Analysis on Riemannian manifolds and Ricci curvature

  • Sylvestre Gallot
  • Dominique Hulin
  • Jacques Lafontaine
Part of the Universitext book series (UTX)


Analysis on Riemannian manifolds stems from the following simple fact: the classical Laplace operator has an exact Riemannian analog. Indeed, the properties of the Laplacian on a bounded Euclidean domain and on a compact Riemannian manifold are very similar, and so are the proofs. It can be said that the difficulties of the latter case, compared with the former, are essentially conceptual.


Riemannian Manifold Neumann Problem Ricci Curvature Isoperimetric Inequality Compact Riemannian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sylvestre Gallot
    • 1
  • Dominique Hulin
    • 2
  • Jacques Lafontaine
    • 3
  1. 1.Institut Fourier, C.N.R.S., UMR 5582Université Grenoble 1Saint-Martin d’HèresFrance
  2. 2.Département de MathématiquesUniversité Paris XIOrsay CXFrance
  3. 3.Département de Mathématiques, C.N.R.S., UMR 5149Université Montpellier IIMontpellier CX 05France

Personalised recommendations