Skip to main content

An Approach to Imbalanced Data Sets Based on Changing Rule Strength

  • Chapter
Rough-Neural Computing

Part of the book series: Cognitive Technologies ((COGTECH))

Summary

. This chapter describes experiments with a challenging data set describing preterm births. The data set, collected at the Duke University Medical Center, was large but at the same time many attribute values were missing. However, the main problem was that only 20.7% of the total number of cases represented the important preterm birth class. Thus, the data set was imbalanced. For comparison, we include results of experiments on another imbalanced data set, the well-known breast cancer data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. R. Bairagi, C.M. Suchindran. An estimator of the cutoff point maximizing sum of sensitivity and specificity.Sankhya Series B Indian Journal of Statistics 51: 263–269, 1989.

    MathSciNet  Google Scholar 

  2. L.B. Booker, D.E. Goldberg, J.F. Holland. Classifier systems and genetic algorithms. In J. G. Carbonell, editorMachine Learning: Paradigms and Methods235–282, MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  3. R.K. Creasy, M.A. Herron. Prevention of preterm birth.Seminars in Perinatology5: 295–302, 1981.

    Google Scholar 

  4. R.K. Creasy. Preterm birth prevention: Where are we?American Journal of Obstetrics & Gynecology168: 1223–1230,1993.

    Google Scholar 

  5. J.W. Grzymala-Busse. On the unknown attribute values in learning from examples. InProceedings of the 6th International Symposium on Methodologies for Intelligent Systems (ISMIS’91)LNAI 542, 368–377, Springer, Berlin, 1991.

    Google Scholar 

  6. J.W. Grzymala-Busse. LERS — A system for learning from examples based on rough sets. In R. Slowiáski, editorIntelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory3–18, Kluwer, Dordrecht, 1992.

    Chapter  Google Scholar 

  7. J.W. Grzymala-Busse, L.K. Goodwin, X. Zhang. Increasing sensitivity of preterm birth by changing rule strengths. InProceedings of the 8th Workshop on Intelligent Information Systems (IIS’99)127–136, Institute of Fundamentals of Computer Science of the Polish Academy of Sciences, Warsaw, 1999.

    Google Scholar 

  8. J.W. Grzymala-Busse, W.J. Grzymala-Busse, L.K. Goodwin. A closest fit approach to missing attribute values in preterm birth data. InProceedings of the 7th International Workshop on Rough Sets Fuzzy Sets,Data Mining and Granular-Soft Computing (RSFDGrC’99)LNAI 1711, 405–413, Springer, Berlin, 1999.

    Google Scholar 

  9. J.H. Holland, K.J. Holyoak, R.E. Nisbett.Induction: Processes of Inference Learning and Discovery. MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  10. M. McLean, W.A. Walters, R. Smith. Prediction and early diagnosis of preterm labor: A critical review.Obstetrical & Gynecological Survey, 48: 209–225, 1993.

    Article  Google Scholar 

  11. R.S. Michalski, I. Mozetic, J. Hong, N. Lavrac. The AQ15 inductive learning system: An overview and experiments. Report number UIUCDCD-R-86–1260 of the Department of Computer Science, University of Illinois, 1986.

    Google Scholar 

  12. Z. Pawlak, J.W. Grzymala-Busse, R. Slowiíiski, W. Ziarko. Rough sets. Communications of the ACM, 38: 89–95, 1995.

    Article  Google Scholar 

  13. Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences 11: 341–356, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Pawlak.Rough Sets: Theoretical Aspects of Reasoning about Data.Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  15. J.R. Quinlan.C4.5: Programs for Machine Learning.Morgan Kaufmann, San Mateo CA, 1993.

    Google Scholar 

  16. L.K. Woolery, J. Grzymala-Busse. Machine learning for an expert system to predict preterm birth risk. JAmer. Med. Inf. Assoc.1: 439–446, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grzymala-Busse, J.W., Goodwin, L.K., Grzymala-Busse, W.J., Zheng, X. (2004). An Approach to Imbalanced Data Sets Based on Changing Rule Strength. In: Pal, S.K., Polkowski, L., Skowron, A. (eds) Rough-Neural Computing. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18859-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18859-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62328-8

  • Online ISBN: 978-3-642-18859-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics