Skip to main content

What is the Functional Role of New Neurons in the Adult Dentate Gyrus?

  • Conference paper
Stem Cells in the Nervous System: Functional and Clinical Implications

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

The exponential growth in research results in the area of regulation of adult hippocampal neurogenesis, the life-long addition of new neurons to the hippocampal dentate gyrus, is paralleled by an increasing puzzlement about the potential function of these new cells. To determine the functional relevance of these new neurons, several fundamental problems have to be overcome. Two of them are discussed here. First, it will remain impossible to define the functional contribution the new neurons in the dentate gyrus make to hippocampal function as long as we do not know how the dentate gyrus itself contributes to hippocampal function. Our hypothesis is that adult hippocampal neurogenesis serves to avoid a stability-plasticity dilemma between learning new information and preserving old information, by allowing the dentate gyrus to adapt to new input pattern statistics while preserving the ability to process old patterns appropriately. Second, we still do not know whether, in adult neurogenesis, the structural alteration follows a specific functional stimulus and serves to consolidate a functional change triggered by that stimulus, or if less specific stimuli of novelty or complexity induce more general structural changes that prophylactically prepare the ground to better process information in similar novel or more complex situations in the future. Herein, our experimental findings and theoretical considerations argue for the latter possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  • Barinaga M (2003) Developmental biology. Newborn neurons search for meaning. Science 299: 32–34

    Article  PubMed  CAS  Google Scholar 

  • Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH (1990) Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res 83:287–300

    Article  PubMed  CAS  Google Scholar 

  • Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component analyis. IEEE Trans Neur Netw 13:1450–1464

    Article  CAS  Google Scholar 

  • Bell AJ, Sejnowski TJ (1997) The “independent components” of natural scenes are edge filters. Vision Res 37:3327–3338

    Article  PubMed  CAS  Google Scholar 

  • Biebl M, Cooper CM, Winkler J, Kuhn HG (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20

    Article  PubMed  CAS  Google Scholar 

  • Cooper-Kuhn CM, Vroemen M, Brown J, Ye H, Thompson MA, Winkler J, Kuhn HG (2002) Impaired adult neurogenesis in mice lacking the transcription factor E2F1. Mol Cell Neurosci 21:312–323

    Article  PubMed  CAS  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70

    Article  PubMed  CAS  Google Scholar 

  • Fahlmann SE, Lebiere C (1990) The cascade-correlation learning architecture. In: Touretzky D (ed) Advances in neural information processing systems 2 (NIPS 1989). Morgan-Kaufmann, San Fransisco, pp 524–532

    Google Scholar 

  • Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911–926

    Article  PubMed  CAS  Google Scholar 

  • Hastings NB, Gould E (1999) Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol 413:146–154

    Article  PubMed  CAS  Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Redwood City: Addison-Wesley.

    Google Scholar 

  • Kempermann G (2002) Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22:635–638

    PubMed  CAS  Google Scholar 

  • Kempermann G, Gage FH (2002) Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance in the water maze task. Eur J Neurosci 16:129–136

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1998) Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 18:3206–3212

    PubMed  CAS  Google Scholar 

  • Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52:135–143

    Article  PubMed  Google Scholar 

  • Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the dentate gyrus of mice. Development 130:391–399

    Article  PubMed  CAS  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  • Lewicki MS (2002) Efficient coding of natural sounds. Nature Neurosci 5:356–363

    Article  PubMed  CAS  Google Scholar 

  • Markakis E, Gage FH (1999) Adult-generated neurons in the dentate gyrus send axonal projections to the field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 406:449–460

    Article  PubMed  CAS  Google Scholar 

  • Myers KM, Davis M (2002) Systems-level reconsolidation: reengagement of the hippocampus with memory reactivation. Neuron 36:340–343

    Article  PubMed  CAS  Google Scholar 

  • Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 7:217–227

    Article  PubMed  CAS  Google Scholar 

  • Nadel L, Land C (2000) Memory traces revisited. Nature Rev Neurosci 1:209–212

    Article  CAS  Google Scholar 

  • Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res 37:3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  • Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584

    Article  PubMed  Google Scholar 

  • Stanfield BB, Trice JE (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72:399–406

    PubMed  CAS  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci 2:266–270

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Scott BW, Wojtowicz JM (2000) Heterogeneous properties of dentate granule neurons in the adult rat. J Neurobiol 42:248–257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kempermann, G., Wiskott, L. (2004). What is the Functional Role of New Neurons in the Adult Dentate Gyrus?. In: Gage, F.H., Björklund, A., Prochiantz, A., Christen, Y. (eds) Stem Cells in the Nervous System: Functional and Clinical Implications. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18883-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18883-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62339-4

  • Online ISBN: 978-3-642-18883-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics