Skip to main content

The Role of Nitrate Reduction in Plant Flooding Survival

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 65))

Abstract

Higher plants (for the most part of their life cycle strict aerobes) are often challenged by environmental conditions (flooding, ice crusts sealing soil surface etc.) that deprive them of oxygen. In water-filled soil pores the diffusional resistance for gases is several orders of magnitude higher than in air-filled pores (Armstrong 1979). As a result, the oxygen concentration at the root surface drops dramatically, which inhibits mitochondrial respiration in root cells, since the requirement for oxygen as terminal electron acceptor is absolute (Aldrich et al. 1985; Andreev et al. 1991). Even the so-called flood-tolerant species (Oryza sativa, Erythrina caffra, Trapa nutans, Echinochloa crus-galli etc.) could tolerate anaerobiosis for only a short time (Kennedy et al. 1992). Consequently, hypoxic/anoxic conditions often cause severe losses in crop production (an important practical problem in agriculture). Tolerance by plant roots of phases of partial or complete oxygen deficiency indeed differs greatly with plant species, but also with other environmental factors. Among the latter, the type of nitrogen source (nitrate or ammonium) appears to affect plant tolerance to hypoxia or anoxia, as already noticed by Arnon (1937):

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich HC, Fel RJ, Hils MH, Akin DE (1985) Ultra structural correlates of anaerobic tress in corn roots. Tissue Cell 17:341–46

    Article  PubMed  CAS  Google Scholar 

  • Andreev VY, Generosova IP, Vertapetian BB (1991) Energy status and mitochondrial ultra structure of excised pea root at anoxia and post anoxia. Plant Physiol Biochem 29:171–76

    CAS  Google Scholar 

  • Apostolova E, Georgieva M (1990) Effect of nitrate and ammonium on the accumulation of biomass nitrogen and ash elements in the overground parts and roots of Virginia cultivar tobacco. Pochvoznanie Agrochim 25:47–54

    Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  CAS  Google Scholar 

  • Arnon DI (1937) Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen-ion concentration, manganese, copper, and oxygen supply. Soil Sci 44:91–121

    Article  CAS  Google Scholar 

  • Atkins CA, Canvin DT (1975) Nitrate, nitrite and ammonium assimilation by leaves: effect of inhibitors. Planta 123:41–51

    Article  CAS  Google Scholar 

  • Bacanamwo M, Purcell LC (1999) Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J Exp Bot 50 (334):689–696

    CAS  Google Scholar 

  • Bligny R, Gout E, Kaiser WM, Heber U, Walker D, Douce R (1997) pHregulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonium salts: studies involving 31P-NMR spectroscopy and chlorophyll fluorescence. Biochim Biophys Acta 1320:142–152

    Article  CAS  Google Scholar 

  • Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201:496–501

    Article  PubMed  CAS  Google Scholar 

  • Botrel A, Magné C, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652

    CAS  Google Scholar 

  • Carroll AD, Fox GG, Laurie S, Phillips R, Ratcliffe RG, Stewart GR (1994) Ammonium assimilation and the role of γ-aminobutiric acid in pH homeostasis in carrot cell suspensions. Plant Physiol 106:513–520

    PubMed  CAS  Google Scholar 

  • Cooper HD, Clarkson DT (1989) Cycling of amino nitrogen and other nutrients between shoots and roots in cereals: a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Exp Bot 40:753–762

    Article  CAS  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    PubMed  CAS  Google Scholar 

  • Cruz C, Lips SH, Martins-Loucao MA (1997) Changes in the morphology of roots and leaves of carob seedlings induced by nitrogen source and atmospheric carbon dioxide. Ann Bot 80:817–823

    Article  Google Scholar 

  • De Sousa CAF, Sodek L (2002) The metabolic response of plants to oxygen deficiency. Braz J Plant Physiol 14(2):83–94

    Article  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  PubMed  CAS  Google Scholar 

  • Drew MC, Sistoro EJ (1977) Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley. New Phytol 79(3):567–572

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24:1189–1202

    Article  CAS  Google Scholar 

  • Fan TW-M, Higashi RM, Lane AN (1988) An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. Arch Biochem Biophys 266:592–606

    Article  PubMed  CAS  Google Scholar 

  • Ferrari TE, Varner JE (1970) Control of nitrate reductase activity in barley aleurone layers. Proc Natl Acad Sci USA 65:729–736

    Article  PubMed  CAS  Google Scholar 

  • Ferrari TE, Yoder OC, Filner P (1973) Anaerobic nitrite production by plant cells and tissues: evidence for two nitrate pools. Plant Physiol 51:423–431

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH et al. (eds) Ecological interactions in soil. Special publication of the British ecological survey, vol 4. Blackwell, Oxford, pp 87–106

    Google Scholar 

  • Gerendas J, Ratcliffe RG (2002) Root pH regulation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Marcel Dekker, New York, pp 553–570

    Google Scholar 

  • Glaab J, Kaiser WM (1993) Rapid modulation of nitrate reductase in pea roots. Planta 191(2):173–179

    Article  CAS  Google Scholar 

  • Gout E, Boisson AM, Aubert S, Douce R, Bligny R (2001) Origin of the Cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and Phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    Article  PubMed  CAS  Google Scholar 

  • Hackett C (1972) A method of applying nutrients locally to roots under controlled conditions and some morphological effects of locally applied nitrate on the branching of wheat roots. Aust J Biol Sci 25:1169–1180

    CAS  Google Scholar 

  • Hänsch R, Gómez Fessel D, Witt C, Hesberg C, Hoffmann G, Walch-Liu P, Engels C, Jörg Kruse, Rennenberg H, Kaiser WM, Mendel RR (2001) Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation. J Exp Bot 52:1251–1258

    Article  PubMed  Google Scholar 

  • Johnson C, Stout P, Broyer T, Carlton A (1957) Comparative chlorine requirements of different plant species. Plant Soil 8:337–353

    Article  CAS  Google Scholar 

  • Kenis JD, Trippi VS (1986) Regulation of nitrate reductase in detached oat leaves by light and oxygen. Physiol Plantarum 69:387–390

    Article  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kirkby EA, Armstrong MJ (1980) Nitrate uptake by roots as regulated by nitrate assimilation in the shoot of castor oil plants. Plant Physiol 65:286–290

    Article  PubMed  CAS  Google Scholar 

  • Lang B, Kaiser WM (1994) Solute content and energy status of roots of barley plants cultivated at different pH on nitrate-or ammonium-nitrogen. New Phytol 128:451–459

    Article  Google Scholar 

  • Lee RB (1978) Inorganic nitrogen metabolism in barley roots under poorly aerated conditions. J Exp Bot 29:693–708

    Article  CAS  Google Scholar 

  • Lee RB (1979) The release of nitrite from barley roots in response to metabolic inhibitors, uncoupling agents and anoxia. J Exp Bot 30:119–133

    Article  CAS  Google Scholar 

  • Leshem YY (2000) Nitric oxide in plants. Occurrence, function and use. Kluwer Academic Publishers, Dordrecht. 154 pp

    Google Scholar 

  • Mann AF, Hucklesby DP, Hewitt EJ (1979) Effect of aerobic and anaerobic conditions on the in vivo nitrate reductase assay in spinach leaves. Planta 146:83–89

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mattana M, Coragglio I, Bertani A, Reggiani R (1994) Expression of the enzymes of nitrate reduction durind the anaerobic germination of rice. Plant Physiol 106:1605–1608

    PubMed  CAS  Google Scholar 

  • Mattana M, Bestini F, Bertani A, Reggiani R (1997) Nitrate assimilation under anoxia in rice. Physiol Rastenii 44(4):547–551

    Google Scholar 

  • McManmon M, Crawford RMM (1971) A metabolic theory of flooding tolerance: the significance of enzyme distribution and behaviour. New Phytol 70(2):299–306

    Article  CAS  Google Scholar 

  • Mengel K, Viro M, Hehl G (1976) Effect of potassium on uptake and incorporation of ammonium-nitrogen of rice plants. Plant Soil 44:547–558

    Article  CAS  Google Scholar 

  • Müller E, Albers BP, Janiesch P (1994) Influence of nitrate and ammonium nutrition on fermentation, nitrate reductase activity and adenylate energy charge of roots of Carex pseudocyperus L. and Carex sylvatica Huds. exposed to anaerobic nutrient solutions. Plant Soil 166:221–230

    Google Scholar 

  • Nance JF (1950) Inhibition of nitrate assimilation in excised wheat roots by various respiratory poisons. Plant Physiol 25:722–735

    Article  PubMed  CAS  Google Scholar 

  • Oberson J, Pavelic D, Braendle R, Rawyler A (1999) Nitrate increases membrane stability of patato cells under anoxia. J Plant Physiol 55:792–794

    Article  Google Scholar 

  • Perata P, Alpi A (1991a) Ethanol induced injuries to carrot cells; the role of acetaldehyde. Plant Physiol 9(3):748–752

    Article  Google Scholar 

  • Perata P, Alpi A (1991b) Ethanol metabolism in suspention cultured carrot cells. Physiol Plant 82 (1):103–108

    Article  CAS  Google Scholar 

  • Perata P, Alpi A (1993) Plant responses to anaerobiosis. Plant Sci 93(1–2):1-17

    Article  CAS  Google Scholar 

  • Pfister-Sieber M, Brandle R (1994) Aspects of plant behaviour under anoxia and post-anoxia. Proc R Soc Edinb Sec Biol Sci 102(0):313–324

    Google Scholar 

  • Ratcliffe RG (1997) In vivo NMR studies of the metabolitic response of plant tissues to anoxia. Ann Bot 79(Suppl A):39–48

    Article  CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76:415–431

    Article  CAS  Google Scholar 

  • Reggiani R, Brambilla I, Bertani A (1985a) Effect of exogenous nitrate on anaerobic metabolism in excised rice roots I. Nitrate reduction and pyridine nucleotide pools. J Exp Bot 36:1193–1199

    Article  CAS  Google Scholar 

  • Reggiani R, Brambilla I, Bertani A (1985b) Effect of exogenous nitrate on anaerobic metabolism in excised rice roots II. Fermentative activity and adenylic energy charge. J Exp Bot 36:1698–1704

    Article  CAS  Google Scholar 

  • Reggiani R, Brambilla I, Bertani A (1985c) Effect of exogenous nitrate on anaerobic metabolism in excised rice roots III. Glycolitic intermediants and enzymatic activities. J Exp Bot 37(183):1472–1478

    Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanims of cytoplasmic pH regulation in hypoxic maize Zea Mays root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 81(11):3379–3383

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Chang K, Webster C, Callis J, Walbot V (1989) Dependance of ethanolic fermentation cytoplasmic pH regulation and viability of the activity of ADH in hypoxic maize root tips. Plant Physiol 89(4):1275–1278

    Article  PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH, Drew MC, Pradet A (1988) Metabolic acclimation to anoxia induced by low (2-4kPa partial pressure) oxygen pretreatment (hypoxia) in root tips of Zea mays. Plant Physiol 86:61–66

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH, Pradet A (1980) Soluble sugars, respiration, and energy charge during aging of excised maize root tips. Plant Physiol 66:516–519

    Article  PubMed  CAS  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691

    Article  CAS  Google Scholar 

  • Stoimenova M, Hänsch R, Mendel R-R, Gimmler H, Kaiser WM (2003a) The role of root nitrate reduction in the anoxic metabolism of roots I. Characterisation of root morphology and normoxic metabolism of a tobacco transformant lacking root nitrate reductase. Plant Soil 253:145–153

    Article  CAS  Google Scholar 

  • Stoimenova M, Libourel I, Ratcliffe RG, Kaiser WM (2003b) The role of nitrate reduction in the anoxic metabolism of roots. II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity. Plant Soil 253:155–157

    Article  CAS  Google Scholar 

  • Ullrich WR (1983) Uptake and reduction of nitrate: algae and fungi. In: Epstein E, Läuchli A, Bieleski RL (eds) Encyclopaedia of plant physiology, new series, vol 15a. Springer, Berlin Heidelberg New York, pp 376–397

    Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79(Suppl A):3–20

    Article  CAS  Google Scholar 

  • Vartapetian BB, Polyakova LI (1999) protective effect of exogenous nitrate on the mitochondrial ultrastructure of oriza sativa coleoptiles under strict anoxia. Protoplazma 206(1-3):163–167

    Article  CAS  Google Scholar 

  • Walch-Liu P, Neumann G, Engels C (2001) Response to shoot and root growth to supply of different nitrogen forms is not related to carbohydrate and nitrogen status of tobacco plants. J Plant Nutr Soil Sci 164:97–103

    Article  CAS  Google Scholar 

  • Wiskich JT (1977) Mitochondrial metabolite transport. Annu Rev Plant Physiol 28:45–69

    Article  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoimenova, M., Kaiser, W.M. (2004). The Role of Nitrate Reduction in Plant Flooding Survival. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18819-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18819-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62306-6

  • Online ISBN: 978-3-642-18819-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics