Google Scholar 

  23. R. Nemetschek, M. Opel, C. Hoffmann, P.F. Mueller, R. Hackl, H. Berger, L. Forro, A. Erb, and E. Walker, Phys. Rev. Lett. 78, 4837 (1997); G. Blumberg, M. Kang, M.V. Klein, K. Kadowaki, and C. Kendziora, Science 278, 1427 (1997).

    Article  ADS  Google Scholar 

  24. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).

    Article  ADS  Google Scholar 

  25. A. K. Gupta and K.-W. Ng, Phys. Rev. B 58, R8901 (1998).

    Article  ADS  Google Scholar 

  26. C. M. Varma, Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  Google Scholar 

  27. A. Virosztek and J. Ruvalds, Phys. Rev. B 42, 4064 (1990).

    Article  ADS  Google Scholar 

  28. J. Ruvalds, C. T. Rieck, J. Zhang and A. Virosztek, Science 256, 1664 (1992).

    Article  ADS  Google Scholar 

  29. A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).

    Article  ADS  Google Scholar 

  30. G.M. Luke, L.P. Le, B.J. Sternlieb, Y.J. Uemura, J.H. Brewer, R. Kadono, R.F. Kiefl, S.R. Kreitzman, T.M. Riseman, C.E. Stronach, M.R. Davis, S. Uchida, H. Takagi, Y. Tokura, Y. Hidaka, T. Murakami, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, E.A. Early, J.T. Markert, M.B. Maple, and C.L. Seaman, Phys. Rev. B 42, 7981 (1990).

    Article  ADS  Google Scholar 

  31. Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).

    Article  ADS  Google Scholar 

  32. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  33. H. Takagi, B. Batlogg, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and W.F. Peck, Phys. Rev. Lett. 69, 2975 (1992).

    Article  ADS  Google Scholar 

  34. C.C. Tsuei, A. Gupta, and G. Koren, Physica C 161, 415 (1989).

    Article  ADS  Google Scholar 

  35. D.S. Dessau, Z.-X. Shen, D.M. King, D.S. Marshall, L.W. Lombardo, P.H. Dickinson, A.G. Loeser, J. DiCarlo, C.-H Park, A. Kapitulnik, and W.E. Spicer, Phys. Rev. Lett. 71, 2781 (1993); A.A. Abrikosov, J.C. Campuzano, and K. Gofron, Physica C 214, 73 (1993).

    Article  ADS  Google Scholar 

  36. D.M. King, Z.-X. Shen, D.S. Dessau, B.O. Wells, W.E. Spicer, A.J. Arko, D.S. Marshall, J. DiCarlo, A.G. Loeser, C.H. Park, E.R. Ratner, J.L. Peng, Z.Y. Li, and R.L. Greene, Phys. Rev. Lett. 70, 3159 (1993).

    Article  ADS  Google Scholar 

  37. S.M. Anlage, D.-H. Wu, J. Mao, S.N. Mao, X.X. Xi, T. Venkatesan, J.L. Peng, and R.L. Greene, Phys. Rev. B 50, 523 (1994); D.H. Wu, J. Mao, S.N. Mao, J.L. Peng, X.X. Xi, T. Venkatesan, R.L. Greene, and S.M. Anlage, Phys. Rev. Lett. 70, 85 (1993).

    Article  ADS  Google Scholar 

  38. W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1993); D.A. Bonn, S. Kamal, K. Zhang, R. Liang, D.J. Baar, E. Klein, and W.N. Hardy, Phys. Rev. B 50, 4051 (1994).

    Article  ADS  Google Scholar 

  39. B. Stadlober, G. Krug, R. Nemetschek, and R. Hackl, Phys. Rev. Lett. 74, 4911 (1995).

    Article  ADS  Google Scholar 

  40. G. Blumberg, A. Koitzsch, A. Gozar, B.S. Dennis, C.A. Kendziora, P. Fournier, and R.L. Greene, Phys. Rev. Lett. 88, 107002 (2002).

    Article  ADS  Google Scholar 

  41. R. Prozorov, R.W. Gianetta, P. Furnier, and R.L. Greene, Phys. Rev. Lett. 85, 3700 (2000).

    Article  ADS  Google Scholar 

  42. J.D. Kokales, P. Furnier, L.V. Mercaldo, V.V. Talanov, R.L. Greene, and S.M. Anlage, Phys. Rev. Lett. 85, 3696 (2000).

    Article  ADS  Google Scholar 

  43. C.C. Tsuei and J.R. Kirtley, Phys. Rev. Lett. 85, 182 (2000).

    Article  ADS  Google Scholar 

  44. J.A. Skinta, M.-S. Kim, T.R. Lemberger, T. Greibe, and M. Naito, Phys. Rev. Lett. 88, 207005 (2002).

    Article  ADS  Google Scholar 

  45. P. Bourges, in Gap Symmetry and Fluctuatios in High-T c Superconductors, eds. J. Bok, G. Deutscher, D. Pavuna and S. Wolf (Plenum Press, NY, 1998).

    Google Scholar 

  46. J. Rossat-Mignod, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J.Y. Henry, L. Lapertot, Physica C 185–189, 86 (1991).

    Article  Google Scholar 

  47. H. He, Y. Sidis, P. Bourges, G.D. Gu, A. Ivanov, N. Koshizuka, B. Liang, C.T. Lin, L.P. Regnault, E. Schoenherr, and B. Keimer, Phys. Rev. Lett. 86, 1610 (2001).

    Article  ADS  Google Scholar 

  48. H.F. Fong, P. Bourges, Y. Sildis, L.P. Regnault, A. Ivanov, G.D. Gu, N. Koshizuka, and B. Keimer, Nature 398, 588 (1999); P. Dai, H.A. Mook, S.M. Hay den, G. Aeppli, T.G. Perring, R.D. Hunt, and F. Dogan, Science 284, 1344 (1999).

    Article  ADS  Google Scholar 

  49. H. He, P. Bourges, Y. Sidis, C. Ulrich, L.P. Regnault, S. Pailhes, N. Berzigiarova, N.N. Kolesnikov, and B. Keimer, Science 295, 1045 (2002).

    Article  ADS  Google Scholar 

  50. T.M. Rice and T.M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).

    Article  ADS  Google Scholar 

  51. I. Eremin, D. Manske, and K.H. Bennemann, Europhys. Lett. 58, 871 (2002).

    Article  ADS  Google Scholar 

  52. P. Monthoux, Phys. Rev. B 55, 15261 (1997); A. Chubukov, P. Monthoux, and D.K. Morr, Phys. Rev. B 56, 7789 (1997).

    Article  ADS  Google Scholar 

  53. J.R. Schrieffer, J. Low Temp. Phys. 99, 397 (1995).

    Article  ADS  Google Scholar 

  54. N.E. Bickers and D.J. Scalapino, cond-mat/0010480 (unpublished).

    Google Scholar 

  55. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Nodall, S. Uchida, Z. Hussain, Z.-X. Shen, Nature (London) 412, 510 (2001).

    Article  ADS  Google Scholar 

  56. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82, 628 (1999).

    Article  ADS  Google Scholar 

  57. Z.-X. Shen, A. Lanzara, S. Ishihara, N. Nagaosa, cond-mat/0108381 (unpublished).

    Google Scholar 

  58. J.A. Skinta, T.R. Lemberger, T. Greibe, and M. Naito, Phys. Rev. Lett. 88, 207003 (2002); J.A. Skinta, M.-S. Kim, T. Greibe, and M. Naito, ibid, 207005 (2002).

    Article  ADS  Google Scholar 

  59. J.R. Schrieffer, D.J. Scalapino, and J.W. Wilkins, Phys. Rev. Lett. 10, 336 (1963).

    Article  ADS  Google Scholar 

  60. J.F. Zasadzinski, L. Ozyuzer, M. Miyakawa, D.G. Hinks, and K.E. Gray, Physica C 341-348, 867 (2000).

    Article  Google Scholar 

  61. M. Sigrist, D. Agterberg, A. Furusaki, C. Honerkamp, K.K. Ng, T.M. Rice, and M.E. Zhitomirsky, Physica C 317-318, 134 (1999).

    Article  ADS  Google Scholar 

  62. P. Bourges, in Gap Symmetry and Fluctuatios in High-T c Superconductors, eds. J. Bok, G. Deutscher, D. Pavuna and S. Wolf, Plenum Press, NY, 1998.

    Google Scholar 

  63. Y. Sidis, M. Braden, P. Bourges, B. Hennion, S. Nishizaki, Y. Maeno, and Y. Mori, Phys. Rev. Lett. 83, 3320 (1999).

    Article  ADS  Google Scholar 

  64. K. Ishida, H. Mukuda, Y. Kitaoka, Z.Q. Mao, H. Fukuzawa, and Y. Maeno, Phys. Rev. B 63, 060507 (2001).

    Article  ADS  Google Scholar 

  65. Although the decisive and unambiguous evidence for spin-triplet Cooper-pairing from in-plane 17O and 99Ru Knight shift data, it is important to note that H c2 (parallel to the c-axis) is too small for NMR measurements. Therefore, strictly speaking the present Knight shift data do not fully reinforce Sr2RuU4 to be a triplet superconductor. In order to complete the picture, further studies, for example tunneling experiments along the c-axis, are necessary.

    Google Scholar 

  66. W.E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    Article  ADS  Google Scholar 

  67. We assume that the Cu-spins are part of the p-d hybridized states.

    Google Scholar 

  68. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  69. J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  70. F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  71. G. Baumgärtel, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 48, 3983 (1993).

    Article  ADS  Google Scholar 

  72. G. Kotliar, and A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  73. P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).

    Article  ADS  Google Scholar 

  74. N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989); N. E. Bickers and D. J. Scalapino, Ann. Phys. (N.Y.) 193, 206 (1989).

    Article  ADS  Google Scholar 

  75. C.-H. Pao and N. E. Bickers, Phys. Rev. Lett. 72, 1870 (1994); Phys. Rev. B 51, 16310 (1995).

    Article  ADS  Google Scholar 

  76. D. J. Scalapino, Phys. Rep. 250, 329 (1995).

    Article  ADS  Google Scholar 

  77. P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).

    Article  ADS  Google Scholar 

  78. T. Dahm and L. Tewordt, Phys. Rev. Lett. 74, 793 (1995).

    Article  ADS  Google Scholar 

  79. M. Langer, J. Schmalian, S. Grabowski, and K.H. Bennemann, Phys. Rev. Lett. 75, 4508 (1995).

    Article  ADS  Google Scholar 

  80. H.-B. Schüttler and C.-H. Pao, Phys. Rev. Lett. 75, 4504 (1995).

    Article  ADS  Google Scholar 

  81. J. Schmalian, S. Grabowski, and K. H. Bennemann, Phys. Rev. B 56, R509 (1997).

    Article  ADS  Google Scholar 

  82. L. Tewordt, J. Low Temp. Phys. 15, 349 (1974).

    Article  ADS  Google Scholar 

  83. Y. Nambu, Phys. Rev. 117, 648 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  84. N. F Berk and J. R Schrieffer, Phys. Rev. Lett. 17, 433 (1966).

    Article  ADS  Google Scholar 

  85. A. B. Migdal, Zh. Eksp. Teor. Fiz 34, 1438 (Soviet Phys.-JETP 34, 996 (1958)).

    Google Scholar 

  86. G. Grimvall, The Electron-Phonon Interaction in Metals, North Holland, Amsterdam (1981).

    Google Scholar 

  87. J.R Schrieffer, Theory of Superconductivity (Addison-Wesley, Redwood City, 1964)

    MATH  Google Scholar 

  88. G. D. Mahan Many-Particle Physics (Plenum Press, New York, 1981)

    Google Scholar 

  89. S. Wermbter and L. Tewordt, Physica C 211, 132 (1993).

    Article  ADS  Google Scholar 

  90. Y. M. Vilk and A.-M. S. Tremblay, J. Phys. I France 7, 1309 (1997).

    Article  Google Scholar 

  91. F. London and H. London, Proc. Roy. Soc. (London) A149, 71 (1935).

    ADS  Google Scholar 

  92. B. Giovannini, and C. Berthod, Phys. Rev. B 63, 144516 (2001).

    Article  ADS  Google Scholar 

  93. In analogy to ferrpmagnetism like in Ni we expect n 0s /n s = 〈▽Φ(r, t)▽Φ(0)〉. Note, it is straightforward to map our electronic theory on a lattice (Wannier type representation) and then to derive from the product of the anomalous Green’s functions, {F · F*}, a contribution to the free energy of the form n s cos Θ ij as used by Chakraverty et al. [107]. Here, Θ ij is the angle between the phase of neighboring Cooper-pairs. Approximately, one has n s = n 0s ̄Θ ij, with ̄Θ ij = 1 for T < T c and ̄Θ ij = 0 for T > T c

    Article  Google Scholar 

  94. R. Manzke, R. Müller, C. Janowitz, M. Schneider, A. Krapf, and H. Dwelk, Phys. Rev. B 63, 100504 (2001).

    Article  ADS  Google Scholar 

  95. B.K. Chakraverty, A. Taraphder, and M. Avignon, Physica C 235–240, 2323 (1994); B.K. Chakraverty, and T.V. Ramakrishnan, ibid, 282–287, 290 (1997).

    Article  Google Scholar 

  96. V.J. Emery and S.A. Kivelson, Nature (London) 374, 434 (1995).

    Article  ADS  Google Scholar 

  97. M. V. FeigePmann, Zh. Eksp. Teo. Fiz. 76, 784 [Sov. Phys. JETP 49, 395 (1989)].

    Google Scholar 

  98. G. Blatter, M. V. Feigel’mann, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  99. V. L. Berezinskii, Zh. Eksp. Teo. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1972)]; J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973); J. M. Kosterlitz, ibid 7, 1046 (1974).

    Google Scholar 

  100. M. R. Beasley, J.E. Mooij, and T. P. Orlando, Phys. Rev. Lett. 42, 1165 (1979); S. Doniach and B. A. Hubermann, Phys. Rev. Lett. 42, 1169 (1979); B. I. Halperin and D. R. Nelson, J. Low Temp. Phys. 36, 599 (1979); L. A. Turkevich, J. Phys. C 12, L385 (1979).

    Article  ADS  Google Scholar 

  101. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

    Article  ADS  Google Scholar 

  102. A. Kovner and B. Rosenstein, Phys. Rev. B 42, 4748 (1990).

    Article  ADS  Google Scholar 

  103. C. Timm, D. Manske, and K. H. Bennemann, Phys. Rev. B 66, 094515 (2002).

    Article  ADS  Google Scholar 

  104. D. Manske and K. H. Bennemann, Physica C 341–348, 83–86 (2000); D. Manske, T. Dahm, and K.H. Bennemann, Phys. Rev. B 64, 144520 (2001).

    Article  Google Scholar 

  105. J. Bardeen and M. J. Stephen, Phys. Rev. 140, 1197A (1965).

    Article  ADS  Google Scholar 

  106. J. Schmalian, S. Grabowski, and K.H. Bennemann, Phys. Rev. B 56, R509 (1997).

    Article  ADS  Google Scholar 

  107. F. Schäfer, C. Timm, D. Manske, and K. H. Bennemann, J. Low Temp. Phys. 117, 223 (1999).

    Article  Google Scholar 

  108. J.C. Swihart, D.J. Scalapino, and Y. Wada, Phys. Rev. Lett. 14, 106 (1965).

    Article  ADS  Google Scholar 

  109. M.R. Norman, M. Randeria, B. Janko, and J.C. Campuzano, Phys. Rev. B 61, 14742 (2000).

    Article  ADS  Google Scholar 

  110. R. Haslinger and A.V. Chubukov, cond-mat/0303140 (unpublished).

    Google Scholar 

  111. J.L. Talion and J.W. Loram, Physica C 349, 53 (2001).

    Article  ADS  Google Scholar 

  112. W. W. Warren, R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell, and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).

    Article  ADS  Google Scholar 

  113. H. J. Tao, F. Lu, and E. J. Wolf, Physica C 282–287, 1507 (1997).

    Article  Google Scholar 

  114. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).

    Article  ADS  Google Scholar 

  115. H. Takagi et al, Phys. Rev. Lett. 69, 2975 (1992).

    Article  ADS  Google Scholar 

  116. D. Matthey, S. Gariglio, B. Giovannini, and J. M. Triscone, Phys. Rev. B 64, 024513 (2001).

    Article  ADS  Google Scholar 

  117. N. Miyakawa, J.F. Zasadzinski, L. Ozyuzer, P. Guptasarma, D.G. Hinks, C. Kendziora, and K.E. Gray, Phys. Rev. Lett. 83, 1018 (1999).

    Article  ADS  Google Scholar 

  118. P. C. E. Stamp, L. Forro, and C. Ayache Phys. Rev. B 38, 2847 (1988).

    Article  ADS  Google Scholar 

  119. S. N. Artemenko, I. G. Gorlova, and Y. I. Latyshev, Phys. Lett. A 138, 428 (1989).

    Article  ADS  Google Scholar 

  120. S. Martin, A.T. Fiory, R.M. Fleming, G.P. Espinosa, and A.S. Cooper, Phys. Rev. Lett. 62, 677 (1989).

    Article  ADS  Google Scholar 

  121. N. C. Yeh and C. C. Tsuei, Phys. Rev. B 39, 9708 (1989).

    Article  ADS  Google Scholar 

  122. T. Freltoft, H. J. Hensen, and P. Minnhagen, Solid State Comm. 78, 635 (1991).

    Article  ADS  Google Scholar 

  123. A. K. Pradhan, S.J. Hazell, J.W. Hodby, C. Chen, Y. Hu, and B.M. Wanklyn, Phys. Rev. B 47, 11374 (1993).

    Article  ADS  Google Scholar 

  124. Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, S. Uchida, Nature 406, 486 (2000)

    Article  ADS  Google Scholar 

  125. Y. Wang, Z. A. Xu, T. Kekeshita, S. Uchida, S. Ono, Y. Ando, and N. P. Ong, cond-mat/0108242.

    Google Scholar 

  126. J. Adler, C. Holm, and W. Janke, Physica A 201, 581 (1993).

    Article  ADS  Google Scholar 

  127. P. Olsson and P. Minnhagen, Physica Scripta 43, 203 (1991).

    Article  ADS  Google Scholar 

  128. C. Meingast, V. Pasler, P. Nagel, A. Gykov, S. Tajima, and P. Olsson, Phys. Rev. Lett. 86, 1606 (2001).

    Article  ADS  Google Scholar 

  129. F. Schäfer, D. Manske, and K.H. Bennemann, unpublished.

    Google Scholar 

  130. G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  131. G. Baym, Phys. Rev. 127, 1391 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  132. M. Sigrist and T.M. Rice, Z. Phys.B: Condensed Matter 68, 9 (1987).

    Article  ADS  Google Scholar 

  133. H.-J. Kwon and A. T. Dorsey, Phys. Rev. B 59, 6438 (1999).

    Article  ADS  Google Scholar 

  134. T. M. Rice, Phys. Rev. 140, A1889 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  135. T. Dahm, D. Manske, and L. Tewordt, Phys. Rev. B 54, 6640 (1996).

    Article  ADS  Google Scholar 

  136. S. Grabowski, J. Schmalian, M. Langer, and K.H. Bennemann, Phys. Rev. B 55, 2784 (1997).

    Article  ADS  Google Scholar 

  137. G. Hildebrand, E. Arrigoni, J. Schmalian, and W. Hanke, Eur. Phys. J. B 8, 195 (1999).

    Article  ADS  Google Scholar 

  138. M.H. Cohen, L.M. Falicov, and J.C. Phillips, Phys. Rev. Lett. 8, 316 (1962).

    Article  ADS  MATH  Google Scholar 

  139. L. AlfF, Y. Krockenberger, B. Welter, R. Gross, D. Manske, and M. Naito, Nature 422, 698 (2003).

    Article  ADS  Google Scholar 

  140. A. Damascelli et al, Phys. Rev. Lett. 85, 5194 (2000).

    Article  ADS  Google Scholar 

  141. A. Liebsch, and A. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000)

    Article  ADS  Google Scholar 

  142. I.I. Mazin and D.J. Singh, Phys. Rev. Lett. 82, 4324 (1999).

    Article  ADS  Google Scholar 

  143. K.K. Ng, and M. Sigrist, Europhys. Lett. 49, 473 (2000).

    Article  ADS  Google Scholar 

  144. D. K. Morr, P. F. Trautmann, and M. J. Graf, Phys. Rev. Lett. 86, 5978 (2001).

    Article  ADS  Google Scholar 

  145. K. Ishida, H. Mukuda, Y. Minami, Y. Kitaoka, Z.Q. Mao, H. Fukazawa, and Y. Maeno, Phys. Rev. B 64, 100501(R) (2001).

    ADS  Google Scholar 

  146. T. Mizokawa, L.H. Tjeng, G.A. Sawatzky, G. Ghiringhelli, O. Tjernberg, N.B. Brookes, H. Fukazawa, S. Nakatsuji, and Y. Maeno, Phys. Rev. Lett. 87, 077202 (2001).

    Article  ADS  Google Scholar 

  147. H. Kontani, and K. Ueda, Phys. Rev. Lett. 80, 5619 (1998).

    Article  ADS  Google Scholar 

  148. K. Kuroki, M. Ogata, R. Arita, and H. Aoki, Phys. Rev. B 63, 060506(R) (2001).

    ADS  Google Scholar 

  149. Z.Q. Mao, Y. Maeno, Y. Mori, S. Sakita, S. Nimori, and M. Udagawa, Phys. Rev. B 63, 144514 (2001).

    Article  ADS  Google Scholar 

  150. D. M. King, Z.-X. Shen, D.S. Dessau, B.O. Wells, W.E. Spicer, A.J. Arko, D.S. Marshall, J. DiCarlo, A.G. Loeser, C.H. Park, E.R. Ratner, J.L. Peng, Z.Y. Li, and R.L. Greene, Phys. Rev. Lett. 70, 3159 (1993).

    Article  ADS  Google Scholar 

  151. G. Baumgärtel, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 48, 3983 (1993).

    Article  ADS  Google Scholar 

  152. C. Timm and K.H. Bennemann, Phys. Rev. Lett. 84, 4994 (2000).

    Article  ADS  Google Scholar 

  153. T. Valla, A.V. Fedorov, P.D. Johnson, and S.L. Hulbert, Phys. Rev. Lett. 82, 2179 (1999).

    Article  ADS  Google Scholar 

  154. J. Ruvalds, CT. Rieck, S. Tewari, J. Thoma, and A. Virosztek, Phys. Rev. B 51, 3797 (1995).

    Article  ADS  Google Scholar 

  155. Z. X. Shen, A. Lanzara, and N. Nagaosa, preprint cond-mat/0102244 (unpublished).

    Google Scholar 

  156. J.L. Talion, C. Bernhard, H. Shaked, R.L. Hittermann, and J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995).

    Article  ADS  Google Scholar 

  157. C. Bernhard, J.L. Talion, Th. Blasisus, A. Golnik, and Ch. Niedermeyer, Phys. Rev. Lett. 86, 1614 (2001).

    Article  ADS  Google Scholar 

  158. T. Nomura and K. Yamada, J. Phys. Soc. Jpn. 69, 1856 (2000); ibid, condmat/0203453 (unpublished).

    Article  ADS  Google Scholar 

  159. K. Kuroki, M. Ogata, R. Arita, and H. Aoki, Phys. Rev. B 63, 060506 (2001).

    Article  ADS  Google Scholar 

  160. T. Imai et al., Phys. Rev. Lett. 81, 3006 (1998).

    Article  ADS  Google Scholar 

  161. M. Braden, Y. Sidis, P. Bourges, P. Pfeuty, J. Kulda, Z. Mao, and Y. Maeno, cond-mat/0206304 (unpublished).

    Google Scholar 

  162. J.R. Schrieffer, Theory of superconductivity (Addison-Wesley, 1988).

    Google Scholar 

  163. T.E. Mason, A. Schröder, G. Aeppli, H.A. Mook, and S.M. Hayden, Phys. Rev. Lett. 77, 1604 (1996).

    Article  ADS  Google Scholar 

  164. B. Lake, G. Aeppli, T.E. Mason, A. Schroder, D.F McMorrow, K. Lefmann, M. Isshiki, M. NO’Hara, H. Takagi, and S.M. Haydon, Nature (London) 400, 43 (1999).

    Article  ADS  Google Scholar 

  165. D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev. B 63, 054517 (2001).

    Article  ADS  Google Scholar 

  166. A.V. Chubukov, D. Pines, and J. Schmalian, in The Physics of Superconductors Voll (Edts. K.H. Bennemann, J.B. Ketterson, Springer 2002).

    Google Scholar 

  167. A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, A. Fujimori, Z.-X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, Phys. Rev. B 65, 094504 (2002).

    Article  ADS  Google Scholar 

  168. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O. Fischer, Phys. Rev. Lett. 80, 149 (1998).

    Article  ADS  Google Scholar 

  169. G.V.M. Williams, J.L. Talion, and J.W. Loram, Phys. Rev. B 58, 15053 (1998).

    Article  ADS  Google Scholar 

  170. G. Baumgärtel, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 48, 3983 (1993).

    Article  ADS  Google Scholar 

  171. D. Manske, I. Eremin, and K.H. Bennemann, Phys. Rev. B 62, 13922 (2000).

    Article  ADS  Google Scholar 

  172. T.S. Nunner, J. Schmalian, and K.H. Bennemann, Phys. Rev. B 59, 8859 (1999).

    Article  ADS  Google Scholar 

  173. S.V. Borisenko, A.A. Kordyuk, T.K. Kim, A. Koitzsch, M. Knupfer, M.S. Golden, J. Fink, M. Eschrig, H. Berger, and R. Follath, Phys. Rev. Lett. 90, 207001 (2003).

    Article  ADS  Google Scholar 

  174. Z.M. Yusof, B.O. Wells, T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, C. Kendziora, S. Jian, and D. G. Hinks, Phys. Rev. Lett. 88, 167006 (2002).

    Article  ADS  Google Scholar 

  175. A.V. Puchkov, D.N. Basov, and T. Timusk, J. Phys. Condens. Matter 8, 10049 (1996).

    Article  ADS  Google Scholar 

  176. E.F. Paulus et al., Solid State Commun. 73, 791 (1990).

    Article  ADS  Google Scholar 

  177. H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).

    Article  ADS  Google Scholar 

  178. G. Liang, J. Chen, M. Croft, K.V. Ramanujachary, M. Greenblatt, and M. Hegde, Phys. Rev. B 40, 2646 (1989).

    Article  ADS  Google Scholar 

  179. V.J. Emery and S.A. Kivelson, Nature 374, 434 (1995).

    Article  ADS  Google Scholar 

  180. S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990).

    Article  ADS  Google Scholar 

  181. G.D. Mahan, Many-Particle Physics (Plenum Press, New-York and London, 1990).

    Book  Google Scholar 

  182. A.J. Layzer and D. Fay, Proc. Int. Low Temp. Conf, St. Andrews (LT-11), Academic Press, London, (1968); P.W. Anderson and W.F. Brinkmann, in “The physics of liquid and solid Helium”, eds. K.H. Bennemann and J.B. Ketterson (V. 2, Wiley-Interscience, 1978).

    Google Scholar 

  183. N.F. Berk and J.R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966); D.J. Scalapino, Phys. Rep. 250, 329 (1995).

    Article  ADS  Google Scholar 

  184. Y. Hasegawa, K. Machida, and M. Ozaki, J. Phys. Soc. Jpn. 69, 336 (2000).

    Article  ADS  Google Scholar 

  185. M.E. Zhitomirsky, and T.M. Rice, Phys. Rev. Lett. 87, 057001 (2001).

    Article  ADS  Google Scholar 

  186. J.F. Annett, G. Litak, B.L. Gyorffy, and K.I. Wysokinski, cond-mat/0109023 (unpublished).

    Google Scholar 

  187. G.M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi, Y.J. Uemura, Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature 394, 558 (1998).

    Article  ADS  Google Scholar 

  188. K. Ishida, H. Mukuda, Y. Kitaoka, A. Asayama, Z.Q. Mao, Y. Mori, and Y. Maeno, Nature 396, 658 (1998).

    Article  ADS  Google Scholar 

  189. K.K. Ng and M. Sigrist, Europhys. Lett. 49, 473 (2000).

    Article  ADS  Google Scholar 

  190. K.G. Sandeman, G.G. Lonzarich, A.J. Schofield, cond-mat/0210552 (unpublished).

    Google Scholar 

  191. K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. Lett. 86, 2653 (2001).

    Article  ADS  Google Scholar 

  192. For more detailed discussion on the behavior of the spin susceptibility see D, Vollhardt and P. Woelfle, in “The superfluid phases of Helium 3” (Taylor and Francis, London, 1990).

    Google Scholar 

  193. M.A. Tanatar, M. Suzuki, S. Nagai, Z.Q. Mao, Y. Maeno, and T. Ishiguro, Phys. Rev. Lett. 86, 2649 (2001).

    Article  ADS  Google Scholar 

  194. Y. Maeno, T.M. Rice, and M. Sigrist, Phys. Today 54, 42 (2001).

    Article  ADS  Google Scholar 

  195. K. Yoshida, Y. Maeno, S. Nishizaki, and T. Fujita, Physica C 263, 519 (1996).

    Article  ADS  Google Scholar 

  196. D.F. Agterberg, Phys. Rev. Lett. 80, 5184 (1998).

    Article  ADS  Google Scholar 

  197. T.M. Riseman et al, Nature 396, 242 (1998).

    Article  ADS  Google Scholar 

  198. Z.Q. Mao, Y. Maeno, S. Nishizaki, T. Akima, and T. Oshigiro, Phys. Rev. Lett. 84, 991 (2000).

    Article  ADS  Google Scholar 

  199. D.F. Agterberg, Phys. Rev. B 64, 052502 (2001).

    Article  ADS  Google Scholar 

  200. M. Sigrist, J. Phys. Soc. Jpn. 69, 1290 (2000).

    Article  ADS  Google Scholar 

  201. S. Nakatsuji, and Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000).

    Article  ADS  Google Scholar 

  202. Z. Fang and K. Terakura, Phys. Rev. B 64, 020509(R) (2001).

    Article  ADS  Google Scholar 

  203. J.F. Zasadzinski, this book, Vol.1.

    Google Scholar 

  204. D. Mandrus, L. Forro, and D. Koller, and L. Mihaly, Nature 351, 460 (1991).

    Article  ADS  Google Scholar 

  205. J.F. Zasadzinski, Bull. Am. Phys. Soc. 37, 668 (1992).

    Google Scholar 

  206. S. Grabowski, Ph.D. thesis, Berlin (1996).

    Google Scholar 

  207. A.V. Chubukov, D. Pines, and J. Schmalian, this book, Vol.1, p. 495.

    Google Scholar 

  208. Finally, we would like to note also that recently it was argued S.V. Borisenko, T.K. Kim, K. Nenkov, M. Knupfer, M.S. Golden, J. Fink, H. Berger, R. Follath [227]} that in many cases the “dip feature’ seen in bilayer cuprates can be produced by the effects of bilayer splitting. However, recent studies of the one-layer Tlbased cuprates [228] confirm the presence of the ‘dip’ feature indicating its intrinsic relation to the ‘resonance’ peak. In order to identify the ‘dip’ position seen in bilayer cuprates and its relation to the ‘resonance’ peak further studies are necessary.

    Google Scholar 

  209. J.F. Zasadzinski, L. Qzyuzer, N. Miyakawa, K.E. Gray, D.G. Hinks, and C. Kendziora, Phys. Rev. Lett. 87, 067005 (2001).

    Article  ADS  Google Scholar 

  210. A.A. Kordyuk, S.V. Borisenko, T.K. Kim, K. Nenkov, M. Knupfer, M.S. Golden, J. Fink, H. Berger, R. Follath, cond-mat/0110379.

    Google Scholar 

  211. J.F. Zasadzinski, L. Ozyuzer, N. Miyakawa, D.G. Hinks, and K. E. Gray, Physica C 341–348, 867 (2000).

    Article  Google Scholar 

  212. A.A. Kordyuk, S.V. Borisenko, M.S. Golden, S. Legner, K.A. Nenkov, M. Knupfer, J. Fink, H. Berger, L. Forro, and R. Follath, Phys. Rev. B 66, 014502 (2002).

    Article  ADS  Google Scholar 

  213. Y.-D. Chuang, A.D. Gromko, A. Fedorov, Y. Aiura, K. Oka, Y. Ando, H. Eisaki, S.I. Uchida, and D.S. Dessau, Phys. Rev. Lett. 87, 117002 (2001).

    Article  ADS  Google Scholar 

  214. D. L. Feng et al, Phys. Rev. Lett. 86, 5550 (2001).

    Article  ADS  Google Scholar 

  215. N. Bulut and D.J. Scalapino, Phys. Rev. B 53, 5149 (1996).

    Article  ADS  Google Scholar 

  216. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  217. P. Minnhagen, Phys. Rev. B 23, 5745 (1981).

    Article  ADS  Google Scholar 

  218. D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).

    Article  ADS  Google Scholar 

  219. V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. Lett. 40, 783 (1978); V. Ambegaokar and D. Seitel, Phys. Rev. B 19, 1667 (1979); V. Ambegaokar, Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. Lett. 21, 1806 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manske, D., Eremin, I., Bennemann, K.H. (2004). Electronic Theory for Superconductivity in High-T c Cuprates and Sr2RuO4 . In: Bennemann, K.H., Ketterson, J.B. (eds) The Physics of Superconductors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18914-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18914-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62352-3

  • Online ISBN: 978-3-642-18914-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics