Roles of PI3K in Neutrophil Function

  • M. O. Hannigan
  • C. K. Huang
  • D. Q. Wu
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 282)


Neutrophils are terminally differentiated cells that play a vital role in host defense. It has recently become evident that phospholipid regulation plays an import role in many neutrophil functions. We review the regulation of neutrophil functions such as chemotaxis, superoxide production, and phagocytosis by phosphatidylinositol-3,4,5-trisphosphate (PIP3), which is generated in neutrophils by PI3Kγ. Several lines of evidence are presented demonstrating the importance of this kinase in regulating chemotaxis, in particular the directionality of chemotactic migration. Evidence suggesting that this kinase is important for phagocytosis, especially during engulfment and the internalization of large particles, is also reviewed. Finally, it is suggested that PI3K is important for superoxide production and neutrophil priming. The common link between these seemingly diverse functions is that PI3Kγ, via its phospholipid products, appears to be providing spatial-temporal cues for the binding of actin-organizing proteins.


Superoxide Production Chronic Granulomatous Disease Neutrophil Function Pleckstrin Homology Leukocyte Adhesion Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bourne H, Weiner O (2002) Cell polarity: A chemical compass. Nature 419:21PubMedCrossRefGoogle Scholar
  2. Bravo J, Karathanassis D, Pacold C, Pacold M, Ellson C, Anderson K, Butler P, Lavenir I, Perisic O, Hawkins P, Stephens L, Williams R (2001). The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol. Cell. 8:829–839PubMedCrossRefGoogle Scholar
  3. Bruyninckx W, Comerford K, Lawrence D, Colgan SP (2001). Phosphoinositide 3-kinase modulation of beta(3)-integrin represents an endogenous “braking” mechanism during neutrophil transmatrix migration. Blood 97:3251–3258PubMedCrossRefGoogle Scholar
  4. Cadwallader K, Condliffe A, McGregor A, Walker T, White J, Stephens L, Chilvers E (2002). Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents. J. Immunol. 169:3336–3344PubMedGoogle Scholar
  5. Condliffe A, Hawkins P, Stephens L, Haslett C, Chilvers E (1998). Priming of human neutrophil superoxide generation by tumor necrosis factor-alpha is signaled by enhanced phosphatidylinositol 3,4,5-trisphosphate but not inositol 1,4,5-trisphosphate accumulation. PEBS Lett. 439:147–151Google Scholar
  6. Corvera S (2001). Phosphatidylinositol 3-kinase and the contro l of endosome dynamics: new players defined by structural motifs. Traffic 2:859–866PubMedCrossRefGoogle Scholar
  7. Dekker, L Segal A (2000) Perspectives: signal transduction. Signals to move cells. Science 287:982–985PubMedCrossRefGoogle Scholar
  8. Dharmawardhane S, Brownson D, Lennartz M, Bokoch G (1999) Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils. J. Leukoc. Biol. 3:521–527Google Scholar
  9. Detmers P, Thieblemont N, Vasselon T, Pironkova R, Miller D, Wright S (1996) Potential role of membrane internalization and vesicle fusion in adhesion of neutrophils in response to lipopolysaccharide and TNF. J. Immunol. 157:5589–5596PubMedGoogle Scholar
  10. Ellson C, Anderson K, Morgan G, Chilvers E, Lipp P, Stephens L, Hawkins P (2001a) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr. Biol. 11:201–213CrossRefGoogle Scholar
  11. Ellson C, Gobert-Gosse S, Anderson K, Davidson K, Erdjument-Bromage P, Tempst P, Thuring J, Cooper M, Lim Z, Holmes A, (2001b). PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biol 3:679–692PubMedCrossRefGoogle Scholar
  12. Fruman D, Meyers R, Cantey L (1998). Phosphoinositide kinases. Annu. Rev. Biochem. 67:481–507PubMedCrossRefGoogle Scholar
  13. Fruman D, Cantley L (2002). Phosphoinositide 3-kinase in immunological systems. Sem. Immunol. 14:7–18CrossRefGoogle Scholar
  14. Funamoto S, Meili R, Lee S, Parry L, Firtel R (2002). Spatial and temporal regulation of 3-phosphoinositides by PI3-kinase and PTEN mediates chemotaxis. Cell 109:611–623PubMedCrossRefGoogle Scholar
  15. Funamoto S, Milan K, Meili R, Firtel R (2001). Role of phosphatidylinositol 3′ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in Dictyostelium. J. Cell Biol. 153:795–810PubMedCrossRefGoogle Scholar
  16. Gerszten R, Friedrich E, Matsui T, Hung R, Li L, Force T, Rosenzweig A (2001). Role of phosphoinositide 3-kinase in monocyte recruitment under flow conditions. J Biol Chem. 276:26846–26851PubMedCrossRefGoogle Scholar
  17. Hannigan M, Zhan L, Ai Y, Wu D, Huang C (2002). Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-met-leu-phe-induced chemotaxis. Proc. Natl. Acad. Sci USA 99:3603–3608PubMedCrossRefGoogle Scholar
  18. Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D (2001). Solution structure of the PX domain, a target of the SH3 domain. 287:733–738Google Scholar
  19. Hirsh E, Katanaev V, Garlanda C, Azzonilo O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann M (2000). Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287:1049–1053CrossRefGoogle Scholar
  20. Iijima M, Huang Y, Deverotes P (2002). Temporal and spatial regulation of chemotaxis. Dev. Cell. 3:469–478PubMedCrossRefGoogle Scholar
  21. Kanai F, Liu H, Field S, Akbary H, Matsuo T, Brown G, Cantley L, Yaffe M (2001). The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol. 3:675–678PubMedCrossRefGoogle Scholar
  22. Karathanssis D, Stabelin R, Bravo J, Perisic O, Pcold C, Cho W, Williams R (2002). Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21:5057–5068CrossRefGoogle Scholar
  23. Krugman S, Anderson K, Ridley S, Risso N, McGregor A, Coadwell J, Davidson K, Eguinoa H, Ellson D, Lipp P (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9:95–113CrossRefGoogle Scholar
  24. Krystal G (2000). Lipid phosphatases in the immune system. Semin Immunol 12:397–403PubMedCrossRefGoogle Scholar
  25. Li Z, Hang H, Xie W, Zuchuan Z, Smrka A, Wu D (2000). Roles for PLC-β2 and β3 and P13Kγ in chemoattractant-mediated signal transduction. Science 287:1046–1049PubMedCrossRefGoogle Scholar
  26. Majeed M, Caveggion E, Lowell C, Berton G (2001). Role of Src kinases and Syk in Fcgamma receptor-mediated phagocytosis and phago-lysosome fusion. J. Leuk. Biol. 70:801–811Google Scholar
  27. Ninomiya N, Hazeki K, Fukui Y, Seya T, Okada T, Hazeki O, Vi M (1994). Involvement of phosphatidylinositol 3-kinase in Fe gamma receptor signaling. J. Biol. Chem. 269:22732–22737PubMedGoogle Scholar
  28. Noack D, Rae J, Cross A, Ellis B, Newburger P, Curnutte J, Heyworth P (2001). Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood 97:305–311PubMedCrossRefGoogle Scholar
  29. Perskvist N, Roberg K, Kulyte A, Stendahl O (1996). Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organeiles in human neutrophils. J. Immunol. 157:5589–5596Google Scholar
  30. Rappel W, Thomas P, Levine H, Loomis W (2002). Establishing direction during chemotaxis in eukaryotic cells. Biophys. J. 83:1361–1367PubMedCrossRefGoogle Scholar
  31. Rickert P, Weiner O, Wang F, Bourne H, Servant G (2000). Leukocytes navigate by compass: roles of P13K gamma and its lipid products. Trends Cell Biol. 10:466–473PubMedCrossRefGoogle Scholar
  32. Roos D, Law S (2001). Hematologically important mutations: Leukocyte adhesion deficiency. Blood Cells Mol. Dis. 27:1000–1004PubMedCrossRefGoogle Scholar
  33. Rupper A, Grove B, Cardelli J (2001). Rab7 regulates phagosome maturation in Dictyostelium. J. Cell Sci, 114:2449–2460PubMedGoogle Scholar
  34. Sasaki T, Irie-Sasaki J, Jones R, Oliveira-dos-Santos A, Stanford W, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak T, Ohashi P, Suzuki A, Penniger J (2000) Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–1046PubMedCrossRefGoogle Scholar
  35. Sato T, Overduin M, Emr S (2001). Location, location, location: Membrane targeting directed by PX domains. Science 294:1881–1885PubMedCrossRefGoogle Scholar
  36. Servant G, Weiner O, Herzmark P, Palla T, Sedat J. Bourne H (2000). Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Science 287:1037–1040PubMedCrossRefGoogle Scholar
  37. Song X, Xu W, Zhang A, Huang G, Liang X, Virasius J, Czech M, Zhou G (2001). Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40:8940–8944PubMedCrossRefGoogle Scholar
  38. Stephens L, Ellson C, Hawkins P (2002). Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 14:203–214PubMedCrossRefGoogle Scholar
  39. Vieira O, Botelho R, Rameh L, Brachmann S, Matsuo T, Davidson H, Schreiber A, Backer J, Cantiey L, Grinstein S (2001). Distinct roles of class I and class III phosphatidylinositol 3-kinase in phagosome formation and maturation. J. Cell Biol. 155:19–13PubMedCrossRefGoogle Scholar
  40. Vignais P (2002). The superoxide-generating NADPH oxidase: Structural aspects and activation mechanism. Cell Mol. Life Sci. 59:1428–1459PubMedCrossRefGoogle Scholar
  41. Weiner O, Neilson P, Prestwich G, Kirschner M, Cantley L, Bourne H (2002). A PtdInsP(3)-and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4:509–513PubMedCrossRefGoogle Scholar
  42. Wu D, Huang C, Hang H (2000). Roles of phospholipid signaling in chemoattractant-induced responses. J. Cell Sci. 113:2935–2940PubMedGoogle Scholar
  43. Wymann M, Pirola L (1998). Structure and function of phosphoinositide 3-kinases. Biochem. Biophys. Acta 1436:127–150PubMedCrossRefGoogle Scholar
  44. Yaffe M (2002). The p47phox domain: two heads are better than one! Structure 10:1288–1290PubMedCrossRefGoogle Scholar
  45. Yasui K, Komiyama A (2001). Roles of phosphatidylinositol 3-kinase and phospholipase D in temporal activation of superoxide production in FMLP-stimulated human neutrophils. Cell Biochem. Funct. 19:43–50PubMedCrossRefGoogle Scholar
  46. Zhou K, Pandol S, Bokoch G, Traynor-Kaplan A (1998). Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3,4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis. J Cell Sci 111:283–294PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. O. Hannigan
    • 1
  • C. K. Huang
    • 2
  • D. Q. Wu
    • 1
  1. 1.Department of Genetics and Developmental BiologyUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of PathologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations