Skip to main content

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

Our laboratory is studying determination of neuroectoderm from pluripotent embryonic stem (ES) cells. We have shown that, in defined medium, ES cells can enter directly into the neural lineage, bypassing the requirement for multicellular aggregation or treatment with retinoic acid. The process by which pluripotent ES cells acquire neural identity in adherent culture can be visualised and recorded at the level of individual colonies. Commitment to neuroectoderm is promoted by fibroblast growth factor-4 and is suppressed by serum, Wnts, bone morphogenetic proteins and extracellular matrix. The cellular and molecular dissection of ES cell lineage choice may yield insights into the mechanism underlying neural determination in the mammalian embryo. This simple culture system is also a step towards the “directed,” homogeneous differentiation of ES cells required for biopharmaceutical and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arman E, Krausz-Haffner R, Chen Y, Heath JK, Lonai P (1998) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci USA 95: 5082–5087

    Article  PubMed  CAS  Google Scholar 

  • Aubert J, Dunstan H, Chambers I, Smith A (2002) Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nature Biotechnol 20: 1240–1245

    Article  CAS  Google Scholar 

  • Aubert J, Stavridis M, Tweedie S, O’Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason JO, Roy D, Smith A (2003) Screening for mammalian neural genes via FACS purification of neural precursors from Soxl-gfp knock-in mice. Proc Natl Acad Sci USA, in press

    Google Scholar 

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99: 2344–2349

    Article  PubMed  CAS  Google Scholar 

  • Bradley A, Evans MJ, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255–256

    Article  PubMed  CAS  Google Scholar 

  • Brustle O, Spiro AC, Karram K, Choudhary K, Okabe S, McKay RD (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci USA 94: 14809–14814

    Article  PubMed  CAS  Google Scholar 

  • Brustle O, Jones KN, bearish RD, Karram K, Choudhary K, Wiestier OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285: 754–756

    Article  PubMed  CAS  Google Scholar 

  • Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12: 432–438

    Article  PubMed  CAS  Google Scholar 

  • Deacon T, Dinsmore J, Costantini LC, Ratliff J, Isacson O (1998) Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 149:28–41

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399: A32–39

    Article  Google Scholar 

  • Evans MJ, Kaufman M (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156

    Article  PubMed  CAS  Google Scholar 

  • Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267: 246–249

    Article  PubMed  CAS  Google Scholar 

  • Gorba T, Allsopp T (2003) Pharmacological potential of embryonic stem cells. Pharmacol Res47: 269–278

    Google Scholar 

  • Harland R (2000) Neural induction. Curr Opin Genet Dev 10: 357–362

    Article  PubMed  CAS  Google Scholar 

  • Johansson BM, Wiles MV (1995) Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 15: 141–151

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 31–40

    Article  PubMed  CAS  Google Scholar 

  • Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7: 862–869

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418: 50–56

    Article  PubMed  CAS  Google Scholar 

  • Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes trom differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 98: 216–224

    Article  PubMed  CAS  Google Scholar 

  • Launay C, Fromentoux V, Shi DL, Boucaut JC (1996) A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122:869–880

    PubMed  CAS  Google Scholar 

  • Li M, Pevny L, Lovell-Badge R, Smith A (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 8: 971–974

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276: 955–960

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90: 8424–8428

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RDG (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59: 89–102

    Article  PubMed  CAS  Google Scholar 

  • Pera EM, Wessely O, Li SY, De Robertis EM (2001) Neural and head induction by insulin-like growth factor signals. Dev Cell 1: 655–665

    Article  PubMed  CAS  Google Scholar 

  • Pevny LH, Lovell-Badge R (1997) Sox genes find their feet. Curr Opin Genet Dev 7: 338–344

    Article  PubMed  CAS  Google Scholar 

  • Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125: 1967–1978

    PubMed  CAS  Google Scholar 

  • Rathjen PD, Nichols J, Toth S, Edwards DR, Heath JK, Smith AG (1990) Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev 4:2308–2318

    Article  PubMed  CAS  Google Scholar 

  • Smith A (1998) Cell therapy: in search of pluripotency. Curr Biol 8: 802–804

    Article  Google Scholar 

  • Smith A (2001) Embryonic stem sells. In: Marshak, DR, Gardner RL, Gottlieb D (eds) Stem cell biology. New York, Cold Spring Harbor Laboratory Press, pp. 205–230

    Google Scholar 

  • Smith AG (1991) Culture and differentiation of embryonic stem cells. J Tiss Cult Meth 13: 89–94

    Article  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Ann Rev Cell Dev Biol 17: 435–462

    Article  CAS  Google Scholar 

  • Solter D, Gearhart J (1999) Putting stem cells to work. Science 283: 1468–1470

    Article  PubMed  CAS  Google Scholar 

  • Stavridis MP, Smith AG (2003) Neural differentiation of mouse embryonic stem cells. Biochem Soc Trans 31: 45–49

    Article  PubMed  CAS  Google Scholar 

  • Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406: 74–78

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Tropepe V, Hitoshi S, Sirard£¬TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30: 65–78

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385–397

    Article  PubMed  CAS  Google Scholar 

  • Wilder PJ, Kelly D, Brigman K, Peterson CL, Nowling T, Gao Q-S, McComb RD, Capecchi MR, Rizzino A (1997) Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/ or the survival of their early differentiated progeny. Dev Biol 192: 614–629

    Article  PubMed  CAS  Google Scholar 

  • Wilson SI, Edlund T (2001) Neural induction: toward a unifying mechanism. Nature Neurosci 4 Suppl, 1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Wilson SI, Graziano E, Harland R, Jessell TM, Edlund T (2000) An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr Biol 10: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Wood HB, Episkopou V (1999) Comparative expression of the mouse Soxl, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86: 197–201

    Article  PubMed  CAS  Google Scholar 

  • Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93: 755–766

    Article  PubMed  CAS  Google Scholar 

  • Ying Q-L, Smith AG (2003a) Defined conditions for neural commitment and differentiation. In: Wassarman P, Keller G (eds) Differentiation of embryonic stem cells. Elsevier, Amsterdam

    Google Scholar 

  • Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A (2003b) Conversion of embryonic stem cells to neuroectodermal precursors in adherent monoculture. Nature Biotech 21: 183–186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, A. (2004). Converting ES Cell into Neurons. In: Gage, F.H., Björklund, A., Prochiantz, A., Christen, Y. (eds) Stem Cells in the Nervous System: Functional and Clinical Implications. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18883-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18883-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62339-4

  • Online ISBN: 978-3-642-18883-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics