Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3

  • P. Hilpelä
  • M. K. Vartiainen
  • P. Lappalainen
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 282)

Abstract

The actin cytoskeleton is fundamental for various motile and morphogenetic processes in cells. The structure and dynamics of the actin cytoskeleton are regulated by a wide array of actin-binding proteins, whose activities are controlled by various signal transduction pathways. Recent studies have shown that certain membrane phospholipids, especially PI(4,S)P2 and PI(3,4,S)P3, regulate actin filament assembly in cells and in cell extracts. PI(4,S)P2 appears to be a general regulator of actin polymerization at the plasma membrane or at membrane microdomains, whereas PI(3,4,S)P3 promotes the assembly of specialized actin filament structures in response to some growth factors. Biochemical studies have demonstrated that the activities of many proteins promoting actin assembly are upregulated by PI(4,S)P2, whereas proteins that inhibit actin assembly or promote filament disassembly are down-regulated by PI(4,S)P2. PI(3,4,S)P3 promotes its effects on the actin cytoskeleton mainly through activation of the Rho family of small GTPases. In addition to their effects on actin dynamics, both PI(4,S)P2 and PI(3,4,S)P3 promote the formation of specific actin filament structures through activation/inactivation of actin filament cross-linking proteins and proteins that mediate cytoskeleton-plasma membrane interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL, Burridge K, Der CJ (2000) Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 275:101411–0149Google Scholar
  2. Amatruda JF, Cannon JF, Tatchell K, Hug C, Cooper JA (1990) Disruption of the actin cytoskeleton in yeast capping protein mutants. Nature 344:352–354PubMedCrossRefGoogle Scholar
  3. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809PubMedCrossRefGoogle Scholar
  4. Arbuzova A, Murray D, McLaughlin S (1998) MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim Biophys Acta 1376:369–379PubMedCrossRefGoogle Scholar
  5. Arbuzova A, Schmitz AA, Vergeres G (2002) Cross-talk unfolded: MARCKS proteins. Biochem J 362:1–12PubMedCrossRefGoogle Scholar
  6. Astier C, Raynaud F, Lebart MC, Roustan C, Benyamin Y (1998) Binding of a native titin fragment to actin is regulated by PIP2. FEBS Lett 429:95–98PubMedCrossRefGoogle Scholar
  7. Auger KR, Cantley LC (1991) Novel polyphosphoinositides in cell growth and activation. Cancer Cells 3:263–270PubMedGoogle Scholar
  8. Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175PubMedCrossRefGoogle Scholar
  9. Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15:185–230PubMedCrossRefGoogle Scholar
  10. Barkalow K, Witke W, Kwiatkowski DJ, Hartwig JH (1996) Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. J Cell Biol 134:389–399PubMedCrossRefGoogle Scholar
  11. Barret C, Roy C, Montcourrier P, Mangeat P, Niggli V (2000) Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 151:1067–1080PubMedCrossRefGoogle Scholar
  12. Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 3439–3451Google Scholar
  13. Bhargavi V, Chari VB, Singh SS (1998) Phosphatidylinositol3-kinase binds to profilin through the p85 alpha subunit and regulates cytoskeletal assembly. Biochem Mol Biol Int 46:241–248PubMedGoogle Scholar
  14. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255PubMedCrossRefGoogle Scholar
  15. Blanchoin L, Pollard TD (1998) Interaction of actin monomers with Acanthamoeba actophorin (ADF/cofilin) and profilin. J Biol Chem 273:25106–25111PubMedCrossRefGoogle Scholar
  16. Blanchoin L, Pollard TD (1999) Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J Biol Chem 274:15538–15546PubMedCrossRefGoogle Scholar
  17. Bresnick AR (1999) Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol 11:26–33PubMedCrossRefGoogle Scholar
  18. Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599PubMedCrossRefGoogle Scholar
  19. Bullard B, Sainsbury G, Miller N (1990) Digestion of proteins associated with the Z-disc by calpain. J Muscle Res Cell Motil 11:271–279PubMedCrossRefGoogle Scholar
  20. Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322PubMedCrossRefGoogle Scholar
  21. Carlier MF, Ressad F, Pantaloni D (1999) Control of actin dynamics in cell motility. Role of ADF/cofilin. J Biol Chem 274:33827–33830PubMedCrossRefGoogle Scholar
  22. Caroni P (2001) New EMBO members’ review: actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. EMBO J 20:4332–4336PubMedCrossRefGoogle Scholar
  23. Chellaiah M, Fitzgerald C, Alvarez U, Hruska K (1998) c-Src is required for stimulation of gelsolin-associated phosphatidylinositol 3-kinase. J Biol Chem 273:11908–11916PubMedCrossRefGoogle Scholar
  24. Chen P, Murphy-Ullrich JE, Wells A (1996) A role for gelsolin in actuating epidermal growth factor receptor-mediated cell motility. J Cell Biol 134:689–698PubMedCrossRefGoogle Scholar
  25. Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513PubMedCrossRefGoogle Scholar
  26. Chung CY, Funamoto S, Firtel RA (2001) Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci 26:557–566PubMedCrossRefGoogle Scholar
  27. Cooper JA, Schafer DA (2000) Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12:97–103PubMedCrossRefGoogle Scholar
  28. Cox D, Berg JS, Cammer M, Chinegwundoh JO, Dale BM, Cheney RE, Greenberg S (2002) Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4:469–477PubMedGoogle Scholar
  29. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR (1997) Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172PubMedCrossRefGoogle Scholar
  30. Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100:603–606PubMedCrossRefGoogle Scholar
  31. Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G (1996) The 145-kDa protein induced to associate with She by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci USA 93:1689–1693PubMedCrossRefGoogle Scholar
  32. Dan C, Kelly A, Bernard 0, Minden A (2001) Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 276:32115–32121PubMedCrossRefGoogle Scholar
  33. Das B, Shu X, Day GJ, Han J, Krishna UM, Falck JR, Broek D (2000) Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. J Biol Chem 275:15074–15081PubMedCrossRefGoogle Scholar
  34. Derman MP, Toker A, Hartwig JH, Spokes K, Falck JR, Chen CS, Cantley LC, Cantley LG (1997) The lipid products of phosphoinositide 3-kinase increase cell motility through protein kinase C. J Biol Chem 272:6465–6470PubMedCrossRefGoogle Scholar
  35. Di Paolo G, Pellegrini L, Letinic K, Cestra G., Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P (2002) Recruitment and regulation of phosphatidylinositol phosphate kinase type 1gamma by the FERM domain of talin. Nature 420:85–89PubMedCrossRefGoogle Scholar
  36. Didry D, Carlier MF, Pantaloni D (1998) Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J Biol Chem 273:25602–25611PubMedCrossRefGoogle Scholar
  37. Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31PubMedCrossRefGoogle Scholar
  38. D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L (1997) A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J 16:5445–5454PubMedCrossRefGoogle Scholar
  39. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793PubMedCrossRefGoogle Scholar
  40. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol 1:253–259PubMedCrossRefGoogle Scholar
  41. Faix J, Steinmetz M, Boves H, Kammerer RA, Lottspeich F, Mintert U, Murphy J, Stock A, Aebi U, Gerisch G (1996) Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell 86:631–642PubMedCrossRefGoogle Scholar
  42. Fedorov AA, Fedorov E, Gertler F, Almo SC (1999) Structure of EVH1, a novel pro line-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat Struct Biol 6:661–665PubMedCrossRefGoogle Scholar
  43. Ferguson KM, Kavran JM, Sankaran VG, Fournier E, Isakoff SJ, Skolnik EY, Lemmon MA (2000) Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell 6:373–384PubMedCrossRefGoogle Scholar
  44. Flanagan LA, Cunningham CC, Chen J, Prestwich GD, Kosik KS, Janmey PA (1997) The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau. Biophys J 73:1440–1447PubMedCrossRefGoogle Scholar
  45. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668PubMedCrossRefGoogle Scholar
  46. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507PubMedCrossRefGoogle Scholar
  47. Fukami K, Endo T, Imamura M, Takenawa T (1994) alpha-Actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J Biol Chem 269:1518–1522PubMedGoogle Scholar
  48. Fukami K, Sawada N, Endo T, Takenawa T (1996) Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin. J Biol Chem 271:2646–2650PubMedCrossRefGoogle Scholar
  49. Furuhashi K, Inagaki M, Hatano S, Fukami K, Takenawa T (1992) Inositol phospholipid-induced suppression of F-actin-gelating activity of smooth muscle filamin. Biochem Biophys Res Commun 184:1261–1265PubMedCrossRefGoogle Scholar
  50. Gibson TJ, Hyvonen M, Musacchio A, Saraste M, Birney E (1994) PH domain: the first anniversary. Trends Biochem Sci 19:349–353PubMedCrossRefGoogle Scholar
  51. Gilmore AP, Burridge K (1996) Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381:531–535PubMedCrossRefGoogle Scholar
  52. Glaser M, Wanaski S, Buser CA, Boguslavsky V, Rashidzada W, Morris A, Rebecchi M, Scarlata SF, Runnels LW, Prestwich GD, Chen J, Aderem A, Ahn J, McLaughlin S (1996) Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem 271:26187–26193PubMedCrossRefGoogle Scholar
  53. Glogauer M, Hartwig J, Stossel T (2000) Two pathways through Cdc42 couple the N-formyl receptor to actin nucleation in permeabilized human neutrophils. J Cell Biol 150:785–796PubMedCrossRefGoogle Scholar
  54. Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD (1990) The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 247:1575–1578PubMedCrossRefGoogle Scholar
  55. Goldschmidt-Clerrnont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD (1991) Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science 251:1231–1233CrossRefGoogle Scholar
  56. Goode BL, Drubin DG, Lappalainen P (1998) Regulation of the cortical actin cytoskeleton in budding yeast by twinfilin, a ubiquitous actin monomer-sequestering protein. J Cell Biol 142:723–733PubMedCrossRefGoogle Scholar
  57. Gray A, Van Der Kaay J, Downes CP (1999) The pleckstrin homology domains of protein kinase Band GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/ or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J 344:929–936PubMedCrossRefGoogle Scholar
  58. Greenwood JA, Theibert AB, Prestwich GD, Murphy-Ullrich JE (2000) Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin. J Cell Biol 150:627–642PubMedCrossRefGoogle Scholar
  59. Gungabissoon RA, Hang C-J, Drøbak BK, Maciver SK, Hussey P (1998) Interaction of maize-actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J 16:689–69CrossRefGoogle Scholar
  60. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514PubMedCrossRefGoogle Scholar
  61. Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T (2000) Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 19:4449–4462PubMedCrossRefGoogle Scholar
  62. Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, Krishna UM, Falck JR, White MA, Broek D (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560PubMedCrossRefGoogle Scholar
  63. Han X, Li G, Lin K (1997) Interactions between smooth muscle alpha-actinin and lipid bilayers. Biochem 36:10364–10371CrossRefGoogle Scholar
  64. Hart MC, Cooper JA (1999) Vertebrate isoforms of actin capping prote in beta have distinct functions In vivo. J Cell Biol 147:1287–1298PubMedCrossRefGoogle Scholar
  65. Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653PubMedCrossRefGoogle Scholar
  66. Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363:309–310PubMedCrossRefGoogle Scholar
  67. Haugh JM, Codazzi F, Teruel M, Meyer T (2000) Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J Cell Biol 151:1269–1280PubMedCrossRefGoogle Scholar
  68. Hawkins PT, Eguinoa A, Qiu RG, Stokoe D, Cooke FT, Walters R, Wennström S, Claesson-Welsh L, Evans T, Symons M (1995) PDGF stimulates an increase in GTP-Racvia activation of phosphoinositide 3-kinase. Curr Biol 5:393–403PubMedCrossRefGoogle Scholar
  69. He H, Watanabe T, Zhan X, Huang C, Schuuring E, Fukami K, Takenawa T, Kumar CC, Simpson RJ, Maruta H (1998) Role of phosphatidylinositol 4,5-bisphosphate in Ras/Rac-induced disruption of the cortactin-actomyosin II complex and malignant transformation. Mol Cell Biol 18:3829–3837PubMedGoogle Scholar
  70. Higgs HN, Pollard TD (2000) Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol 150:1311–1320PubMedCrossRefGoogle Scholar
  71. Hilpelä P, Oberbanscheidt P, Hahne P, Hund M, Kalhammer G, Small JV, Bähler M (2003) SWAP-70 identifies a transitional subset of actin filaments in motile cells. Mol Biol Cell (in press)Google Scholar
  72. Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) prote in/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51PubMedCrossRefGoogle Scholar
  73. Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, Matsumura F, Maekawa M, Bito H, Narumiya S (1998) Molecular dissection of the Rho-associated protein kinase (p160 ROCK)-regulated neuri te remodeling in neuroblastoma NlE-115 cells. J Cell Biol 141:1625–1636PubMedCrossRefGoogle Scholar
  74. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287:1049–1053PubMedCrossRefGoogle Scholar
  75. Homma K, Saito J, Ikebe R, Ikebe M (2001) Motor function and regulation of myosin X. J Biol Chem 276:34348–34354PubMedCrossRefGoogle Scholar
  76. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532PubMedCrossRefGoogle Scholar
  77. Hopmann R, Cooper JA, Miller KG (1996) Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila. J Cell Biol 133:1293–1305PubMedCrossRefGoogle Scholar
  78. Insall RH, Weiner OD (2001) PIP3, PIP2, and cell movement—similar messages, different meanings? Dev Cell 1:743–747PubMedCrossRefGoogle Scholar
  79. Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A, Skolnik EY (1998) Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J 17:5374–5387PubMedCrossRefGoogle Scholar
  80. Ishihara H, Shibasaki Y, Kizuki N, Katagiri H, Yazaki Y, Asano T, Oka Y (1996) Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4phosphate 5-kinase. J Biol Chem 271:23611–23614PubMedCrossRefGoogle Scholar
  81. Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y (1998) Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 273:8741–8748PubMedCrossRefGoogle Scholar
  82. Ishihara H, Sasaoka T, Hori H, Wada T, Hirai H, Haruta T, Langlois WJ, Kobayashi M (1999) Molecular cloning of rat SH2-containing inositol phosphatase 2 (SHIP2) and its role in the regulation of insulin signaling. Biochem Biophys Res Commun 260:265–272PubMedCrossRefGoogle Scholar
  83. Janmey PA, Stossel TP, Allen PG (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325:362–364PubMedCrossRefGoogle Scholar
  84. Janmey PA, Lamb J, Allen PG, Matsudaira PT (1992) Phosphoinositide-binding peptides derived from the sequences of gelsolin and villin. J Biol Chem 267:11818–11823PubMedGoogle Scholar
  85. Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J Biol Chem 275:13962–13966PubMedCrossRefGoogle Scholar
  86. Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508PubMedCrossRefGoogle Scholar
  87. Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV (1997) Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390:632–636PubMedCrossRefGoogle Scholar
  88. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158PubMedCrossRefGoogle Scholar
  89. Kim J, Shishido T, Hang X, Aderem A, McLaughlin S (1994) Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J Biol Chem 269:28214–28219PubMedGoogle Scholar
  90. Kraulis PJ (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950CrossRefGoogle Scholar
  91. Kwiatkowski DJ (1999) Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol 11:103–108PubMedCrossRefGoogle Scholar
  92. Lambrechts A, Verschelde JL, Jonckheere V, Goethals M, Vandekerckhove J, Ampe C (1997) The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences. EMBO J 16:484–494PubMedCrossRefGoogle Scholar
  93. Lambrechts A, Braun A, Jonckheere V, Aszodi A, Lanier LM, Robbens J, Van C, I, Vandekerckhove J, Fassler R, Ampe C (2000) Profilin II is alternatively spliced, resulting in profilin isoforms that are differentially expressed and have distinct biochemical properties. Mol Cell Biol 20:8209–8219PubMedCrossRefGoogle Scholar
  94. Lambrechts A, Jonckheere V, Dewitte D, Vandekerckhove J, Ampe C (2002) Mutational analysis of human profilin I reveals a second PI(4,5)-P2 binding site neighbouring the poly(L-proline) binding site. BMC Biochem 3:12PubMedCrossRefGoogle Scholar
  95. Lappalainen P, Fedorov EV, Fedorov AA, Almo SC, Drubin, DG (1997) Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J 16:5520–5530PubMedCrossRefGoogle Scholar
  96. Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–474PubMedCrossRefGoogle Scholar
  97. Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149:1455–1472PubMedCrossRefGoogle Scholar
  98. Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350:1–18PubMedCrossRefGoogle Scholar
  99. Leung T, Chen XQ, Tan I, Manser E, Lim L (1998) Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol 18:130–140PubMedGoogle Scholar
  100. Li Z, Hang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-beta2 and-beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287:1046–1049PubMedCrossRefGoogle Scholar
  101. Lin KM, Wenegieme E, Lu PJ, Chen CS, Yin HL (1997) Gelsolin binding to phosphatidylinositol 4,5-bisphosphate is modulated by calcium and pH. J Biol Chem 272:20443–20450PubMedCrossRefGoogle Scholar
  102. Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA (2002) Type Igamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420:89–93PubMedCrossRefGoogle Scholar
  103. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR (1996) p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 10:1084–1095PubMedCrossRefGoogle Scholar
  104. Liu BP, Burridge K (2000) Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins. Mol Cell Biol 20:7160–7169PubMedCrossRefGoogle Scholar
  105. Loijens JC, Anderson RA (1996) Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem 271:32937–32943PubMedCrossRefGoogle Scholar
  106. Lu PJ, Shieh WR, Rhee SG, Yin HL, Chen CS (1996) Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity. Biochem 35:14027–14034CrossRefGoogle Scholar
  107. Ma L, Cantley LC, Janmey PA, Kirschner MW (1998) Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J Cell Biol 140:1125–1136PubMedCrossRefGoogle Scholar
  108. Machesky LM, Insall RH (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8:1347–1356PubMedCrossRefGoogle Scholar
  109. Machesky LM, Goldschmidt-Clermont PJ, Pollard TD (1990) The affinities of human platelet and Acanthamoeba profilin isoforms for polyphosphoinositides account for their relative abilities to inhibit phospholipase C. Cell Regulation 1:937–950PubMedGoogle Scholar
  110. Maciver SK, Weeds AG (1994) Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: consequences for cell locomotion. FEBS Lett 347:251–256PubMedCrossRefGoogle Scholar
  111. Maehama T, Taylor GS, Dixon JE (200l) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70:247–279Google Scholar
  112. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCKand LIM-kinase. Science 285:895–898PubMedCrossRefGoogle Scholar
  113. Marshall AJ, Krahn AK, Ma K, Duronio V, Hou S (2002) TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol 22:5479–5491PubMedCrossRefGoogle Scholar
  114. Martel V, Racaud-Sultan C, Dupe S, Marie C, Paulhe F, Galmiche A, Block MR, Albiges-Rizo C (200l) Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J Biol Chem 276:21217–21227Google Scholar
  115. Martin TF (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 14:231–264PubMedCrossRefGoogle Scholar
  116. Matsui T, Yonemura S, Tsukita S (1999) Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 9:1259–1262PubMedCrossRefGoogle Scholar
  117. Mayer BJ, Ren R, Clark KL, Baltimore D (1993) A putative modular domain present in diverse signaling proteins. Cell 73:629–630PubMedCrossRefGoogle Scholar
  118. McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG(1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364:685–692PubMedCrossRefGoogle Scholar
  119. McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175PubMedCrossRefGoogle Scholar
  120. Meerschaert K, De C, V, De Ville Y, Vandekerckhove J, Gettemans J (1998) Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. EMBO J 17:5923–5932PubMedCrossRefGoogle Scholar
  121. Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18:2092–2105PubMedCrossRefGoogle Scholar
  122. Merrit EA, Murphy, Michael EP (1994) Raster3D Version 2.0: Aprogram for photorealistic molecular graphics. Acta Crystallogr Sect D Biol Crystallogr D50:873Google Scholar
  123. Michiels F, Stam JC, Hordijk PL, van der Kammen RA, Ruuls-Van SL, Feltkamp CA, Collard JG (1997) Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J Cell Biol 137:387–398PubMedCrossRefGoogle Scholar
  124. Miki H, Takenawa T (1998) Direct binding of the verprolin-homology domain in NWASP to actin is essential for cytoskeletal reorganization. Biochem Biophys Res Commun 243:73–78PubMedCrossRefGoogle Scholar
  125. Moriyama K, Yonezawa N, Sakai H, Yahara I, Nishida E (1992) Mutational analysis of an actin-binding site of cofilin and characterization of chimeric proteins between cofilin and destrin. J Biol Chem 267:7240–7244PubMedGoogle Scholar
  126. Movilla N, Bustelo XR (1999) Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 19:7870–7885PubMedGoogle Scholar
  127. Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186PubMedCrossRefGoogle Scholar
  128. Murthy A, Gonzalez-Agosti C, Cordero E, Pinney D, Candia C, Solomon F, Gusella J, Ramesh V (1998) NHE-RF, a regulatory cofactor for Na+-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem 273:1273–1276PubMedCrossRefGoogle Scholar
  129. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M (1993) The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci 18:343–348PubMedCrossRefGoogle Scholar
  130. Nakamura F, Huang L, Pestonjamasp K, Luna EJ, Furthmayr H (1999) Regulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and polyphosphatidylinositides. Mol Biol Cell 10:2669–2685PubMedGoogle Scholar
  131. Niggli V (2000) A membrane-permeant ester of phosphatidylinositol 3,4, 5-trisphosphate (PIP3) is an activator of human neutrophil migration. FEBS Lett 473:217–221PubMedCrossRefGoogle Scholar
  132. Niggli V (2001) Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 26:604–611PubMedCrossRefGoogle Scholar
  133. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62PubMedCrossRefGoogle Scholar
  134. Ohmori S, Sakai N, Shirai Y, Yamamoto H, Miyamoto E, Shimizu N, Saito N (2000) Importance of protein kinase C targeting for the phosphorylation of its substrate, myristoylated alanine-rich C-kinase substrate. J Biol Chem 275:26449–26457PubMedCrossRefGoogle Scholar
  135. Ojala PJ, Paavilainen V, Lappalainen P (2001) Identification of yeast cofilin residues specific for actin monomer and PIP2 binding. Biochemistry 40:15562–15569PubMedCrossRefGoogle Scholar
  136. Olave IA, Reck-Peterson SL, Crabtree GR (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71:755–781PubMedCrossRefGoogle Scholar
  137. Palmgren S, Ojala PJ, Wear MA, Cooper JA, Lappalainen P (2001) Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J Cell Biol 155:251–260PubMedCrossRefGoogle Scholar
  138. Palmgren S, Vartiainen M, Lappalainen P (2002) Twinfilin, a molecular mailman for actin monomers. J Cell Sci 115:881–886PubMedGoogle Scholar
  139. Panebra A, Ma SX, Zhai LW, Wang XT, Rhee SG, Khurana S (2001) Regulation of phospholipase C-γ 1 by the actin-regulatory protein villin. Am J Physiol Cell Physiol 281:C1046–C1058PubMedGoogle Scholar
  140. Pantaloni D, Carlier MF (1993) How profilin promotes actin filament assembly in the presence of thymo sin beta 4. Cell 75:1007–1014PubMedCrossRefGoogle Scholar
  141. Pearson MA, Reczek D, Bretscher A, Karplus PA (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101:259–270PubMedCrossRefGoogle Scholar
  142. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576PubMedCrossRefGoogle Scholar
  143. Prehoda KE, Scott JA, Mullins RD, Lim WA (2000) Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290:801–806PubMedCrossRefGoogle Scholar
  144. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615PubMedCrossRefGoogle Scholar
  145. Raghunathan V, Mowery P, Rozycki M, Lindberg U, Schutt (1992) Structural changes in profilin accompany its binding to phosphatidylinositol, 4,5-bisphosphate. FEBS Lett 297:46–50PubMedCrossRefGoogle Scholar
  146. Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274:8347–8350PubMedCrossRefGoogle Scholar
  147. Rameh LE, Arvidsson A, Carraway KL, Couvillon AD, Rathbun G, Crompton A, Van-Renterghem B, Czech MP, Ravichandran KS, Burakoff SJ, Wang DS, Chen CS, Cantley LC (1997) A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 272:22059–22066PubMedCrossRefGoogle Scholar
  148. Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, Meyer T (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228PubMedCrossRefGoogle Scholar
  149. Reczek D, Berryman M, Bretscher A (1997) Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 139:169–179PubMedCrossRefGoogle Scholar
  150. Rees DJ, Ades SE, Singer SJ, Hynes RO (1990) Sequence and domain structure of talin. Nature 347:685–689PubMedCrossRefGoogle Scholar
  151. Ren XD, Schwartz MA (1998) Regulation of inositol lipid kina ses by Rho and Rac. Curr Opin Genet Dev 8:63–67PubMedCrossRefGoogle Scholar
  152. Ren XD, Bokoch GM, Traynor-Kaplan A, Jenkins GH, Anderson RA, Schwartz MA (1996) Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Mol Biol Cell 7:435–442PubMedGoogle Scholar
  153. Rickert P, Weiner OD, Wang F, Bourne HR, Servant G (2000) Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol 10:466–473PubMedCrossRefGoogle Scholar
  154. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399PubMedCrossRefGoogle Scholar
  155. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410PubMedCrossRefGoogle Scholar
  156. Rodal AA, Tetreault JW, Lappalainen P, Drubin DG, Amberg DC (1999) Aip1p interacts with cofilin to disassemble actin filaments. J Cell Biol 145:1251–1264PubMedCrossRefGoogle Scholar
  157. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231PubMedCrossRefGoogle Scholar
  158. Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150:1299–1310PubMedCrossRefGoogle Scholar
  159. Rohatgi R, Nollau P, Ho HY, Kirschner MW, Mayer BJ (2001) Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276:26448–26452PubMedCrossRefGoogle Scholar
  160. Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASPArp2/3. Curr Biol 10:311–320PubMedCrossRefGoogle Scholar
  161. Russo C, Gao Y, Mancini P, Vanni C, Porotto M, Falasca M, Torrisi MR, Zheng Y, Eva A (2001) Modulation of oncogenic DBL activity by phosphoinositol phosphate binding to pleckstrin homology domain. J Biol Chem 276:19524–19531PubMedCrossRefGoogle Scholar
  162. Sagot I, Klee SK, Pellman D (2002a) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4:42–50PubMedGoogle Scholar
  163. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D (2002b) An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4:626–631PubMedGoogle Scholar
  164. Sakisaka T, Itoh T, Miura K, Takenawa T (1997) Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol Cell Biol 17:3841–3849PubMedGoogle Scholar
  165. Sander EE, van Delft S, ten Klooster JP, Reid T, van der Kammen RA, Michiels F, Collard JG (1998) Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 143:1385–1398PubMedCrossRefGoogle Scholar
  166. Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P (1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283:2083–2085PubMedCrossRefGoogle Scholar
  167. Sasaki T, Irie-Sasaki J, Jones RG, Oliveira dSA, Stanford WL, Bolon B, Wakeham A, Hie A, Bouchard D, Kozieradzki I, Joza N, Mak TW, Ohashi PS, Suzuki A, Penninger JM (2000) Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–1046PubMedCrossRefGoogle Scholar
  168. Schafer DA, Korshunova YO, Schroer TA, Cooper JA (1994) Differential localization and sequence analysis of capping protein beta-subunit isoforms of vertebrates. J Cell Biol 127:453–465PubMedCrossRefGoogle Scholar
  169. Schafer DA, Jennings PB, Cooper JA (1996) Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135:169–179PubMedCrossRefGoogle Scholar
  170. Schluter K, Jockusch BM, Rothkegel M (1997) Profilins as regulators of actin dynamics. Biochim Biophys Acta 1359:97–109PubMedCrossRefGoogle Scholar
  171. Schuebel KE, Movilla N, Rosa JL, Bustelo XR (1998) Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 17:6608–6621PubMedCrossRefGoogle Scholar
  172. Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496:3–22PubMedCrossRefGoogle Scholar
  173. Serunian LA, Auger KR, Roberts TM, Cantley LC (1990) Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle Tantigen. J Virol 64:4718–4725PubMedGoogle Scholar
  174. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040PubMedCrossRefGoogle Scholar
  175. Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM (1997) Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91:949–960PubMedCrossRefGoogle Scholar
  176. Sheterline P, Clayton J, Sparrow J (1998) Actin. Protein Profile 4:1–119Google Scholar
  177. Shibasaki F, Fukami K, Fukui Y, Takenawa T (1994) Phosphatidylinositol 3-kinase binds to alpha-actinin through the p85 subunit. Biochem J 302:551–557PubMedGoogle Scholar
  178. Shibasaki Y, Ishihara H, Kizuki N, Asano T, Oka Y, Yazaki Y (1997) Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J Biol Chem 272:7578–7581PubMedCrossRefGoogle Scholar
  179. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801PubMedCrossRefGoogle Scholar
  180. Simson R, Wallraff E, Faix J, Niewohner J, Gerisch G, Sackmann E (1998) Membrane bending modulus and adhesion energy of wild-type and mutant cells of Dictyostelium lacking talin or cortexillins. Biophys J 74:514–522PubMedCrossRefGoogle Scholar
  181. Singh SS, Chauhan A, Murakami N, Chauhan VP (1996) Profilin and gelsolin stimulate phosphatidylinositol 3-kinase activity. Biochem 35:16544–16549CrossRefGoogle Scholar
  182. Skare P, Karlsson R (2002) Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian profilin I. FEBS Lett 522:119–124PubMedCrossRefGoogle Scholar
  183. Snyder JT, Rossman KL, Baumeister MA, Pruitt WM, Siderowski DP, Der CJ, Lemmon MA, Sondek J (2001) Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. J Biol Chem 276:45868–45875PubMedCrossRefGoogle Scholar
  184. Southwick FS, DiNubile MJ (1986) Rabbit alveolar macrophages contain a Ca2+-sensitive, 41,000-dalton protein which rever.ubly blocks the “barbed” ends of actin filaments but does not sever them. J Biol Chem 261:14191–14195PubMedGoogle Scholar
  185. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346PubMedCrossRefGoogle Scholar
  186. Steimle PA, Hoffert JD, Adey NB, Craig SW (1999) Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J Biol Chem 274:18414–18420PubMedCrossRefGoogle Scholar
  187. Stephens LR, Hughes KT, Irvine RF (1991) Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351:33–39PubMedCrossRefGoogle Scholar
  188. Stephens LR, Jackson TR, Hawkins PT (1993) Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim Biophys Acta 1179:27–75PubMedCrossRefGoogle Scholar
  189. Stock A, Steinmetz MO, Janmey PA, Aebi D, Gerisch G, Kammerer RA, Weber I, Faix J (1999) Domain analysis of cortexillin I: actin-bundling, PIP2-binding and the rescue of cytokinesis. EMBO J 18:5274–5284PubMedCrossRefGoogle Scholar
  190. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145PubMedCrossRefGoogle Scholar
  191. Sumi T, Matsumoto K, Shibuya A, Nakamura T (2001) Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J Biol Chem 276:23092–23096PubMedCrossRefGoogle Scholar
  192. Sun H, Lin K, Yin HL (1997) Gelsolin modulates phospholipase C activity in vivo through phospholipid binding. J Cell Biol 138:811–820PubMedCrossRefGoogle Scholar
  193. Sun HQ, Kwiatkowska K, Wooten DC, Yin HL (1995) Effects of CapG overexpression on agonist-induced motility and second messenger generation. J Cell Biol 129:147–156PubMedCrossRefGoogle Scholar
  194. Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274:33179–33182PubMedCrossRefGoogle Scholar
  195. Tall EG, Spector I, Pentyala SN, Bitter I, Rebecchi MJ (2000) Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. Curr Biol 10:743–746PubMedCrossRefGoogle Scholar
  196. Tempel M, Goldmann WH, Dietrich C, Niggli V, Weber T, Sackmann E, Isenberg G (1994) Insertion of filamin into lipid membranes examined by calorimetry, the film balance technique, and lipid photolabeling. Biochem 33:12565–12572CrossRefGoogle Scholar
  197. Thomas CC, Dowler S, Deak M, Alessi DR, van Aalten DM (2001) Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem J 358:287–294PubMedCrossRefGoogle Scholar
  198. Thrasher AJ (2002) WASp in immune-system organization and function. Nat Rev Immunol 2:635–646PubMedCrossRefGoogle Scholar
  199. Tolias K, Carpenter CL (2000) In vitro interaction of phosphoinositide-4-phosphate 5-kinases with Rac. Methods Enzymol 325:190–200PubMedCrossRefGoogle Scholar
  200. Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL (2000) Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol 10:153–156PubMedCrossRefGoogle Scholar
  201. Tuominen EK, Holopainen JM, Chen J, Prestwich GD, Bachiller PR, Kinnunen, PK, Janmey PA (1999) Fluorescent phosphoinositide derivatives reveal specific binding of gelsolin and other actin regulatory proteins to mixed lipid bilayers. Eur J Biochem 263:85–92PubMedCrossRefGoogle Scholar
  202. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322PubMedCrossRefGoogle Scholar
  203. Van Aelst L, Joneson T, Bar-Sagi D (1996) Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J 15:3778–3786PubMedGoogle Scholar
  204. van der Flier A, Sonnenberg A (2001) Structural and functional aspects of filamins. Biochim Biophys Acta 1538:99–117PubMedCrossRefGoogle Scholar
  205. Van Rheenen J, Jalink K (2002) Agonist-induced PIP2 hydrolysis inhibits cortical actin dynamics: Regulation at a global but not at a micrometer scale. Mol Biol Cell 13:3257–3267PubMedCrossRefGoogle Scholar
  206. Van Troys M, Dewitte D, Verschelde JL, Goethals M, Vandekerckhove J, Ampe C (2000) The competitive interaction of actin and PIP2 with actophorin is based on overlapping target sites: design of a gain-of-function mutant. Biochem 39:12181–12189CrossRefGoogle Scholar
  207. Vartiainen M, Ojala PJ, Auvinen P, Peranen J, Lappalainen P (2000) Mouse A6/twinfilin is an actin monomer-binding protein that localizes to the regions of rapid actin dynamics. Mol Cell Biol 20:1772–1783PubMedCrossRefGoogle Scholar
  208. Varticovski L, Druker B, Morrison D, Cantley L, Roberts T (1989) The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature 342:699–702PubMedCrossRefGoogle Scholar
  209. Varticovski L, Daley GQ, Jackson P, Baltimore D, Cantley LC (1991) Activation of phosphatidylinositol 3-kinase in cells expressing ab1 oncogene variants. Mol Cell Biol 11:1107–1113PubMedGoogle Scholar
  210. Volberg T, Geiger B, Kam Z, Pankov R, Simcha I, Sabanay H, Coll JL, Adamson E, Ben-Ze’ev A (1995) Focal adhesion formation by F9 embryonal carcinoma cells after vinculin gene disruption. J Cell Sci 108:2253–2260PubMedGoogle Scholar
  211. Wahlström G, Vartiainen M, Yamamoto L, Mattila PK, Lappalainen P, Heino TI (2001) Twinfilin is required for actin-dependent developmental processes in Drosophila. J Cell Biol 155:787–796PubMedCrossRefGoogle Scholar
  212. Wang J, Arbuzova A, Hangyas-Mihalyne G, McLaughlin S (2001) The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate. J Biol Chem 276:5012–5019PubMedCrossRefGoogle Scholar
  213. Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16:3044–3056PubMedCrossRefGoogle Scholar
  214. Watt SA, Kular G, Fleming IN, Downes CP, Lucocq JM (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem J 363:657–666PubMedCrossRefGoogle Scholar
  215. Weber I, Gerisch G, Heizer C, Murphy J, Badelt K, Stock A, Schwartz JM, Faix J (1999) Cytokinesis mediated through the recruitment of cortexillins into the cleavage furrow. EMBO J 18:586–594PubMedCrossRefGoogle Scholar
  216. Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20:6418–6434PubMedCrossRefGoogle Scholar
  217. Weeds A, Maciver S (1993) F-actin capping proteins. Curr Opin Cell Biol 5:63–69PubMedCrossRefGoogle Scholar
  218. Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288PubMedCrossRefGoogle Scholar
  219. Wennström S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L (1994a) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4:385–393PubMedCrossRefGoogle Scholar
  220. Wennström S, Siegbahn A, Yokote K, Arvidsson AK, Heldin CH, Mori S, Claesson-Welsh L (1994b) Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3′ kinase. Oncogene 9:651–660PubMedGoogle Scholar
  221. Wymann M, Arcaro A (1994) Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem J 298:517–520PubMedGoogle Scholar
  222. Xian W, Janmey PA (2002) Dissecting the gelsolin-polyphosphoinositide interaction and engineering of a polyphosphoinositide-sensitive gelsolin C-terminal half protein. J Mol Biol 322:755PubMedCrossRefGoogle Scholar
  223. Yamamoto M, Hilgemann DH, Feng S, Bito H, Ishihara H, Shibasaki Y, Yin HL (2001) Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J Cell Biol 152:867–876PubMedCrossRefGoogle Scholar
  224. Yonemura S, Matsui T, Tsukita S (2002) Rho-dependent and-independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J Cell Sci 115:2569–2580PubMedGoogle Scholar
  225. Yonezawa N, Nishida E, Iida K, Yahara I, Sakai H (1990) Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J Biol Chem 265:8382–8386PubMedGoogle Scholar
  226. Young P, Gautel M (2000) The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J 19:6331–6340PubMedCrossRefGoogle Scholar
  227. Yu FX, Sun HQ, Janmey PA, Yin HL (1992) Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J Biol Chem 267:14616–14621PubMedGoogle Scholar
  228. Yun CH, Lamprecht G, Forster DV, Sidor A (1998) NHE3 kinase A regulatory protein E3KARP binds the epithelial brush border Na+/H+ exchanger NHE3 and the cytoskeletal protein ezrin. J Biol Chem 273:25856–25863PubMedCrossRefGoogle Scholar
  229. Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J, Wang LH (2000) Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 20:9212–9224PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • P. Hilpelä
    • 1
  • M. K. Vartiainen
    • 1
  • P. Lappalainen
    • 1
  1. 1.Program in Cellular Biotechnology, Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations