Skip to main content

Intelligent Acquisition of Audio Signals, Employing Neural Networks and Rough Set Algorithms

  • Chapter
  • 255 Accesses

Part of the book series: Cognitive Technologies ((COGTECH))

Summary

The algorithms stemming from the rough-neural computing approach were applied to digital acquisition of audio signals with regard to automatic localization of sound sources in the presence of noise and a parasite echo. The application of neural networks to the automatic detection of the sound arrival direction was tested first; then, it was followed by some experiments employing rough sets, and finally the rough-neural approach to this problem solving was examined. The output of each algorithm tested was supposed to provide information about the direction of arriving sound. In the rough-neural algorithm, the result of its action can also be available in the form of words defining the direction of arriving sound. Some details of the engineered systems and results of their experimental verification are compared and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Berdugo, M.A. Doron, J. Rosenhouse, and H. Azhari. On direction finding of an emitting source from time delays.Journal of the Acoustical Society of America106: 3355–3363, 1999.

    Article  Google Scholar 

  2. M. Bodden. Modeling human sound-source localization and the cocktail-party-effect.Acta Acustica 1:43–55,1993.

    Google Scholar 

  3. M.S. Brandstein. A pitch-based approach to time-delay estimation of reverberant speech. InProceedings of the IEEE Workshop on Applications of Signal Processing to Audio and AcousticsMohonk, New Paltz, NY, 1997.

    Google Scholar 

  4. W.-F. Chang, M.W. Mak. A conjugate gradient learning algorithm for recurrent neural networks.Neurocomputing: An International Journal24: 173–189, 1999.

    Article  MATH  Google Scholar 

  5. S.-J. Cheat, S.-H. Lin. An adaptive time delay estimation with direct computation formula.Journal of the Acoustical Society of America96: 811–820,1994.

    Article  Google Scholar 

  6. J. Czerniawski.The Verification of New Algorithms for Identifying Sound Source Position and Sound Acquisition Methods Based on Spatial Filtering.Masters Thesis, Technical University of Gdansk, 2001 (in Polish).

    Google Scholar 

  7. A. Czyzewski, R. Krolikowski. Neuro-rough control of masking thresholds for audio signal enhancement.Neurocomputing: An International Journal36: 5–27, 2001.

    Article  MATH  Google Scholar 

  8. M.S. Datum, F.Palmieri, A. Moiseff. An artificial neural network for sound localization using binaural cues.Journal of the Acoustical Society of America100: 3372–3383, 1996.

    Article  Google Scholar 

  9. S.P. Day, M.R. Davenport. Continuous-time temporal back-propagation with adaptable time delays. InIEEE Transactions on Neural Networks4: 348–354, 1993. 540 A. Czyzewski

    Google Scholar 

  10. J.L. Elman. Finding structure in time.Cognitive Science14: 179–211, 1990.

    Article  Google Scholar 

  11. M.W. Goudreau, C.L. Giles, S. T. Chakradhar, D. Chen. First-order vs. second-order single layer recurrent neural networks.IEEE Transactions on Neural Networks5: 511–518, 1994.

    Article  Google Scholar 

  12. M.W. Goudreau, C.L. Giles. Using recurrent neural networks to learn structure of interconnection networks.IEEE Transactions on Neural Networks8: 793–820, 1995.

    Article  Google Scholar 

  13. M.W. Hartmann. How we localize sound.Physics Today 11:24–29, 1999.

    Article  Google Scholar 

  14. B.G. Horne, C.L. Giles. An experimental comparison of recurrent neural networks. In G. Tesauro,D. Touretzky, T. Leen, editorsAdvances in Neural Information Processing SystemsVol. 7, 697–705, MIT Press, Cambridge, MA, 1995.

    Google Scholar 

  15. G. Jacovitti, G. Scarano. Discrete time techniques for time delay estimation. InIEEE Transactions on Signal Processing41: 525–533, 1993.

    Google Scholar 

  16. F. Khalil, J.P. Lullien, A. Gilloire. Microphone array for sound pickup in teleconference systems.Journal of the Audio Engineering Society42: 691–700, 1994

    Google Scholar 

  17. A. Czyzewski, B. Kostek, J. Lasecki. Microphone array for improving speech intelligibility. InProceedings of the 20th Tonmeistertagung International Convention on Sound Design428–434, Karlsruhe, 1998.

    Google Scholar 

  18. B. Kostek, A. Czyzewski, J. Lasecki. Spatial filtration of sound for multimedia systems. InProceedings of the Copenhagen Workshop on Multimedia Signal Processing (MMSP’99)(CD-ROM), 209–213, IEEE Signal Processing Society, Piscataway, NJ, 1999.

    Google Scholar 

  19. B. Kostek, A. Czyzewski, J. Lasecki. Computational approach to spatial filtering. InProceedings of the 7th European Congress on Intelligent Techniques and Soft Computing (EUFIT’99) (CD-ROM)242, Aachen, 1999.

    Google Scholar 

  20. J. Lasecki, B. Kostek, A. Czyzewski. Neural network-based spatial filtration of sound. InProceedings of the 106th Audio Engineering Society ConventionPreprint No. 4918, Munich, 1999.

    Google Scholar 

  21. T. Lin, C.L. Giles, B.G. Horne, S.Y. Kung. A delay damage model selection algorithm for NARX neural networks. InIEEE Transactions on Signal Processing(special issue on neural networks), 11: 2719–2730,1997.

    Google Scholar 

  22. T. Lin, B.G. Horne, P. Tino, C.L. Giles. Learning long-term dependencies in NARX recurrent neural networks. InIEEE Transactions on Neural Networks7: 1329–1351, 1996.

    Article  Google Scholar 

  23. Y. Mahieux, G. le Tourneur, A. Saliou. A microphone array for multimedia workstations.Journal of the Audio Engineering Society44: 365–372, 1996.

    Google Scholar 

  24. S. Fahlman. An empirical study of learning speed in back-propagation networks. Technical Report CMU-CS-88–162 of Carnegie Mellon University, Pittsburgh, PA, 1988.

    Google Scholar 

  25. M. Riedmiller, H. Braun. A direct adaptive method for faster backpropagation learning: The RPROP Algorithm. InProceedings of the IEEE International Conference on Neural Networks586–591, San Francisco, 1993.

    Google Scholar 

  26. H.T. Siegelmann, B.G. Horne, C.L. Giles. Computational capabilities of recurrent NARX neural networks. InIEEE Transactions on Systems Man and CyberneticsPart B: Cybernetics, 2: 208–228, 1997.

    Article  Google Scholar 

  27. J.P.F. Sum, W.-K. Kan, G.H. Young. A note on the equivalence of NARX and RNN.Neural Computing and Applications8: 33–39, 1999.

    Article  Google Scholar 

  28. M. Szczerba. Sound Source Localization Based on Rough-Set Approach. Technical Report, Sound & Vision Engineering Department, Technical University Gdansk, 2001.

    Google Scholar 

  29. H. Wang, P. Chu. Voice source localization for automatic camera pointing system in videoconferencing. InProceedings of the IEEE Workshop on Applications of Signal Processing to Audio and AcousticsMohonk, New Paltz, NY, 1997.

    Google Scholar 

  30. R.J. Williams, D. Zipser. A learning algorithm for continually running fully recurrent neural networks.Neural Computation 1:270–280, 1989.

    Article  Google Scholar 

  31. M. Zhang, M.H. Er. An alternative algorithm for estimating and tracking talker location by microphone arrays.Journal of the Audio Engineering Society44: 729–736, 1996.

    Google Scholar 

  32. I. Ziskind, M. Wax. Maximum likelihood localization of multiple sources by alternating projection. InIEEE Transactions on Acoustics Speech and Signal Processing36: 1553–1560, 1988.

    Article  MATH  Google Scholar 

  33. J.M. Zurada.Introduction to Artificial Neural Networks.West, St. Paul, MN, 1992.

    Google Scholar 

  34. A. Øhre.Discernibility and Rough Sets in Medicine: Tools and Applications.Ph.D.Dissertation, NTNU Report 1999: 133, IDI Report (1999)Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Czyżewski, A. (2004). Intelligent Acquisition of Audio Signals, Employing Neural Networks and Rough Set Algorithms. In: Pal, S.K., Polkowski, L., Skowron, A. (eds) Rough-Neural Computing. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18859-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18859-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62328-8

  • Online ISBN: 978-3-642-18859-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics