Skip to main content

Zusammenfassung

Die Flugzeugindustrie steht unter einem wachsenden gesellschaftlichen Druck, die Geräßuschpegel ihrer Flugzeuge erheblich unter die bereits erreichten Werte zu senken. Dies ist nicht nur zur Kompensation des Einflusses eines weiter steigenden Luftverkehrs erforderlich, sondern wird auch zur Verbesserung der Lebensqualität in der Umgebung der Flughäfen erwartet. Dazu ist vor allem eine Minderung der Lärmemission erforderlich, die Thema des Abschn. 18.1 ist. Während beim Start die Triebwerksgeräusche (Abschn. 18.1.1 und 18.1.2) dominieren, spielen die Umströmungsgeräusche bei der Landung moderner Flugzeuge eine bedeutende Rolle (Abschn. 18.1.4). Hubschrauber stören wegen ihrer typischerweise niedrigeren Flughöhen und geringeren Fluggeschwindigkeiten und des von ihnen emittierten Knattergeräusches erheblich. Ihre Geräuschemission wird in Abschn. 18.1.3 behandelt. Raumordnungsplanung und Lärmschutzgesetzgebung erfordern im Zusammenhang mit Flughafenaus- und -neubauten die Vorhersage der Lärmbelastung im Flughafenbereich (Lärmimmission). Dieses Problem wird in Abschn. 18.2 behandelt. Das kontroverse Thema der Fluglärmbeurteilung ist Thema des Abschn. 18.3. Wenn ein Flugzeug mit Überschallgeschwindigkeit fliegt, wird es von einer Druckwelle begleitet, die von einem Beobachter am Boden als Knall registriert wird. Physik und Wirkungen des Überschallknalls werden in Abschn.18.4 dargestellt.

Schallquellen eines modernen Nebenstromtriebwerkes

Typisches Terzspektrum der Freistrahlgeräusche eines Unterschallfreistrahls [18.198] für den Winkelbereich 0° bis 90°und für 150°relativ zum Triebwerkseinlauf. Es ist die Differenz zwischen Terzpegel und Gesamtpegel als Funktion der Strouhalzahl fD/U aufgetragen. Für Winkel näher zur Strahlachse (→180°) sinkt die Frequenz des Pegelmaximums erheblich. Außerdem fällt das Spektrum mit steigender Frequenz steiler ab, wie das für den Winkel 150°gezeigt ist. Das VerhÄltnis der Gesamttemperaturen von Freistrahl und Umgebung ist 2

Gezahnte Triebwerksdüse zur Strahllärmminderung

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ahuja KK, Tanna HK, Tester BJ (1979) Effects of simulated forward flight on jet noise, shock noise and internal noise. AIAA Paper 79-0615

    Google Scholar 

  2. Amiet RK (1975) Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound & Vibration 41, 407–420

    Article  MATH  Google Scholar 

  3. Amiet RK (1976) Noise due to turbulent flow past a trailing edge. Journal of Sound & Vibration 47, 387–393

    Article  Google Scholar 

  4. Amiet RK (1978) Effect of incident surface pressure field on noise due to turbulent flow past a trailing edge. Journal of Sound & Vibration 57, 305–306

    Article  MATH  Google Scholar 

  5. Anton-Guirgis H, Culver BD et al. (1986) Exploratory study of the potential effects of exposure to sonic boom on human health, Volume 2: Epidemiological study. Wyle Labs, El Segundo, California, Report AAMRL-TR-86-020-Vol-2

    Google Scholar 

  6. Atkins HL (1999) A high-order method using unstructured grids for the aeroacoustic analysis of realistic aircraft configurations. AIAA Paper No 99-1945

    Google Scholar 

  7. Atvars J, Schubert LK et al. (1965/1966) Refraction of sound by jet flow or jet temperature. University of Toronto, Institute for Aerospace Studies, TN 109 (1965) NASA CR-494

    Google Scholar 

  8. Baeder JD (1990) Euler solution to non-linear acoustics of non-lifting hovering rotor blades. Paper No II, 3.3, 16th European Rotorcraft Forum, Glasgow

    Google Scholar 

  9. Baeder JD (1994) The role and status of euler solvers in impulsive rotor noise computations. AGARD Symposium on Aerodynamics and Aeroacoustics of Rotorcraft, Berlin

    Google Scholar 

  10. Baeder JD, McCroskey WJ, Srinivasan GR (1986) Acoustic propagation using computational fluid dynamics. Proceedings 42nd Annual Forum of the American Helicopter Society, Volume 1. Washington DC, 551–562

    Google Scholar 

  11. Bailly C, Juvé D (1999) A stochastic approach to compute subsonic noise using linearized Euler’s equations. AIAA-Paper No 99-1872

    Google Scholar 

  12. Ballmann, Kocaaydin (1990) Some aerodynamic mechanisms of impulsive noise during blade/vortex interaction. Paper No II 10, 16th European Rotorcraft Forum, Glasgow

    Google Scholar 

  13. Battis JC (1983) Seismo-acoustic effects of sonic booms on archaeological sites, Valentine military operations area. Air Force Geophysics Lab, Hanscom AFB, MA (USA), Report AFGL-TR-83-0304

    Google Scholar 

  14. Beaumier P, Spiegel P (1995) Validation of the ONERA aeroacoustic prediction methods for blade-vortex interaction using HART test results. 51st Annual Forum of the American Helicopter Society, Fort Worth, TX

    Google Scholar 

  15. Bechert D, Pfizenmaier E (1975) On the amplification of jet noise by a pure tone excitation. Journal of Sound & Vibration 43, 581–587

    Article  Google Scholar 

  16. Bennett RL, Pearsons KS (1981) Handbook of aircraft noise metrics. NASA CR-3406

    Google Scholar 

  17. de Bernardis E, Tarica D (1992) Surface and volume quadrupoles in the prediction of propeller noise. DGLR/AIAA Paper No 92-02-0651992

    Google Scholar 

  18. Block PJW, Gentry Jr GL (1986) Directivity and trends of noise generated by a propeller in a wake. NASA TP-2609

    Google Scholar 

  19. Bohn A (1976) Edge noise attenuation by porous-edge extensions. AIAA-76-80

    Google Scholar 

  20. Borchers IU, Scholten R, Gehlhar B (1986) Experimental results of the noise radiation of propellers in non-uniform flows. AIAA-86-1928, Seattle,WA

    Google Scholar 

  21. Borsky PN (1965) Community reactions to sonic booms in the Oklahoma city area. USAF AMRL-TR-65-37

    Google Scholar 

  22. Boxwell DA, Schmitz FH (1982) Full-scale measurements of blade/vortex interaction noise. Journal of the American Helicopter Society 27, auch (1980) Preprint 8061, Proceedings 36th Annual Forum, American Helicopter Society

    Google Scholar 

  23. Boxwell DA, Schmitz FH et al. (1983) Model helicopter rotor high speed impulsive noise-measured acoustics and blade pressures. NASA TM-85850 and USAAVRADCOM Technical Report-83-A-14

    Google Scholar 

  24. Boxwell DA, Schmitz FH et al. (1986) A comparison of the acoustic and aerodynamic measurements of a model rotor tested in two anechoic wind tunnels. Paper No 38, 12th European Rotorcraft Forum, Garmisch-Partenkirchen

    Google Scholar 

  25. Bradley J, Stephens RWB (1973) Seismic vibrations induced by Concorde sonic booms. Acustica 28, 191–192

    Google Scholar 

  26. Brentner K S (1997) An efficient and robus method for predicting helicopter rotor high-speed impulsive noise. Journal of Sound & Vibration 203(1) 87–100

    Article  Google Scholar 

  27. Brooks TF (1981) Trailing edge noise prediction using Amiet’s method. Journal of Sound & Vibration 77, 437–439

    Article  Google Scholar 

  28. Brooks TF (1993) Studies of blade-vortex interaction noise reduction by rotor blade modification. Proceedings Noise-Con 93, Noise Control in Aeroacoustics, Williamsburg, VA(USA)

    Google Scholar 

  29. Brooks TF, Booth ER (1993) The effects of higher harmonic control on blade-vortex interaction noise and vibration. Journal of the American Helicopter Society 35(3)

    Google Scholar 

  30. Brooks TF, Hodgson TH (1981) Trailing edge noise prediction using measured surface pressures. Journal of Sound & Vibration 78, 69–117

    Article  Google Scholar 

  31. Brooks T, Humphreys Jr W (2000) Flap edge aeroacoustic measurements. AIAA/CEAS-2000-1975

    Google Scholar 

  32. Brooks TF, Schlinker RH (1983) Progress in rotor broadband noise research. VERTICA 7, 287–307

    Google Scholar 

  33. Brooks TF, Jolly RJ, Marcolini MA (1988) Determination of noise source contributions using scaled model rotor acoustic data. NASA TP-2825

    Google Scholar 

  34. Brooks TF, Marcolini MA, Pope DS (1989) Main rotor broadband noise study in the DNW. Journal of the American Helicopter Society 34(2), 3–12

    Google Scholar 

  35. Brooks TF, Pope DS, Marcolini MA (1989) Airfoil self noise prediction. NASA RP-1218

    Google Scholar 

  36. Brooks TF, Boyd DD et al. (1996) Aeroacoustic codes for rotor harmonic and BVI noise — CAMRAD.Mod1/HIRES. 2nd AIAA/CEAS Aeroacoustics Conference, State College, PA (USA)

    Google Scholar 

  37. Bund (1971) Gesetz zum Schutz gegen Fluglärm. Bundesgesetzblatt, Jahrgang 1971, Teil I, Nr 28, S 282–287, Bonn

    Google Scholar 

  38. Der Bundesminister des Innern (1975) Bekanntmachung vom 27.2.75, Durchführung des Gesetzes zum Schutz gegen Fluglärm, ier: Bekanntmachung der Datenerfassungssysteme für die Ermittlung von Lärmschutzbereichen an zivilen (DES) und militärischen Flugplätzen (DES-MIL) sowie einer Anleitung zur Berechnung (AzB). Gemäß Ministerialblatt 26, Ausgabe A, Nr 8, S 126–227, Bonn, 10.3.1975, Ergänzung der Anleitung zur Berechnung von Lärmschutzbereichen an zivilen und militärischen Flugplätzen — AzB vom 27. Februar 1975, U II 4-560 120/43, Bonn, 20.2.1984

    Google Scholar 

  39. Caradonna F et al. (2000) Methods for the prediction of blade-vortex-interaction noise. Journal of the American Helicopter Society 45(4) 303–317

    Article  Google Scholar 

  40. Chang SC (1995) The method of space-time conservation element and solution element — a new approach for solving the Navier-Stokes and Euler-equations. Journal of Computational Physics 119, 295

    Article  MathSciNet  MATH  Google Scholar 

  41. Cocking BJ, Bryce WD (1975) Subsonic jet noise in flight based on some recent wind-tunnel tests. AIAA Paper 75-462

    Google Scholar 

  42. Commission of European Communities, Directorate General XI. Working Group on Noise Indicators (1999) Position Paper on EU noise indicators

    Google Scholar 

  43. Crighton D (1991) Airframe Noise. In: Hubbard HH (ed.) Aeroaoustics of flight vehicles: theory and practice, Volume 1: noise sources. NASA RP-1258, S 391–447

    Google Scholar 

  44. Dahl MD (Hrsg) (2000) Third computational aeroacoustics (CAA) workshop on benchmark problems. NASA CP 2000-209790

    Google Scholar 

  45. Dahlen H, Dobrzynski W, Heller H (1988) Aeroakustische Untersuchungen zum Lärm von Ultraleichtflugzeugen. DFVLR-FB 88-03

    Google Scholar 

  46. Darden CM, Powell CA et al. (1989) Status of sonic boom methodology and understanding. NASA CP-3027

    Google Scholar 

  47. Davy R et al. (1998) Airframe noise characteristics of a 1/11 scale airbus model. AIAA/CEAS-98-2335

    Google Scholar 

  48. Delfs J (2001) An overlapped grid technique for high resolution CAA schemes for complex geometries. AIAA-Paper No 2001-2199

    Google Scholar 

  49. DIN 45643: Messung und Beurteilung von Flugzeuggeräuschen (1984)

    Google Scholar 

  50. DIN 18005: Schallschutz im Städtebau, Teil 1 (1987)

    Google Scholar 

  51. DIN 4109: Schallschutz im Hochbau, Anforderungen und Nachweise (1989)

    Google Scholar 

  52. DIN 45645: Ermittlung von Beurteilungspegeln aus Messungen, Teil 1: Geräuschimmissionen in der Nachbarschaft (1996)

    Google Scholar 

  53. Doak PE (1998) Fluctuating total enthalpy as the basic generalized acoustic field. Theoretical and Computational Fluid Dynamics 10, 115–133

    Article  MATH  Google Scholar 

  54. Dobrzynski W (1986) The effect on radiated noise of non-zero propeller rotational plane attitude. AIAA Paper 86-1926, Seattle, WA (USA)

    Google Scholar 

  55. Dobrzynski W(1993) Propeller noise reduction by means of unsymmetrical blade-spacing. Journal of Sound & Vibration 163(1) 123–136

    Article  Google Scholar 

  56. Dobrzynski W (1994) Ermittlung von Emissionskennwerten für Schallimmissionsrechnungen an Landeplätzen. DLR-IB 129-94/17

    Google Scholar 

  57. Dobrzynski W, Gehlhar B (1993) Untersuchungen zur Propellerlärmminderung durch kleineren Durchmesser bei höherer Blattzahl. DLRFB 93-48

    Google Scholar 

  58. Dobrzynski W, Gehlhar B (1997) The noise from piston engine driven propellers on general aviation airplanes. AIAA/CEAS Paper No 97-1708

    Google Scholar 

  59. Dobrzynski W, Pott-Pollenske M (2001) Slat noise source studies for farfield noise prediction. AIAA/CEAS Paper No 2001-2158

    Google Scholar 

  60. Dobrzynski W, Heller H et al. (1986) DFVLR/FAA propeller noise tests in the German-Dutch wind tunnel DNW. DFVLR-IB 129-86/3 or FAA Report No AEE 86-3

    Google Scholar 

  61. Dobrzynski W et al. (1997) Full scale noise testing on airbus landing gears in the German Dutch Wind Tunnel. AIAA/CEAS-97-1597

    Google Scholar 

  62. Dobrzynski W et al. (1998) Airframe noise studies on wings with deployed high-lift devices. AIAA/CEAS-98-2337

    Google Scholar 

  63. Dobrzynski W, Chow LC et al. (2000) A European study on landing gear airframe noise sources. AIAA/CEAS Paper No 2000-1971, Lahaina, HI (USA)

    Google Scholar 

  64. Dobrzynski W, Gehlhar B, Buchholz H (2000) Model-and full scale high-lift wing wind tunnel experiments dedicated to airframe noise reduction. 7th International Congress on Sound and Vibration, 4–7 Juli, Garmisch-Partenkirchen

    Google Scholar 

  65. Dong ThZ (1999) Direct numerical simulations of flap side edge noise. AIAA-Paper No 99-1803

    Google Scholar 

  66. Drevet P, Duponchel JP, Jacques JR (1977) The effect of flight on jet noise as observed on the Bertin Aérotrain. Journal of Sound & Vibration 54, 173–201

    Article  Google Scholar 

  67. Enghardt L, Tapken U et al. (2001) Turbine blade/vane interaction noise: acoustic mode analysis using in-duct sensor rakes. AIAA-Paper 2001-2153

    Google Scholar 

  68. Enghardt L, Tapken U et al. (2002) Active control of fan noise from high-bypass ratio aeroengines: Experimental results. Erscheint in The Aeronautical Journal

    Google Scholar 

  69. Envia E (1992) An asymptotic theory of supersonic propeller noise. DGLR/AIAA Paper No 92-02-064

    Google Scholar 

  70. Eversman W (1971) Energy flow criteria for acoustic propagation in ducts with flow. Journal of Acoustic Society of America 49, 1717–1721

    Article  MATH  Google Scholar 

  71. Eversman W (1991) Theoretical models for duct acoustic propagation and radiation. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice: Volume 2: Noise control. NASA Reference Publication 1258, Volume 2, NASA, 101–163

    Google Scholar 

  72. Evertz E et al. (1976) Noise generation by interaction between subsonic jets and blown flaps. DLR-FB 76-20

    Google Scholar 

  73. Farassat F (1975) Theory of noise generation from moving bodies with an application to helicopter rotors. NASA TR R-451

    Google Scholar 

  74. Farassat F (1981) Linear acoustic formulas for calculation of rotating blade noise. AIAA Journal 19, 1122–1130

    Article  MATH  Google Scholar 

  75. Farassat F (1982) Rotor noise prediction technology — Theoretical approach. NASA CP-2234

    Google Scholar 

  76. Farassat F (1983) The prediction of the noise of supersonic propellers in time domain — New theoretical results. AIAAPaper 83-0743, Atlanta, GA (USA)

    Google Scholar 

  77. Farassat F, Brentner KS (1987) The uses and abuses of the acoustic analogy in helicopter rotor noise prediction. Paper, AHS National Specialists’ Meeting on Aerodynamics and Aeroacoustics, Arlington, TX (USA)

    Google Scholar 

  78. Farassat F, Brentner KS (1998) Supersonic quadrupole noise theory for high-speed helicopter noise. Journal of Sound & Vibration 218(3) 481–500

    Article  Google Scholar 

  79. Farassat F, Succi GP (1980) A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. Journal of Sound & Vibration 71, 399–419

    Article  Google Scholar 

  80. Ffowcs-Williams JE (1963) Noise from turbulence convected at high speed. Transactions of the Royal Society A225, 469–503

    Google Scholar 

  81. Ffowcs-Williams JE (1969) Hydrodynamic noise. Annual Review of Fluid Mechanics (1) 197–222

    Google Scholar 

  82. Ffowcs-Williams JE (1984) Acoustic analogy. IMA Journal of Applied Mathematics 31, 113–124

    Article  Google Scholar 

  83. Ffowcs-Williams JE, Hall LH (1970) Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. Journal of Fluid Mechanics 40, 657–670

    Article  Google Scholar 

  84. Ffowcs-Williams JE, Hawkings DL (1969) Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society London 264A, 321–342

    Google Scholar 

  85. Ffowcs-Williams JE, Simpson J, Virchis VJ (1975) Crackle — an annoying component of jet noise. Journal of Fluid Mechanics 71

    Google Scholar 

  86. Fink MR (1977) Airframe noise prediction method. FAA RD-77-29

    Google Scholar 

  87. Fisher MJ, Preston GA, Bryce WD (1998) A modelling of the noise from simple coaxial jets. Part I: With unheated primary flow. Journal of Sound & Vibration 209, 385–403

    Article  Google Scholar 

  88. Fisher MJ, Preston GA, Bryce WD (1998) A modelling of the noise from simple coaxial jets. Part II: With heated primary flow. Journal of Sound & Vibration 209, 405–417

    Article  Google Scholar 

  89. Fitzgerald J, Kohlhepp F (1988) Research investigation of helicopter main rotor/tail rotor interaction noise. NASA CR-4143

    Google Scholar 

  90. Fitz Simmons RD et al. (1980) Flight and wind tunnel test results of a mechanical jet noise suppressor nozzle. AIAA-80-0165

    Google Scholar 

  91. Fleming GG, Olmstead JR et al. (1997) Integrated noise model (INM). Version 5.1 Technical Manual, Department of Transportation, Federal Aviation Administration, Report No FAAAEE-97-04

    Google Scholar 

  92. Frota J, Lempereur P, Roger M (1998) Computation of the noise of a subsonic propeller at an angle of attack. AIAA/CEAS Paper No 98-2282

    Google Scholar 

  93. George AR (1977) Helicopter noise state of the art. AIAA-Paper 77-1337, Atlanta, GA (USA)

    Google Scholar 

  94. George AR, Chang SB (1983) Noise due to blade/vortex interactions. Paper No A-83-39, Proceedings 39th Annual Forum, American Helicopter Society

    Google Scholar 

  95. George AR, Chou S-T (1984) Broadband rotor noise analysis. NASA CR-3797

    Google Scholar 

  96. Gladwin DN, Manci KM, Villella R (1988) Effects of aircraft noise and sonic booms on domestic animals and wildlife: Bibliographic abstracts. Air Force Engineering and Services Center, Tyndall AFB, FL, Report AFESC-TR-88-14

    Google Scholar 

  97. Glegg SAL, Jochault C (1997) Broadband self noise from a ducted fan. 3rd AIAA/CEAS Aeroacoustics Conference, Paper No 97-1612, Atlanta, GA (USA)

    Google Scholar 

  98. Gliebe PR, Brausch JF et al. (1991) Jet noise suppression. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 2: Noise control. NASA Reference Publication 1258, Volume 2, NASA, 207–269

    Google Scholar 

  99. Gounet H, Lewy S (1988) Prediction of propfan noise by a frequency-domain scheme. Journal of Aircraft 25, 428–435

    Article  Google Scholar 

  100. Groeneweg JF, Sofrin TG et al. (1991) Turbomachinery noise. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 1: Noise sources. NASA Reference Publication 1258, Volume 1, NASA, 151–209

    Google Scholar 

  101. Grogger HA, Lummer M, Lauke Th (2001) Simulating the interaction of a three-dimensional vortex with airfoils using CAA. AIAA Paper No AIAA-2001-2137

    Google Scholar 

  102. Guiraud JP (1969) Focalisation dans les ondes courtes non linéaires; application au bruit balistique de focalisation. AGARD Conference Proceedings No 42, Aircraft Engine Noise and Sonic Boom, Paper 12

    Google Scholar 

  103. Gulding JM, Olmstead JR, Fleming GG (1999) Integrated noise model (INM). Version 6.0 User’s Guide. Department of Transportation, Federal Aviation Administration, Report No FAA-AEE-99-03

    Google Scholar 

  104. Guo YP (1997) A model for slat noise generation. AIAA/CEAS-97-1647

    Google Scholar 

  105. Guo YP (1999) Modeling of noise reduction by flap side edge fences. NASA CR CRAD-9402-TR-5767

    Google Scholar 

  106. Guo YP (1999) Prediction of flap side edge noise. AIAA/CEAS-99-1804

    Google Scholar 

  107. Guo YP (2000) Modeling of noise reduction by flap side edge fences. AIAA/CEAS-2000-2065

    Google Scholar 

  108. Guo YP, Hardy BA et al. (1998) Noise characteristics of DC-10 aircraft high lift system. NASA CR CRAD-9310-TR-4893

    Google Scholar 

  109. Hamilton-Standard Inc (1971) Generalized propeller noise estimating procedure — Revision D. Windsor Locks, CT (USA)

    Google Scholar 

  110. Hanson DB (1980) Influence of propeller design parameters on farfield harmonic noise in forward flight. AIAA Journal 18, 1313–1319, see also AIAA Paper 79-0609-1979

    Article  MathSciNet  Google Scholar 

  111. Hanson DB (1983) Compressible helicoidal surface theory for propeller aerodynamics and noise. AIAA Journal 21, 881–889

    Article  MATH  Google Scholar 

  112. Hanson DB (1999) Influence of lean and sweep on noise of cascades with turbulent inflow. AIAA-Paper 99-1863

    Google Scholar 

  113. Hardin JC (1980) Noise radiation from the side edge of flaps. AIAA Journal 18(5) 549–552

    Article  Google Scholar 

  114. Hardin JC, Martin JE (1996) Flap side-edge noise: Acoustic analysis of Sen’s model. AIAA-96-1674

    Google Scholar 

  115. Hardin JC, Ristorcelli JR, Tam CKW (ed.) (1995) ICASE/LaRC Workshop on benchmark problems in computational aeroacoustics (CAA). NASA CP 3300

    Google Scholar 

  116. Hayes JA, Horne WC et al. (1997) Airframe noise characteristics of a 4.7% scale DC-10 model. AIAA/CEAS-97-1594

    Google Scholar 

  117. Hilton DA, Huckel V et al. (1964) Sonic boom exposures during FAA community-response studies over a 6-month period in the Oklahoma city area. NASA TN D-2539

    Google Scholar 

  118. Hoad DR (1980) Helicopter model scale results of blade/vortex interaction impulsive noise as affected by tip modification. Paper No 80-62, 36th Annual Forum, American Helicopter Society

    Google Scholar 

  119. Hoad DR (1987) Helicopter blade/vortex interaction locations: scale-model acoustics and free-wake analysis results. NASA TP-2658

    Google Scholar 

  120. Holste F, Neise W (1997) Noise source identification in a propfan model by means of acoustical near field measurements. Journal of Sound & Vibration 203(4) 641–665

    Article  Google Scholar 

  121. Howe MS (1975) Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. Journal of Fluid Mechanics 71, 625–673

    Article  MathSciNet  MATH  Google Scholar 

  122. Howe MS (1980) Aerodynamic sound generated by a slotted trailing edge. Proceedings Royal Society London, A373, 235–252

    Article  MathSciNet  Google Scholar 

  123. On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. Journal of Computational Physics 129, 201–219

    Google Scholar 

  124. Hu FQ, Hussaini MY, Manthey J (1995) Low-dissipation and-dispersion Runge-Kutta schemes for Computational Aeroacoustics. Journal of Computational Physics 124(1) 177–191

    Article  MathSciNet  Google Scholar 

  125. Hubbard H (ed.) (1991) Aeroacoustics of flight vehicles: theory and practice: Volume 1: noise sources. NASA Reference Publication 1258, Volume 1, NASA

    Google Scholar 

  126. Hubbard H (ed.) (1991) Aeroacoustics of flight vehicles: theory and practice: Volume 2: noise control. NASA Reference Publication 1258, Volume 2, NASA

    Google Scholar 

  127. Hubbard JE, Leighton JE (1983) A comparison of model helicopter rotor primary and secondary blade/vortex interaction blade slap. AIAA 8th Aeroacoustics Conference, Paper AIAA-83-0723

    Google Scholar 

  128. Hubbard HH, Maglieri DJ, Stephens DG (1986) Sonic-boom research: selected bibliography with annotation. NASA TM-87685

    Google Scholar 

  129. Ianniello S (1999) An algorithm to integrate the FW-H equation on a supersonic rotating domain. AIAA Journal 37(9) 1040–1047

    Article  Google Scholar 

  130. Ianniello S (1999) Quadrupole noise predictions through the Ffowcs Williams-Hawkings equation. AIAA Journal 37(9) 1048–1054

    Article  Google Scholar 

  131. Ianniello S (2001) Acoustic analysis of high tip-speed rotating blades. Aerospace Science Technology 5, 179–192

    Article  MATH  Google Scholar 

  132. International Civil Aviation Organization (ICAO) (1981) Environmental protection. Annex 16 to the Convention on International Civil Aviation, Volume 1, Aircraft noise, 1st edition

    Google Scholar 

  133. International Civil Aviation Organization (ICAO) (1988) Recommended method for computing noise contours around airports. ICAO Circular 205-AN/1/25

    Google Scholar 

  134. International Civil Aviation Organization (ICAO) (1988) International standards and recommended practices. Environmental protection. ICAO, ANNEX 16 to the Convention on International Civil Aviation. Volume I, 2nd edition

    Google Scholar 

  135. Isermann U (1988) Berechnung der Fluglärmimmission in der Umgebung von Verkehrsflughäfen mit Hilfe eines Simulationsverfahrens. MPI für Strömungsforschung, Bericht 7/1988, Göttingen

    Google Scholar 

  136. Isermann U, Schmid R (1999) Bewertung und Berechnung von Fluglärm. Im Auftrag des Bundesministeriums für Verkehr, FE-Bericht Nr L-2/96-50144/96, DLR Institut für Strömungsmechanik, Göttingen

    Google Scholar 

  137. International Standard ISO 2249-1973 (E) Acoustics description and measurement of physical properties of sonic booms (1973)

    Google Scholar 

  138. International Standard ISO 3891-1978 (E) Acoustics — procedure for describing aircraft noise heard on the ground (1978)

    Google Scholar 

  139. International Standard ISO Acoustics — description and measurement of environmental noise (1996). Part 1: Basic quantities and procedures (1982). Part 2: Acquisition of data pertinent to land use (1987). Part 3: Application to noise limits (1987)

    Google Scholar 

  140. Isom MP (1980) Acoustic shock waves generated by a transonic helicopter blade. Paper 63, 36th Annual National Forum of the American Helicopter Society

    Google Scholar 

  141. Jacklin SA, Blaas A et al. (1995) Reduction of helicopter BVI noise, vibration and power consumption through individual blade control. Proceedings 51st Annual Forum of the American Helicopter Society

    Google Scholar 

  142. Jacobs EW, Prillwitz RD et al. (1997) The development and flight test demonstration of noise abatement approach procedures for the Sikorsky S-76. AHS Technical Specialists Meeting for Rotorcraft Acoustics and Aerodynamics, Williamsburg, VA (USA)

    Google Scholar 

  143. Janardan BA, Gliebe PR (1989) Acoustic characteristics of counterrotating fans from model scale tests. AIAA Paper 89-1142, San Antonio, TX (USA)

    Google Scholar 

  144. Jansen G, Linnemeier A, Nitsche M (1995) Methodenkritische Überlegungen und Empfehlungen zur Bewertung von Nachtfluglärm. Zeitschrift für Lärmbekämpfung 42, 91–106

    Google Scholar 

  145. Johnson W (1995) A general free wake geometry calculation for wings and rotors. 51st Annual Forum of the American Helicopter Society, Forth Worth, TX (USA)

    Google Scholar 

  146. Johnson DR, Robinson DW (1967) The subjective evaluation of sonic bangs. Acustica 18, 241–258

    Google Scholar 

  147. Johnson DR, Robinson DW (1969) Procedure for calculating the loudness of sonic bangs. Acustica 21, 307–318

    Google Scholar 

  148. Jonkouski GJ, Home WC, Soderman PT (1983) The acoustic response of a propeller subjected to gusts incident from various inflow angles. AIAA-83-0692, Atlanta, GA (USA)

    Google Scholar 

  149. Joshi MC, Lin SR, Boxwell DA (1987) Prediction of blade/vortex interaction noise. Proceedings 43rd Annual Forum, American Helicopter Society, 405–420

    Google Scholar 

  150. Julliard J, Antoine H, Riou G (2001) Development of a three degree of freedom liner. AIAA Paper 2001-2203

    Google Scholar 

  151. Kameier F, Neise W(1997) Rotating blade flow instability as a source of noise in axial turbomachines. Journal of Sound & Vibration 203, 833–853

    Article  Google Scholar 

  152. Kane EJ, Palmer TY (1964) Meterological aspects of the sonic boom. FAA SPDS Report RD 64-180

    Google Scholar 

  153. Kellner A (1980) Experimentelle und theoretische Untersuchungen über den Einfluß inhomogener Geschwindigkeitsverteilung in der Zuströmung auf die Lärmerhöhung von Mantelschrauben. Dissertation RWTH Aachen

    Google Scholar 

  154. Klöppel V (1976) Schallabstrahlung durch akustische Rückkopplung bei rechtwinklig umgelenkten Luftstrahlen. Dissertation RWTH Aachen

    Google Scholar 

  155. Koch HW, Weber G (1970) Flugzeugknalle und ihre Wirkung auf Gebäude. Die Bautechnik 7, 238–244

    Google Scholar 

  156. Kroll N (1986) Comparison of the flow field of propellers and hovering rotors using Eulerequations. Paper 28, 12th European Rotorcraft Forum, Garmisch-Partenkirchen

    Google Scholar 

  157. Kroll N, Lohmann D, Schöne J (1987) Numerical methods for propeller aerodynamics and acoustics at DFVLR. 69th AGARD-Symposium on Gasturbine Components, Paris

    Google Scholar 

  158. Kryter KD, Pearsons KS (1963) Some effects of spectral content and duration on perceived noise level. Journal of Acoustic Society of America 35, 866–883

    Article  Google Scholar 

  159. Laur MN, Squires RL, Nagel RT (1992) Forward rotor vortex location effects on counter rotating propeller noise. DGLR/AIAA Paper No 92-02-153

    Google Scholar 

  160. Laurence JH, Woodward RP (1989) Unsteady blade pressure measurements on a model counterrotation propeller. AIAA Paper 89-1144, San Antonio (USA)

    Google Scholar 

  161. Lavrich PL, Simonich JC, McCormick DC (1992) An assessment of wake structure behind forward swept and aft swept propfans at high loading. DGLR/AIAA Paper No 92-02-154

    Google Scholar 

  162. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 103, 16–42

    Article  MathSciNet  MATH  Google Scholar 

  163. Leverton JW (1980) Reduction of helicopter noise by use of a quiet tail rotor. Paper No 24, 6th European Rotorcraft Forum

    Google Scholar 

  164. Lighthill MJ (1952) On sound generated aerodynamically. Part I: General theory. Proceedings Royal Society (London) A 211, 564–587

    Article  MathSciNet  MATH  Google Scholar 

  165. Lighthill MJ (1954) On sound generated aerodynamically. Part II: Turbulence as a source of sound. Proceedings Royal Society (London) A 222, 1–32

    Article  MathSciNet  MATH  Google Scholar 

  166. Lighthill MJ (1954) On the sound generated aerodynamically. Proceedings of the Royal Society, Volume 211

    Google Scholar 

  167. Lilley GM (1969) The generation and propagation of shock waves leading to the sonic boom. Report in 5 parts on the sonic boom, prepared for the OECD Conference on Sonic Boom Research, Part 1

    Google Scholar 

  168. Lilley GM (1974) On the noise from jets. In: Noise mechanisms. AGARD-CP 131, 13.1–13.12

    Google Scholar 

  169. Lilley GM (1991) Jet noise classical theory and experiments. In: Hubbard H (ed.) Aeroacoustics of Flight Vehicles: Theory and practice. Volume 1: Noise sources. NASA Reference Publication 1258, Volume 1, NASA, 211–289

    Google Scholar 

  170. Lowson MV (1965) The sound field for singularities in motion. Proceedings of the Royal Society A 286, 559–572

    Article  MathSciNet  Google Scholar 

  171. Lowson MV, Ollerhead JB (1969) A theoretical study of helicopter noise. Journal of Sound & Vibration, 187–222

    Google Scholar 

  172. Luftfahrthandbuch Deutschland (1984) Überschallflüge militärischer Strahlflugzeuge. RAC-3-3-1

    Google Scholar 

  173. Luftverkehrs-Ordnung (1986) §11a, §11b

    Google Scholar 

  174. Lyrintzis AS (1994) Review, the use of Kirchhoff’s method in computational aeroacoustics. Journal of Fluid Eng-T ASME 116, 665–676

    Article  Google Scholar 

  175. Maglieri DJ (1967) Sonic boom flight research: some effects of airplane operations and the atmosphere on sonic boom signatures. NASA SP-147, 25–48

    Google Scholar 

  176. Mahan JR, Karchmer A (1991) Combustion and core noise. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 1: Noise sources. NASA Reference Publication 1258, Volume 1, NASA, 483–517

    Google Scholar 

  177. Mani R (1971) Noise due to interaction of inlet turbulence with isolated stators and rotors. Journal of Sound & Vibration 17, 251–260

    Article  Google Scholar 

  178. Martin RM, Splettstoesser WR et al. (1998) Advancing side directivity and retreating side interactions of model rotor blade/vortex interaction noise. NASA TP 2784, AVSCOM TR 87-B3

    Google Scholar 

  179. Martin RM, Burley CL, Elliott JW (1989) Acoustic test of a model rotor and tail rotor. Results for the isolated rotors and combined configuration. NASA TM-101550

    Google Scholar 

  180. Martin RM, Marcolini MA et al. (1990) Wake geometry effects on rotor blade/vortex interaction noise directivity. NASA TP-3015

    Google Scholar 

  181. Matschat K, Müller E-A (1979) Effektivpegel und Geräuschdauer bei Flugzeugvorbeiflügen. Festschrift zum 100-jährigen Bestehen der Versuchs-und Forschungsanstalt Wien, Stadtbaudirektion Wien, 145–147

    Google Scholar 

  182. Matschat K, Müller E-A (1981) Vergleich nationaler und internationaler Fluglärmbewertungsverfahren. Aufstellung von Näherungsbeziehungen zwischen den Bewertungsmaßen. Umweltforschungsplan des Bundesministers des Innern, Forschungsbericht 81-10501307, UBA-FB 82-025, Umweltbundesamt Berlin

    Google Scholar 

  183. Matschat K, Müller E-A, Obermeier F (1970) On the assessment of the annoyance of a series of sonic boom exposures. Acustica 23, 49–50

    Google Scholar 

  184. May DN (1971) The loudness of sonic booms heard outdoors as simple functions of overpressure and rise time. Journal of Sound & Vibration 18, 31–43

    Article  Google Scholar 

  185. McAlpine A, Fisher MJ (2000) On the prediction of ‘buzz-saw’ noise generated by an aeroengine. AIAA Paper 2000-2095

    Google Scholar 

  186. McAlpine A, Fisher MJ (2001) On the prediction of ‘buzz-saw’ noise generated in aero-engine inlet ducts. Erscheint in Journal of Sound & Vibration

    Google Scholar 

  187. McKennell AC (1963) Aircraft noise annoyance around London (Heathrow) airport. Central Office of Information, London, 337

    Google Scholar 

  188. Meier GEA, Lenth H-M, Löhr KF (1988) Sound generation flow interaction of vortices with an airfoil and a flat plate in transonic flow. Fluid Dynamics Research 3, 344–348

    Article  Google Scholar 

  189. Michalke A (1977) On the effect of spatial source coherence on the radiation of jet noise. Journal of Sound & Vibration 55, 377–394

    Article  Google Scholar 

  190. Michalke A, Michel U (1979) Prediction of jet noise in flight from static tests. Journal of Sound & Vibration 67, 341–367

    Article  MATH  Google Scholar 

  191. Morin BL (1999) Broadband fan noise prediction system for gas turbine engines. AIAA-Paper 99-1889

    Google Scholar 

  192. Motsigner RE, Kraft RE (1991) Design and performance of duct acoustic treatment. In: Hubbard H (ed.) Aeroacoustics of flight vehicles: Theory and practice. Volume 2: Noise control. NASA Reference Publication 1258, Volume 2, NASA, 165–205

    Google Scholar 

  193. Munjal ML (1987) Acoustics of ducts and mufflers. John Wiley & Sons

    Google Scholar 

  194. Nakamura Y (1981) Prediction of blade/vortex interaction noise from measured blade pressure. Paper 32, 7th European Rotorcraft and Powered Lift Aircraft Forum, Garmisch-Partenkirchen

    Google Scholar 

  195. Neuwerth G (1972) (Deutscher Titel unbekannt) Deutsche Luft-und Raumfahrt, DLR-FB 72-72.

    Google Scholar 

  196. Englische Übersetzung: (1974) Acoustic feedback of a subsonic and supersonic free jet which impinges on an obstacle. Royal Aircraft Establishment, Library Translation 1739

    Google Scholar 

  197. Neuwerth G (1982) Flowfield and noise of jet impingement on flaps and ground surface. AGARD-CP-308, 13.1–13.7

    Google Scholar 

  198. Niedzwieki A, Ribner HS (1978) a. Journal of the Acoustical Society of America (JASA) 64, 1617–1621

    Article  Google Scholar 

  199. NN (1985) Gas turbine jet exhaust noise prediction. SAE ARP 876C

    Google Scholar 

  200. NN (1985) Gas turbine coaxial exhaust flow noise prediction. SAE AIR 1905

    Google Scholar 

  201. NN (1990) Airframe noise prediction. ESDU-pac A9023

    Google Scholar 

  202. Norum TD, Seiner JM (1982) Broadband shock noise from supersonic jets. AIAA Journal 20, 68–73

    Article  Google Scholar 

  203. Norum TD, Seiner JM (1984) Measurement of mean static pressure and far-field acoustics of shock-containing jets. NASA TM 84521

    Google Scholar 

  204. National Sonic Boom Evaluation Office (1967) Sonic boom experiments at Edwards Air Force Base. Interim Report NSBEO-1-67

    Google Scholar 

  205. NTIS (National Technical Information Service Data Base) (1988) Aircraft sonic boom. „Biological effects“. Jan 1970–Mar 1988, Springfield, VA (USA)

    Google Scholar 

  206. NTIS (National Technical Information Service Data Base) (1988) Aircraft sonic boom. „Effects on buildings“. Jan 1970–Mar 1988, Springfield, VA (USA)

    Google Scholar 

  207. Obermeier F (1979) On a new representation of aeroacoustic source distribution. I. General theory. Acustica 42, 56–61

    MathSciNet  MATH  Google Scholar 

  208. Obermeier F (1989) Ausbreitung schwacher Stoßwellen — Stoßfokussierung und Stoßreflexion. Zeitschrift für Flugwissenschaften, Weltraumforschung 13, 219–232

    Google Scholar 

  209. Obermeier F, Zimmermann G (1971) Das Streuverhalten eines Überschallknalles beim Durchgang durch eine turbulente Schicht. Proceedings 7th International Congress on Acoustics, Budapest, 457–460

    Google Scholar 

  210. Ostertag JSD, Guidati S et al. (2000) Prediction and measurement of airframe noise on a generic body. AIAA Paper No AIAA-2000-2063

    Google Scholar 

  211. Parry AB, Crighton DG (1989) Asymptotic theory of propeller noise. Part I: Subsonic singlerotation propeller. AIAA Journal 27, 1184–1990

    Article  Google Scholar 

  212. Pérennès S et al. (1998) Aerodynamic noise of a two-dimensional wing with high-lift devices. AIAA/CEAS-98-2338

    Google Scholar 

  213. Phillips OM (1960) On the generation of sound by supersonic shear flows. Journal of Fluid Mechanics 9, 1–28

    Article  MathSciNet  MATH  Google Scholar 

  214. Piet JF et al. (1997) Airframe noise source localization using a microphone array. 3rd AIAA/CEAS-97-47

    Google Scholar 

  215. Piet J et al. (1999) Localization of acoustic source from a landing aircraft with a microphone array. AIAA/CEAS-99-1811

    Google Scholar 

  216. Pietrzko S, Hofmann RF (1988) Prediction of A-weighted aircraft noise based on measured directivity patterns. Applied Acoustics 23, 29–44

    Article  Google Scholar 

  217. Plotkin KJ (1989) Review of sonic boom theory. AIAA Paper No 89-1105

    Google Scholar 

  218. Polacsec C, Spiegel P et al. (2000) Noise computation of high-speed propeller-driven aircraft. AIAA/CEAS Paper No 2000-2086

    Google Scholar 

  219. Powell A (1964) Theory of vortex sound. 36, 177–195

    Google Scholar 

  220. Prieur J (1987) Calculations of transonic rotor noise using a frequency domain formulation. 43rd AHS-Forum Proceedings, 469–479, St. Louis, MI (USA)

    Google Scholar 

  221. Prieur J, Splettstoesser WR (1999) ERATOan ONERA-DLR cooperative programme on aeroacoustic rotor optimisation. Proceedings, 25th European Rotorcraft Forum, Rom

    Google Scholar 

  222. Purcell T (1989) A prediction of high-speed rotor noise. AIAA, 12th Aeroacoustics Conference, San Antonio, TX (USA)

    Google Scholar 

  223. Radezrsky RH, Singer BA, Khorrami MR (1998) Detailed measurements of a flap side-edge flow field. AIAA/CEAS-98-0700

    Google Scholar 

  224. Rahier G, Prieur J (1997) An efficient Kirchhoff integration method for rotor noise prediction starting indifferently from subsonically or supersonically rotating meshes. American Helicopter Society 53rd Annual Forum, Virginia Beach, VA, USA

    Google Scholar 

  225. Reinis S, Weiss DS et al. (1987) Long-term effects of simulated sonic booms on hearing in rhesus monkeys. Journal of Sound & Vibration 113, 355–363

    Article  Google Scholar 

  226. Revell JD, Kuntz HL et al. (1997) Trailing-edge flap noise reduction by porous acoustic treatment. AIAA/CEAS-97-1646

    Google Scholar 

  227. Ribner HS 1959 New theory of jet-ise generation directionality and spectra. 31 245–246

    Google Scholar 

  228. Ribner HS (1981) Perspectives in jet noise (Dryden lectureship in research). AIAA Paper 81-0428

    Google Scholar 

  229. Ribner HS, Balazard J et al. (1970) Report on the sonic boom phenomenon, the ranges of sonic boom values likely to be produced by planned SSTs and the effects of sonic boom on humans, property, animals and terrain. Sonic Boom Panel 2nd Meeting, Montreal, ICAO Doc 8894, SBP/II

    Google Scholar 

  230. Rice CG (1972) Sonic boom exposure effects II.2: Sleep effects. Journal of Sound & Vibration 20, 511–517

    Article  Google Scholar 

  231. Roger M, Pérennès S (2000) Low-frequency noise sources in two-dimensional high-lift devices. AIAA/CEAS-2000-1972

    Google Scholar 

  232. Rose GE, Jeracki RJ (1989) Effect of reduced aft diameter and increased blade number on high-speed counter-rotation propeller performance. NASA TM-102077

    Google Scholar 

  233. Ross JC, Storms BL, Kumagai H (1995) Aircraft flyover noise reduction using lower-surface flap-tip fences. NASA CDTM-21006

    Google Scholar 

  234. Rudnik R, Ronzheimer A et al. (1996) Berechnung von 2-und 3-dimensionalen Hochauftriebskonfigurationen durch Lösung der Navier-Stokes-Gleichungen. DGLR-Jahrestagung, Dresden

    Google Scholar 

  235. Rylander R, Dancer A (1978) Startle reactions to simulated sonic booms: Influence of habituation, boom level and background noise. Journal of Sound & Vibration 61, 235–243

    Article  Google Scholar 

  236. Saiyed HN, Mikkelsen KL, Bridges JE (2000) Acoustics and thrust of separate-flow exhaust nozzles with mixing devices for high-bypassratio engines. NASA/TM-2000-209948

    Google Scholar 

  237. Sarin SL, Donelly RP (1992) Angle of incidence effects on the far-field noise of an isolated propeller. DGLR/AIAA Paper No 92-02-050

    Google Scholar 

  238. Schaffar M, Haertig J, Gnemmi P (1990) Effect of non-rectangular blade tips on BVI noise for a two-bladed rotor. 16th European Rotorcraft Forum, Glasgow

    Google Scholar 

  239. Schmitz FH, Boxwell DA (1976) In-flight farfield measurement of helicopter impulsive noise. Journal of the American Helicopter Society 21(4)

    Google Scholar 

  240. Schmitz FH, Yu YH (1981) Transonic rotor noise — theoretical and experimental comparisons. Vertica 5, 55–74

    Google Scholar 

  241. Schmitz FH, Yu YH (1983) Helicopter impulsive noise: theoretical and experimental status. NASA TM-84390

    Google Scholar 

  242. Schmitz FH, Boxwell DA et al. (1984) Model rotor high speed impulsive noise: Full scale comparisons and parametric variations. VERTICA 8(4)

    Google Scholar 

  243. Schulten JBHM (1987) A spectral method for the computation of propeller acoustics. AIAA Paper 87-2674, Palo-Alto, CA (USA)

    Google Scholar 

  244. Schultz KJ, Splettstoesser W (1987) Measured and predicted impulsive noise directivity characteristics. Paper 1.2, 13th European Rotorcraft Forum, Arles

    Google Scholar 

  245. Schultz KJ, Lohmann D et al. (1994) Aeroacoustic calculations of helicopter rotors at DLR. AGARD Symposium on Aerodynamics and Aeroacoustics of Rotorcraft, Paper No 29, Berlin

    Google Scholar 

  246. Schwenk W(1976) Das Verbot von zivilen Flügen mit Überschallgeschwindigkeit für die Bundesrepublik Deutschland. Kampf dem Lärm 23, 57–61

    Google Scholar 

  247. Sen R (1996) Local dynamics and acoustics in a simple 2D model of airfoil lateral-edge noise. AIAA-96-1673

    Google Scholar 

  248. Sharland IJ (1964) Sources of noise in axial flow fans. Journal of Sound & Vibration 1, 302–322

    Article  MATH  Google Scholar 

  249. Sijtsma P et al. (1999) Source location by phased array measurements in closed wind tunnel test sections. AIAA/CEAS-99-1814

    Google Scholar 

  250. Siller H, Arnold F, Michel U (2001) Investigation of aero-engine core-noise using a phased microphone array. AIAA Paper 2001-2269

    Google Scholar 

  251. Singer BA, Brentner KS et al. (1999) Simulation of acoustic scattering from a trailing edge. AIAA-Paper No 99-0231

    Google Scholar 

  252. Smith MJT (1989) Aircraft noise. Cambridge University Press, Cambridge

    Book  Google Scholar 

  253. Smith M et al. (1998) Prediction method for aerodynamic noise from aircraft landing gear. AIAA/CEAS-98-2228

    Google Scholar 

  254. Society of Automotive Engineers Inc (1977) Prediction procedure for near-field and far-field propeller noise. SAE-AIR 1407

    Google Scholar 

  255. Splettstoesser WR, Schultz K-J et al. (1984) Helicopter model rotor-blade/vortex interaction impulsive noise: Scalability and parametric variations. Paper No 18, 10th European Rotorcraft Forum, Den Haag, auch NASA TM-86007

    Google Scholar 

  256. Splettstoesser W, Schultz K-J, Martin R (1987) Rotor blade/vortex interaction impulsive noise source identification and correlation with rotor wake predictions. AIAA-87-2744, AIAA 11th Aeroacoustics Conference, Palo Alto, CA (USA)

    Google Scholar 

  257. Splettstoesser WR, Schultz KJ et al. (1994) A higher harmonic control test in the DNW to reduce impulsive BVI noise. Journal of the American Helicopter Society 39(4)

    Google Scholar 

  258. Splettstoesser WR, Kube R et al. (1997) Key results from a higher harmonic control aeroacoustic rotor test (HART). Journal of the American Helicopter Society 42(1)

    Google Scholar 

  259. Splettstoesser WR, Schultz KJ et al. (1998) The effect of individual blade pitch control on BVI noise — comparison of flight test and simulation results. Proceedings AC07, 24th European Rotorcraft Forum, Marseille

    Google Scholar 

  260. Stevens RCK, Bryce WD, Szewczyk VM (1983) Model and fullscale studies of the exhaustnoise from a bypass engine in flight. AIAA Paper 83-0751

    Google Scholar 

  261. Storms BL, Takahashi TT et al. (1996) Flap-tip treatments for the reduction of lift-generated noise. NASA CDTM-21006

    Google Scholar 

  262. Storms BL, Ross JC et al. (1998) An aeroacoustic study of an unswept wing with a three-dimensional high lift system. NASA/TM-1998-112222

    Google Scholar 

  263. Storms B et al. (1999) Aeroacoustic measurements of slat noise on a three-dimensional high-lift system. AIAA/CEAS-99-1957

    Google Scholar 

  264. Streett CL (1998) Numerical simulation of fluctuations leading to noise in a flap-edge flowfield. AIAA-98-0628

    Google Scholar 

  265. Stuff R (1982) Propellerlärm bei Unterschallblattspitzen-Machzahlen, Umfangskraft und Axialkraft. DFVLR-Mitteilung 82–17

    Google Scholar 

  266. Succi GP (1979) Design of quiet efficient propellers. SAE Paper 790584

    Google Scholar 

  267. Takallu MA, Block PJW (1987) Prediction of added noise due to the effect of unsteady flow on pusher propellers. AIAA 25th Aerospace Sciences Meeting, AIAA-87-0255, Reno, NV (USA)

    Google Scholar 

  268. Tam CKW (1991) Broadband shock-associated noise from supersonic jets in flight. Journal of Sound & Vibration 151, 55–71

    Article  Google Scholar 

  269. Tam CKW (1995) Supersonic jet noise. Annual Review of Fluid Mechanics 27, 131–147

    Article  Google Scholar 

  270. Tam CKW (2001) On the failure of the acoustic analogy to identify the correct noise sources. AIAA Paper 2001-2117

    Google Scholar 

  271. Tam CKW, Auriault L (1999) Jet mixing noise from fine scale turbulence. AIAA Journal 37, 145–153

    Article  Google Scholar 

  272. Tam CKW, Dong Z (1994) Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics. Theoretical Computational Fluid Dynamics 6, 303–322

    Article  MATH  Google Scholar 

  273. Tam CKW, Dong Z (1995) Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow. AIAA Paper No 95-007

    Google Scholar 

  274. Tam CKW, Hardin JC (ed.) (1997) Second computational aeroacoustics (CAA) workshop on benchmark problems. NASA CP 3352

    Google Scholar 

  275. Tam CKW, Shen H (1993) Direct computation of nonlinear acoustic pulses using high-order finite difference schemes. AIAA Paper No 93-4325

    Google Scholar 

  276. Tam CKW, Webb JC (1993) Dispersion relation preserving finite difference schemes for computational acoustics. Journal of Computational Physics 107, 262–281

    Article  MathSciNet  MATH  Google Scholar 

  277. Tam CKW, Salikuddin M, Hanson DB (1988) Acoustic interference of counter-rotation propellers. Journal of Sound & Vibration 124, 357–366

    Article  Google Scholar 

  278. Tam CKW, Golebiowski M, Seiner JM (1996) On the two components of turbulent mixing noise from supersonic jets. AIAA Paper 96-1716

    Google Scholar 

  279. Tanna HK (1977) An experimental study of jet noise. Part 1: Jet mixing noise. Journal of Sound & Vibration 50, 405–428

    Article  Google Scholar 

  280. Tanna HK (1977) An experimental study of jet noise. Part 2: Shock associated noise. Journal of Sound & Vibration 50, 429–444

    Article  Google Scholar 

  281. Thackray RI (1972) Sonic boom exposure effects II.3: Startle responses. Journal of Sound & Vibration 20, 519–526

    Article  Google Scholar 

  282. Tyler JM, Sofrin TG (1962) Axial flow compressor noise studies. SAE Trans 70, 309–332

    Google Scholar 

  283. U.S. standard atmosphere (1962) Prepared under sponsorship of NASA, USAF, US Weather Bureau. Washington D.C.

    Google Scholar 

  284. Vallée J (1969) Etude expérimentale des focalisations de bangs soniques engendrés par le vol supersonique en accélération rectiligne ou en virage d’un avion Mirage IV à l’altitude de 11000 m. Opération Jéricho-Virage, Rapport d’études No 277, Centre d’essais en vol, annexe d’Istres

    Google Scholar 

  285. Wagner S, Bareiss R, Guidati G (1996) Wind turbine noise. Springer, Berlin

    Book  Google Scholar 

  286. van der Wall B, Roth M (1997) Free-wake analysis on massively-parallel computers and validation with HART test data. 53rd Annual Forum, Virginia Beach, VA (USA)

    Google Scholar 

  287. Wang ME (1980) Wing effect on jet noise propagation. AIAA-Paper 80-1047

    Google Scholar 

  288. Watanabe T, Kawachi K (1987) Noise prediction of counter rotation propeller. AIAA Paper 87-2658, Palo Alto, CA (USA)

    Google Scholar 

  289. Way DJ, Turner BA (1980) Model tests demonstrating under-wing installation effects on engine exhaust noise. AIAA-Paper 80-1048

    Google Scholar 

  290. Wood T et al. (1999) Aeroacoustic predictions of a wing-flap configuration in three dimensions. AIAA/CEAS-99-1893

    Google Scholar 

  291. Woodward RP, Hughes CE (1990) Aeroacoustic effects of reduced aft tip speed at constant thrust for a model counterrotation turboprop at takeoff conditions. AIAA Paper 90-3933, Tallahassee, FL (USA)

    Google Scholar 

  292. Woodward RP, Loeffler IJ, Dittmar JH (1989) Measured far-field flight noise of a counterrotation turboprop at cruise conditions. NASA TM-101383

    Google Scholar 

  293. Yin J, Delfs J (2001) Sound generation from gust-airfoil interaction using CAA-chimera method. AIAA-Paper No 2001-2136

    Google Scholar 

  294. Yin JP, Ahmed SR, Dobrzynski W(1999) New acoustic and aerodynamic phenomena due to non-uniform rotation of propellers. Journal of Sound & Vibration 225(1), 171–187

    Google Scholar 

  295. Young RW(1989) Day-night average sound level (DNL) and sound exposure level (SEL) as efficient descriptors for noise compatibility planning. Internoise 89 Proceedings, 1289–1292

    Google Scholar 

  296. Yu YH, Gmelin B et al. (1997) Reduction of helicopter blade-vortex interaction noise by active rotor control technology. Progress in Aerospace Science 33, 647–687

    Article  Google Scholar 

  297. Zepler EE, Harel JRP (1965) The loudness of sonic booms and other impulsive sounds. Journal of Sound & Vibration 2, 249–256

    Article  Google Scholar 

  298. Zorumski WE (1982) Aircraft noise prediction program. Part I: Theoretical manual. NASA TM-83199

    Google Scholar 

  299. Zorumski WE, Weir DS (1986) Aircraft noise prediction program. Theoretical manual. Part 3: Propeller aerodynamics and noise. NASA TM-83199

    Google Scholar 

  300. Guidati G, Wagner S (1999) The influence of airfoil shape on gust-airfoil interaction noise in compressible flows. AIAA/CEAS Paper 99-1843

    Google Scholar 

  301. Lee RA, Downing JM (1996) Comparison of measured and predicted lateral distribution of sonic boom overpressures from United States Air Force sonic boom database. J. Acoust. Soc. Am. 99, 768–776

    Article  Google Scholar 

  302. Lipkens B, Blackstock DT (1998) Model experiments to study sonic boom propagation through turbulence. Part I: General results. J. Acoust. Soc. Am. 103, 148–158

    Article  Google Scholar 

  303. Downing JM et al. (1988) Controlled focused sonic booms from manoeuvring aircraft. J. Acoust. Soc. Am. 104, 112–121

    Article  Google Scholar 

  304. Pierce AD, Kang J (1990) Molecular relaxation effects on sonic boom waveforms. Frontiers in nonlinear acoustics, Proceedings of the 12 ISNA, MF Hamilton, DT

    Google Scholar 

  305. Schomer PD, Sias JW (1998) On spectral weightings to assess human response indoors to blast noise and sonic booms. Noise Control Eng. Journal 46, 57–71

    Article  Google Scholar 

  306. Sparrow VW (1995) The effect of supersonic aircraft speed on the penetration of sonic boom into the ocean. J. Acoust. Soc. Am. 97, 159–162

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delfs, J. et al. (2004). Fluglärm. In: Müller, G., Möser, M. (eds) Taschenbuch der Technischen Akustik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18893-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18893-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62343-1

  • Online ISBN: 978-3-642-18893-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics