Skip to main content

Rough-Neural Computing: An Introduction

  • Chapter
Book cover Rough-Neural Computing

Part of the book series: Cognitive Technologies ((COGTECH))

Summary

This chapter presents a new paradigm for neural computing that has its roots in rough set theory. Historically, this paradigm has three main threads: production of a training set description, calculus of granules, and interval analysis. This paradigm gains its inspiration from the work of Pawlak on rough set philosophy as a basis for machine learning and from work on data mining and pattern recognition by Swiniarski and others in the early 1990s. The focus of this work is on the production of a training set description and inductive learning using knowledge reduction algorithms. This first thread in rough-neural computing has a strong presence in current neural computing research. The second thread in rough-neural computing has two main components: information granule construction in distributed systems of agents and local parameterized approximation spaces (see Sect. 2.2 and Chap. 3). A formal treatment of the hierarchy of relations of being a part to a degree (also known as approximate rough mereology) was introduced by Polkow ski and Skowron in the mid-and late-1990s. Approximate rough mereology provides a basis for an agent-based, adaptive calculus of granules. This calculus serves as a guide in designing rough-neural computing systems. A number of touchstones of rough-neural computing have emerged from efforts to establish the foundations for granular computing: cooperating agent, granule, granule measures (e.g., inclusion, closeness), and approximation space parameter calibration. The notion of a cooperating agent in a distributed system of agents provides a model for a neuron. Information granulation and granule approximation define two principal activities of a neuron. Included in the toolbox of an agent (neuron) are measures of granule inclusion and closeness of granules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. M.A. Arbib. The artificial neuron. In E. Fiesler, R. Beale, editorsHandbook of Neural ComputationB1.1-B1.7, Institute of Physics Publishing, Bristol, 1997.

    Google Scholar 

  2. M. Banerjee, S. Mitra, S.K. Pal. Rough fuzzy MLP: Knowledge encoding and classification.IEEE Transactions on Neural Networks9(6): 1203–1216, 1998.

    Article  Google Scholar 

  3. I.M. Bocheñski.A History of Formal Logic.Chelsea, New York, 1956.

    Google Scholar 

  4. E. Bonabeau, M. Dongo, G. Theraulaz.Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford, 2000.

    Google Scholar 

  5. B. Chakraborty. Feature subset selection by neuro-rough hybridization. In[74]519–572, 2001.

    Google Scholar 

  6. N.E. Fenton, S.L. Pfleeger.Software Metrics: A Rigorous & Practical Approach.PWS, Boston, 1997.

    Google Scholar 

  7. W. Gellert, H. Kustner, M. Hellwich, H. Kastner.The VNR Concise Encyclopedia of Mathematics.Van Nostrand, London, 1975.

    Google Scholar 

  8. P.R. Halmos.Measure Theory.Van Nostrand, London, 1950.

    MATH  Google Scholar 

  9. L. Han, R. Menzies, J.F. Peters, L. Crowe. High voltage power fault-detection and analysis system: Design and implementation. InProceedings of the Canadian Conference on Electrical & Computer Engineering (CCECE’99)1253–1258, Edmonton, 1999.

    Google Scholar 

  10. L. Han, J.F. Peters, S. Ramanna, R. Zhai Classifying faults in high voltage power systems: A rough-fuzzy neural computational approach. In [73], 47–54, 1999.

    Google Scholar 

  11. T. Kohonen. The self-organizing map.In:Proceedings IEEE, 78:1464–1480, 1990.

    Article  Google Scholar 

  12. J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron. Rough sets: A tutorial. In[25]3–98, 1999.

    MathSciNet  Google Scholar 

  13. G.W. Leibniz. In L. Couturat, editorOpuscles et Fragments Inedits de Leibniz256, Fèlix Alcan, Paris, 1903.

    Google Scholar 

  14. P.J. Lingras. Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing.Neurocomputing36: 29–44, 2001.

    Article  MATH  Google Scholar 

  15. P.J. Lingras. Rough neural networks. InProceedings of the 6th International Conference on Information Processing and Management of Uncertainty (IPMU’96)1445–1450, Universidad da Granada, Granada, 1996.

    Google Scholar 

  16. P.J. Lingras. Comparison of neofuzzy and rough neural networks.Information Sciences. An International Journal110: 207–215, 1998.

    Article  MathSciNet  Google Scholar 

  17. R. Milner.Communication and Concurrency.Prentice-Hall, Upper Saddle River, NJ, 1989.

    Google Scholar 

  18. R. Milner.Calculus of Communicating Systems. Report number ECS-LFCS-86–7 of Computer Science Department, University of Edinburgh, 1986.

    Google Scholar 

  19. S. Mitra, P. Mitra, S.K. Pal. Evolutionary modular design of rough knowledge-based network with fuzzy attributes.Neurocomputing: An International Journal36: 45–66, 2001.

    Article  MATH  Google Scholar 

  20. H.S. Nguyen, A. Skowron, M.S. Szczuka. Situation identification by unmanned aerial vehicle. In [74], 49–56, 2001.

    Google Scholar 

  21. H.S. Nguyen, M. Szczuka, D. Slgzak. Neural networks design: Rough set approach to real-valued data InProceedings of the 1st European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’97)LNAI 1263, 359–366, Springer, Berlin, 1997.

    Google Scholar 

  22. T. Nguyen, R.W. Swiniarski, A. Skowron, J. Bazan, K. Thagarajan. Applications of rough sets, neural networks and maximum likelihood for texture classification based on singular decomposition. InProceedings of the 3rd International Workshop on Rough Sets and Soft Computing (RSSC’94)332–339, San Jose, CA, 1994.

    Google Scholar 

  23. S.K. Pal, S. Mitra. Multi-layer perceptron, fuzzy sets and classification.IEEE Transactions on Neural Networks3: 683–697,1992.

    Article  Google Scholar 

  24. S.K. Pal, P. Mitra. Rough Fuzzy MLP: Modular evolution, rule generation and evaluation.IEEE Transactions on Knowledge and Data Engineering(in press).

    Google Scholar 

  25. S.K. Pal, A. Skowron, editors.Rough-Fuzzy Hybridization: A New Trend in Decision Making.Springer, Singapore, 1999.

    MATH  Google Scholar 

  26. Z. Pawlak.Rough Sets: Theoretical Aspects of Reasoning about Data.Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  27. Z. Pawlak, A. Skowron. Rough membership functions. In R. Yager, M. Fedrizzi, J. Kacprzyk, editorsAdvances in the Dempster-Shafer Theory of Evidence251–271, Wiley, New York, 1994.

    Google Scholar 

  28. W. Pedrycz, F. Gomide.An Introduction to Fuzzy Sets: Analysis and Design.MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  29. W. Pedrycz, L. Han, J.F. Peters, S. Ramanna, R. Zhai. Calibration of software quality: Fuzzy neural and rough neural computing approaches.Neurocomputing: An International Journal36: 149–170, 2001.

    Article  MATH  Google Scholar 

  30. Z. Pawlak, J.F. Peters, A. Skowron, Z. Suraj, S. Ramanna, M. Borkowski. Rough measures and integrals: A brief introduction. In [72], 375–379, 2001.

    Google Scholar 

  31. W. Pedrycz, J.F. Peters. Learning in fuzzy Petri nets. In J. Cardoso, H. Scarpelli, editors.Fuzziness in Petri Nets858–886, Physica, Heidelberg, 1998.

    Google Scholar 

  32. J.F. Peters, A. Skowron, J. Stepaniuk. Rough granules in spatial reasoning. InProceedings of the Joint 9th International Fuzzy Systems Association (IFSA) World Congress and 20th North American Fuzzy Information Processing Society (NAFIPS) International Conference1355–1361, Vancouver, BC, 2001.

    Google Scholar 

  33. J.F. Peters, S. Ramanna. A rough set approach to assessing software quality: Concepts and rough Petri net model. In[25]349–380, 1999.

    Google Scholar 

  34. J.F. Peters, W. Pedrycz.Software Engineering: An Engineering Approach.Wiley, New York, 2000.

    Google Scholar 

  35. J.F. Peters, A. Skowron, Z. Suraj, L. Han, S. Ramanna. Design of rough neurons: Rough set foundation and Petri net model. InProceedings of the International Symposium on Methodologies for Intelligent Systems (ISMIS 2000)LNAI 1932, 283–291, Springer, Berlin, 2000.

    Google Scholar 

  36. J.F. Peters, A. Skowron, L. Han, S. Ramanna. Towards rough neural computing based on rough membership functions:Theory and application. In [74], 604–611,2001.

    Google Scholar 

  37. J.F. Peters, L. Han, S. Ramanna. Rough neural computing in signal analysis.Computationallntelligence1(3): 493–513, 2001.

    MathSciNet  Google Scholar 

  38. L. Polkowski, A. Skowron.Approximate reasoning about complex objects in distributed systems: Rough mereological formalization. In W. Pedrycz, J.F. Peters, editorsComputational Intelligence in Software Engineering. Advances in Fuzzy Systems-Applications and Theory 16, 237–267, World Scientific, Singapore, 1998.

    Google Scholar 

  39. L. Polkowski, A. Skowron. Rough mereology: A new paradigm for approximate reasoning.International Journal Approximate Reasoning15(4): 333–365, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Polkowski, A. Skowron. Calculi of granules based on rough set theory: Approximate distributed synthesis and granular semantics for computing with words. In [73], 20–28, 1999.

    Google Scholar 

  41. L. Polkowski, A. Skowron. Rough-neuro computing. In[74]57–64, 2001.

    Google Scholar 

  42. L. Polkowski, A. Skowron. Towards adaptive calculus of granules. InProceedings of the 6th International Conference on Fuzzy Systems (FUZZ-IEEE’98)111–116, Anchorage AK, 1998.

    Google Scholar 

  43. A. Skowron, C. Rauszer. The discernibility matrices and functions in information systems. In R. Slowir¨ªski, editorIntelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory331–362, Kluwer, Dordrecht, 1992.

    Chapter  Google Scholar 

  44. A. Skowron. Toward intelligent systems: Calculi of information granules.Bulletin of the International Rough Set Society5(1/2):9–30,2001.

    Google Scholar 

  45. A. Skowron. Approximate reasoning by agents in distributed environments. In N. Zhong, J. Liu, S. Ohsuga, J. Bradshaw, editorsIntelligent Agent Technology: Research and Development. Proceedings of the 2nd Asia-Pacific Conference on IAT (APCIAT 2001)28–39, World Scientific, Singapore, 2001.

    Chapter  Google Scholar 

  46. A. Skowron. Approximate reasoning by agents. InProceedings of the 2nd International Workshop of Central and Eastern Europe on Multi-Agent Systems (CEEMAS 2001)LNAI 2296, 3–14, Springer, Berlin, 2002.

    Google Scholar 

  47. A. Skowron, J. Stepaniuk. Decision rules based on discernibility matrices and decision matrices. InProceedings of the 3rd International Workshop on Rough Sets and Soft Computing (RSSC’94)602–609, San Jose, CA, 1994.

    Google Scholar 

  48. A. Skowron, J. Stepaniuk. Information granules in distributed environment. In[73]357–365, 2001.

    Google Scholar 

  49. A. Skowron, J. Stepaniuk, S. Tsumoto. Towards discovery of information granules. InProceedings of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’99), LNAI 1704, 542–547, Springer, Berlin, 1999.

    Google Scholar 

  50. A. Skowron, J. Stepaniuk. Tolerance approximation spaces.Fundamenta Informaticae27: 245–253, 1996.

    MathSciNet  MATH  Google Scholar 

  51. A. Skowron, J. Stepaniuk. Information granules and approximation spaces. In Proceedings of the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’98), 1354–1361, Paris, 1998.

    Google Scholar 

  52. A. Skowron, J. Stepaniuk. Information granules: Towards foundations of granular computing.International Journal of Intelligent Systems16(1): 57–104, 2001.

    Article  MATH  Google Scholar 

  53. A. Skowron, J. Stepaniuk. Information granule decomposition.Fundamenta Informaticae47(3/4): 337–350, 2001.

    MathSciNet  MATH  Google Scholar 

  54. A. Skowron, J. Stepaniuk, J.F. Peters. Approximation of information granule sets. In[74]65–72, 2001.

    Google Scholar 

  55. A. Skowron, J. Stepaniuk, J.F. Peters. Hierarchy of information granules. In H.D. Burkhard, L. Czaja, H.S. Nguyen, P. Starke, editorsProceedings of the Workshop on Concurrency Specification and Programming (CSP 2001) 254–268, Warsaw, 2001.

    Google Scholar 

  56. A. Skowron, Z. Suraj. A parallel algorithm for real-time decision making: A rough set approach.Journal of Intelligent Information Systems7: 5–28, 1996.

    Article  Google Scholar 

  57. R.W. Swiniarski.RoughNeuralLab software package. Developed at San Diego State University, San Diego, CA, 1995.

    Google Scholar 

  58. R. Swiniarski, F. Hunt, D. Chalvet, D. Pearson. Prediction system based on neural networks and rough sets in a highly automated production process. InProceedings of the 12th System Science ConferenceWroclaw, Poland, 1995.

    Google Scholar 

  59. R. Swiniarski, F. Hunt, D. Chalvet, D. Pearson. Intelligent data processing and dynamic process discovery using rough sets, statistical reasoning and neural networks in a highly automated production systems. InProceedings of the 1st European Conference on Application of Neural Networks in IndustryHelsinki, 1995.

    Google Scholar 

  60. R.W. Swiniarski. Rough sets and neural networks application to handwritten character recognition by complex Zernike moments. InProceedings of the 1st Internatonal Conference on Rough Sets and Current Trends in Computing (RSCTC’98)LNAI 1424, 617–624, Springer, Berlin, 1998.

    Google Scholar 

  61. R.W. Swiniarski, L. Hargis. Rough sets as a front end of neural networks texture classifiers.Neurocomputing: An International Journal36: 85–103, 2001.

    Article  MATH  Google Scholar 

  62. M. S. Szczuka. Refining classifiers with neural networks.International Journal of Intelligent Systems16(1): 39–55, 2001.

    Article  MATH  Google Scholar 

  63. M. S. Szczuka. Rough sets and artificial neural networks. In L. Polkowski, A. Skowron, editorsRough Sets in Knowledge Discovery 2: Applications Cases Studies and Software Systems 449–470, Physica, Heidelberg, 1998.

    Chapter  Google Scholar 

  64. M.S. Szczuka. Function approximation by neural networks with application of rough set methods. Master’s thesis, Faculty of Mathematics, Informatics and Mechanics, Warsaw University, 1995 (in Polish).

    Google Scholar 

  65. M.S. Szczuka. Symbolic methods and artificial neural networks in classifier construction, Ph.D. dissertation, Faculty of Mathematics, Informatics and Mechanics, Warsaw University, 2000 (in Polish).

    Google Scholar 

  66. M.S. Szczuka. Rough set methods for constructing artificial neural networks. In B.D. Czejdo, I.I. Est, B. Shirazi, B. Trousse, editorsProceedings of the 3rd Biennial Joint Conference on Engineering Systems Design and Analysis (ESDA’96)9–14, Montpellier, France, 1996.

    Google Scholar 

  67. A. Tarski. InIntroduction to Logic and to the Methodology of Deductive SciencesIV, 68–78. Oxford University Press, New York, 1965.

    Google Scholar 

  68. N. Wiener.Cybernetics or Control and Communication in the Animal and the Machine 2nd ed. MIT Press, Cambridge, MA, 1961.

    Book  MATH  Google Scholar 

  69. P. Wojdyllo. Wavelets, rough sets and artificial neural networks in EEG analysis. InProceedings of the 1st International Conference on Rough Sets and Current Trends in Computing (RSCTC’98)LNAI 1424, 444–449, Springer, Berlin, 1998.

    Google Scholar 

  70. L.A. Zadeh. Fuzzy logic = computing with words.IEEE Transactions on Fuzzy Systems4: 103–111, 1996.

    Article  Google Scholar 

  71. L.A. Zadeh. A new direction in AI: Toward a computational theory of perceptions.AI Magazine22(1): 73–84, 2001.

    Google Scholar 

  72. T. Terano, T. Nishida, A. Namatame. S. Tsumoto, Y. Ohsawa, T. Washio, editors.New Frontiers in Artificial Intelligence. Joint JSAI 2001 Workshop Post ProceedingsLNAI 2253, Springer, Berlin, 2001.

    Google Scholar 

  73. N. Zhong, A. Skowron, S. Ohsuga, editors.New Directions in Rough Sets Data Mining and Granular-Soft ComputingLNAI 1711, Springer, Berlin, 1999.

    Google Scholar 

  74. W. Ziarko, Y.Y. Yao, editors.Proceedings of the 2nd International Conference on Rough Sets and Current Trends in Computing (RSCTC 2000)LNAI 2005, Springer, Berlin, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pal, S.K., Peters, J.F., Polkowski, L., Skowron, A. (2004). Rough-Neural Computing: An Introduction. In: Pal, S.K., Polkowski, L., Skowron, A. (eds) Rough-Neural Computing. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18859-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18859-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62328-8

  • Online ISBN: 978-3-642-18859-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics