Protein Targeting to Endosomes and Phagosomes via FYVE and PX Domains

  • H. C. G. Birkeland
  • H. Stenmark
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 282)


Phosphatidylinositol 3-phosphate (PI3P) is generated on early endosomal and phagosomal membranes by PI 3-kinases. This lipid serves important regulatory functions in phagocytosis, endocytic traffic, receptor signalling and microbial killing through the recruitment and activation of a number of effector proteins. Almost all of these effectors contain FYVE or PX domains, functional protein modules which are conserved from yeast to mammals. Structural information is available regarding the binding of FYVE and PX domains to PI3P. The two domains are highly different, but they have in common that clusters of basic residues mediate ligand binding through interactions with the phosphate groups of PI3P. Most proteins that contain FYVE or PX domains serve as regulators of endocytic membrane trafficking, whereas others function as regulators of phagosome maturation, signal transduction, microbial killing and other cellular activities of relevance for the immune system.


Early Endosome Phagosome Maturation Microbial Killing FYVE Domain Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babior, B.M. (1999). NADPH oxidase: an update. Blood 93, 1464–1476PubMedGoogle Scholar
  2. Barr, V.A., Phillips, S.A., Taylor, S.I., and Haft, C.R. (2000). Overexpression of a novel sorting nexin, SNX15, affects endosome morphology and protein trafficking. Traffic. 1, 904–916PubMedCrossRefGoogle Scholar
  3. Bilodeau, P.S., Urbanowski, U., Winistorfer, S.C., and Piper, R.C. (2002). The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nat. Cell Biol. 4, 534–539PubMedGoogle Scholar
  4. Bravo, I., Karathanassis, D., Pacold, E.M., Pacold, M.E., Ellson, C.D., Anderson, K.E., Butler, P.I., Lavenir, I., Perisic, O., Hawkins, P.T., Stephens, L., and Williams, R.L. (2001). The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol. Cell 8, 829–839PubMedCrossRefGoogle Scholar
  5. Burda, P., Padilla, S.M., Sarkar, S., and Emr, S.D. (2002). Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J. Cell Sci. 115,3889–3900PubMedCrossRefGoogle Scholar
  6. Callaghan, J., Simonsen, A., Gaullier, J.-M., Toh, B.-H., and Stenmark, H. (1999). The endosome fusion regulator EEA1 is a dimer. Biochem. J. 338, 539–543PubMedCrossRefGoogle Scholar
  7. Ceresa, B.P. and Schmid, S.L. (2000). Regulation of signal transduction by endocytosis. Curr. Opin. Cell Biol. 12, 204–210PubMedCrossRefGoogle Scholar
  8. Chan, T.O., Rittenhouse, S.E., and Tsichlis, P.N. (1999). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68:965–1014., 965–1014CrossRefGoogle Scholar
  9. Cheever, M.L., Sato, T.K., de Beer, T., Kutateladze, T., Emr, S.D., and Overduin, M. (2001). Phox domain interaction with PtdIns(3)P targets Vam7 t-SNARE to vacuole membranes. Nature Cell Biol. 3, 613–618PubMedCrossRefGoogle Scholar
  10. Chin, L.-S., Raynor, M.C., Wei, X., Chen, H.-Q., and Li, L. (2001). Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J. Biol. Chem. 276, 7069–7078PubMedCrossRefGoogle Scholar
  11. Christoforidis, S., McBride, H.M., Burgoyne, R.D., and Zerial, M. (1999a). The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–626PubMedCrossRefGoogle Scholar
  12. Christoforidis, S., Miaczynska, M., Ashman, K., Wilm, M., Zhao, L., Yip, S.-C., Waterfield, M.D., Backer, J.M., and Zerial, M. (1999b). Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252PubMedCrossRefGoogle Scholar
  13. Cozier, G.E., Carlton, J., McGregor, A.H., Gleeson, P.A., Teasdale, R.D., Mellor, H., and Cullen, P.J. (2002). The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-l with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 48730–48736PubMedCrossRefGoogle Scholar
  14. de Renzis, S., Sonnichsen, B., and Zerial, M. (2002). Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat. Cell Biol. 4, 124–133PubMedCrossRefGoogle Scholar
  15. Dumas, J.J., Merithew, E., Sudharshan, E., Rajamani, D., Hayes, S., Corvera, S., and Lambright, D.G. (2001). Structural basis of multivalent phosphatidylinositol 3-phosphate recognition by homodimeric EEA1. Mol. Cell 8, 947–958PubMedCrossRefGoogle Scholar
  16. Ellson, C.D., Anderson, K.E., Morgan, G., Chilvers, E.R., Lipp, P., Stephens, L.R., and Hawkins, P.T. (2001a). Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr. Biol. 11, 1631–1635PubMedCrossRefGoogle Scholar
  17. Ellson, C.D., Andrews, S., Stephens, L.R., and Hawkins, P.T. (2002). The PX domain: a new phosphoinositide-binding module. J. Cell Sci. 115, 1099–1105PubMedGoogle Scholar
  18. Ellson, C.D., Gobert-Gosse, S., Anderson, K.E., Davidson, K., Erdjument-Bromage, H., Tempst, P., Thuring, J.W., Cooper, M.A., Lim, Z.-Y., Holmes, A.B., Chilvers, E.R., J., Hawkins, P.T., and Stephens, L.R. (2001b). Phosphatidylinositol 3-phosphate regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biol. 3, 679–682PubMedCrossRefGoogle Scholar
  19. Fratti, R.A., Backer, J.M., Gruenberg, J., Corvera, S., and Deretic, V. (2001b). Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154, 631–644PubMedCrossRefGoogle Scholar
  20. Garin, J., Diez, R., Kieffer, S., Dermine, J.E, Duclos, S., Gagnon, E., Sadoul, R., Rondeau, C., and Desjardins, M. (2001). The phagosome proteome: insight into phagosome functions. J Cell Biol 152, 165–180PubMedCrossRefGoogle Scholar
  21. Gaullier, J.-M., Ronning, E., Gillooly, D.J., and Stenmark, H. (2000). Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J. Biol. Chem. 275, 24595–24600PubMedCrossRefGoogle Scholar
  22. Gaullier, J.-M., Simonsen, A., D’Arrigo, A., Bremnes, B., Aasland, R., and Stenmark, H. (1998). FYVE fingers bind PtdIns(3)P. Nature 394, 432–433PubMedCrossRefGoogle Scholar
  23. Gillooly, D.J., Morrow, I.C., Lindsay, M., Gould, R., Bryant, N.J., Gaullier, J.-M., Parton, R.G., and Stenmark, H. (2000). Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588PubMedCrossRefGoogle Scholar
  24. Gillooly, D.J., Simonsen, A., and Stenmark, H. (2001a). Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J. 355, 249–258PubMedCrossRefGoogle Scholar
  25. Gillooly, D.J., Simonsen, A., and Stenmark, H. (2001b). Phosphoinositides and phagocytosis. J. Cell Biol. 155, 15–17PubMedCrossRefGoogle Scholar
  26. Haft, C.R. de la Luz, S.M., Bafford, R., Lesniak, M.A., Barr, V.A., and Taylor, S.I. (2000). Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11, 4105–4116PubMedGoogle Scholar
  27. Hayes, S., Chawla, A., and Corvera, S. (2002). TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J. Cell Biol. 158, 1239–1249PubMedCrossRefGoogle Scholar
  28. Hicke, L. (2001). Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. 2, 195–201PubMedCrossRefGoogle Scholar
  29. Hiroaki, H., Ago, T., Ho, T., Sumimoto, H., and Kohda, D. (2001). Solution structure of the PX domain, a target of the SH3 domain. Nature Struct. Biol. 8, 526–530PubMedCrossRefGoogle Scholar
  30. Itoh, E, Divecha, N., Brocks, L., Oomen, L., Janssen, H., Calafat, J., Itoh, S., and Dijke, P.P. (2002). The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-beta/Smad signalling. Genes Cells 7, 321–331PubMedCrossRefGoogle Scholar
  31. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507–1513PubMedCrossRefGoogle Scholar
  32. Kanai, E, Liu, H., Akbary, H., Field, S., Matsuo, T., Brown, G., Cantley, L.C., and Yaffe, M.B. (2001). The PX domains of p47phox and p40phox bind to lipid products of phosphoinositide 3-kinase. Nature Cell Biol. 3, 675–678PubMedCrossRefGoogle Scholar
  33. Karathanassis, D., Stahelin, R.V., Bravo, J., Perisic, O., Pacold, C.M., Cho, W., and Williams, R.L. (2002). Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21, 5057–5068PubMedCrossRefGoogle Scholar
  34. Kauppi, M., Simonsen, A., Bremnes, B., Vieira, A., Callaghan, J., Stenmark, H., and Olkkonen, V.M. (2002). The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J. Cell Sci. 115, 899–911PubMedGoogle Scholar
  35. Klionsky, D.J., Cueva, R., and Yaver, D.S. (1992). Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 119, 287–299PubMedCrossRefGoogle Scholar
  36. Kurten, R.C., Cadena, D.L., and Gill, G.N. (1996). Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272, 1008–1010PubMedCrossRefGoogle Scholar
  37. Laporte, J., Liaubet, L., Blondeau, F., Tronchere, H., Mandel, J.L., and Payrastre, B. (2002). Functional redundancy in the myotubularin family. Biochem. Biophys. Res. Commun. 291, 305–312PubMedCrossRefGoogle Scholar
  38. Leber, R., Silles, E., Sandoval, I.V., and Mazon, M.J. (2001). Yo1082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J. Biol. Chem. 276, 29210–29217PubMedCrossRefGoogle Scholar
  39. Liu, D., Yang, X., and Songyang, Z. (2000). Identification of CISK, a new member of the SGK kinase family that promotes IL-3-dependent survival. Curr Biol. 10, 1233–1236PubMedCrossRefGoogle Scholar
  40. Mao, Y., Nickitenko, A., Duan, X., Lloyd, T.E., Wu, M.N., Bellen, H., and Quiocho, F.A. (2000). Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447–456PubMedCrossRefGoogle Scholar
  41. Mari, M., Cormont, M., Mari, S., and Le Marchand-Brustel, Y. (1999). Cloning of Rabip4, an effector of the small GTPase Rab4. Characterisation of its functions in endocytosis. Biochimie 81(Suppl. 6), s223Google Scholar
  42. Marshall, J.G., Booth, J.W., Stambolic, V., Mak, T., Balla, T., Schreiber, A.D., Meyer, T., and Grinstein, S. (2001). Restricted accumulation of phosphatidylinositoI3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 153, 1369–1380PubMedCrossRefGoogle Scholar
  43. McBride, H.M., Rybin, V., Murphy, C., Giner, A., Teasdale, R., and Zerial, M. (1999). Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386PubMedCrossRefGoogle Scholar
  44. Merithew, E., Stone, C, Eathiraj, S., and Lambright, D.G. (2002). Determinants of Rab5 interaction with the N-terminus of early endosome antigen 1. J. Biol. ChemGoogle Scholar
  45. Misra, S. and Hurley, J.H. (1999). Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666PubMedCrossRefGoogle Scholar
  46. Murray, J.T., Panaretou, C., Stenmark, H., Miaczynska, M., and Backer, J.M. (2002). Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic. 3, 416–427PubMedCrossRefGoogle Scholar
  47. Nice, D.C, Sato, T.K., Stromhaug, P.E., Emr, S.D., and Klionsky, D.J. (2002). Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem. 277, 30198–30207PubMedCrossRefGoogle Scholar
  48. Nielsen, E., Christoforidis, S., Uttenweiler-Joseph, S., Miaczynska, M., Dewitte, E, Wilm, M., Hoflack, B., and Zerial, M. (2000). Rabenosyn-5, a novel RabS effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151,601–612PubMedCrossRefGoogle Scholar
  49. Odorizzi, G., Babst, M., and Emr, S.D. (1998). Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858PubMedCrossRefGoogle Scholar
  50. Panopoulou, E., Gillooly, D.J., Wrana, J.L., Zerial, M., Stenmark, H., Murphy, C, and Fotsis, T. (2002). Early endosomal regulation of Smad-dependent signaling in endothelial cells. J. Biol.Chem. 277, 18046–18052PubMedCrossRefGoogle Scholar
  51. Pattni, K., Jepson, M., Stenmark, H., and Banting, G. (2001). A PtdIns(3)P-specific probe cycles on and off host cell membranes during Salmonella invasion of mammalian cells. Curr. Biol. 11, 1636–1642PubMedCrossRefGoogle Scholar
  52. Peterson, M.R., Burd, C.G., and Emr, S.D. (1999). Vac1p coordinates rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr. Biol. 9, 159–162PubMedCrossRefGoogle Scholar
  53. Ponting, C.P. (1996). Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci. 5, 2353–2357PubMedCrossRefGoogle Scholar
  54. Raiborg, C, Bache, K.G., Gillooly, D.J., Madshus, I.H., Stang, E., and Stenmark, H. (2002). Hrs sorts ubiquitinated proteins into clathrin-coated micro domains of early endosomes. Nature Cell Biol. 4, 394–398PubMedCrossRefGoogle Scholar
  55. Raiborg, C, Bache, K.G., Mehlum, A., Stang, E., and Stenmark, H. (2001a). Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021PubMedCrossRefGoogle Scholar
  56. Raiborg, C, Bremnes, B., Mehlum, A., Gillooly, D.J., Stang, E., and Stenmark, H. (2001b). FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263PubMedGoogle Scholar
  57. Raiborg, C. and Stenmark, H. (2002). Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell Struct. Funct. 27, 439–444CrossRefGoogle Scholar
  58. Roggo, L., Bernard, V., Kovacs, A.L., Rose, A.M., Savoy, F., Zetka, M., Wymann, M.P., and Muller, F. (2002). Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J. 21, 1673–1683PubMedCrossRefGoogle Scholar
  59. Rubino, M., Miaczynska, M., Lippe, R., and Zerial, M. (2000). Selective membrane recruitment of EEAl suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748PubMedCrossRefGoogle Scholar
  60. Sachse, M., Urbe, S., Oorschot, V., Strous, G.J., and Klumperman, J. (2002). Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328PubMedCrossRefGoogle Scholar
  61. Sankaran, V.G., Klein, D.E., Sachdeva, M.M., and Lemmon, M.A. (2001). High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry 40, 8581–8587PubMedCrossRefGoogle Scholar
  62. Sato, T.K., Overduin, M., and Emr, S.D. (2001). Location, location, locat ion: membrane targeting directed by PX domains. Science 294, 1881–1885PubMedCrossRefGoogle Scholar
  63. Sbrissa, D., Ikonomov, O.C., and Shisheva, A. (1999). PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. J. Biol. Chem. 274, 21589–21597PubMedCrossRefGoogle Scholar
  64. Schu, P.V., Takegawa, K., Fry, M.J., Stack, J.H., Waterfield, M.D., and Emr, S.D. (1993). Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91PubMedCrossRefGoogle Scholar
  65. Schwarz, D.G., Griffin, C.T., Schneider, E.A., Yee, D., and Magnuson, T. (2002). Genetic analysis of sorting nexins 1 and 2 reveals a redundant and essential function in mice. Mol. Biol. Cell 13, 3588–3600PubMedCrossRefGoogle Scholar
  66. Scott, S.V., Guan, J., Hutchins, M.V., Kim, J., and Klionsky, D.J. (2001). Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7, 1131–1141PubMedCrossRefGoogle Scholar
  67. Scott, S.V. and Klionsky, D.J. (1998). Delivery of proteins and organelles to the vacuole from the cytoplasm. Cure. OpGoogle Scholar
  68. Scott, S.V., Nice, D.C., III, Nau, J.J., Weisman, L.S., Kamada, Y., Keizer-Gunnink, I., Funakoshi, T., Veenhuis, M., Ohsumi, Y., and Klionsky, D.J. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targetingGoogle Scholar
  69. Seaman, M.N.J., McCaffery, J.M., and Emr, S.D. (1998). A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681PubMedCrossRefGoogle Scholar
  70. Shih, S.C., Katzmann, D.J., Schnell, J.D., Sutanto, M., Emr, D., and Hicke, L. (2002). Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat. Cell Biol. 4, 389–393PubMedCrossRefGoogle Scholar
  71. Shintani, T., Huang, W.P., Stromhaug, E., and Klionsky, D.J. (2002). Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3, 825–837PubMedCrossRefGoogle Scholar
  72. Simonsen, A., Gaullier, J.-M., D’Arrigo, A., and Stenmark, H. (1999). The Rab5 effector EEA1 interacts directly with syntaxin-6. J. Biol. Chem. 274, 28857–28860PubMedCrossRefGoogle Scholar
  73. Simonsen, A., Lippé, R., Christoforidis, S., Gaullier, J.-M., Brech, A., Callaghan, J., Toh, B.-H., Murphy, C., Zerial, M., and Stenmark, H. (1998). EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498PubMedCrossRefGoogle Scholar
  74. Simonsen, A. and Stenmark, H. (2001). PX domains: attracted by phosphoinositides. Nat. Cell Biol. 3, E179–E182PubMedCrossRefGoogle Scholar
  75. Simonsen, A., Wurmser, A.E., Emr, S.D., and Stenmark, H. (2001). The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492PubMedCrossRefGoogle Scholar
  76. Song, X., Zhang, A., Huang, G., Liang, X., Virbasius, J.V., Czech, M.P., and Zhou, G.W. (2001). Phox homology (PX) domains specifically bind phosphatidylinositol phosphates. Biochemistry 40, 8940–8944PubMedCrossRefGoogle Scholar
  77. Sorkin, A. and Von Zastrow, M. (2002). Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614PubMedCrossRefGoogle Scholar
  78. Stack, J.H. and Emr, S.D. (1994). Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J. Biol. Chem. 269, 31552–31562PubMedGoogle Scholar
  79. Stenmark, H., Aasland, R., and Driscoll, P.C. (2002). The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett. 513, 77–84PubMedCrossRefGoogle Scholar
  80. Stenmark, H., Aasland, R., Toh, B.H., and D’Arrigo, A. (1996). Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J. Biol. Chem. 271, 24048–24054PubMedCrossRefGoogle Scholar
  81. Stenmark, H. and Gillooly, D.J. (2001). Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin. Cell Dev. Biol. 12, 193–199PubMedCrossRefGoogle Scholar
  82. Stromhaug, P.E. and Klionsky, D.J. (2001). Approaching the molecular mechanism of autophagy. Traffic. 2, 524–531PubMedCrossRefGoogle Scholar
  83. Tall, G.G., Hama, H., DeWald, D.B., and Horazdovsky, B.F. (1999). The phosphatidylinositol 3-phosphate binding protein Vaclp interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol. Biol. Cell 10, 1873–1889PubMedGoogle Scholar
  84. Taylor, G.S., Maehama, T., and Dixon, J.E. (2000). Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc. Natl. Acad. Sci. USA 97, 8910–8915PubMedCrossRefGoogle Scholar
  85. Teasdale, R.D., Loci, D., Houghton, F., Karlsson, L., and Gleeson, P.A. (2001). A large family of endosome-localized proteins related to sorting nexin 1. Biochem. J. 358, 7–16PubMedCrossRefGoogle Scholar
  86. Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L., and Wrana, J.L. (1998). SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95, 779–791PubMedCrossRefGoogle Scholar
  87. Urbé, S., Mills, I.G., Stenmark, H., Kitamura, N., and Clague, M.J. (2000). Endosomal localisation and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol. Cell. Biol. 20, 7685–7692PubMedCrossRefGoogle Scholar
  88. Vanhaesebroeck, B. and Waterfield, M.D. (1999). Signaling by distinct classes of pho sphoinositide 3-kinases. Exp. Cell Res. 253, 239–254PubMedCrossRefGoogle Scholar
  89. Vieira, O.V., Botelho, R.J., Rameh, L., Brachmann, S.M., Matsuo, T., Davidson, H.W., Schreiber, A., Backer, J.M., Cantley, L.C., and Grinstein, S. (2001). Distinct roles of class I and III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25PubMedCrossRefGoogle Scholar
  90. Vignais, P.V. (2002). The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol. Life Sci. 59, 1428–1459PubMedCrossRefGoogle Scholar
  91. Virbasius, J.V., Song, X., Pomerleau, D.P., Zhan, Y., Zhou, G.W., and Czech, M.P. (2001). Activation of the Akt-related cytokine-independent survival kinase require s interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate. Proc. Natl. Acad. Sci. U. S. A 98, 12908–12913PubMedCrossRefGoogle Scholar
  92. Walker, D.M., Urbé, S., Dove, S.K., Tenza, D., Raposo, G., and Clague, M.J. (2001). Characterization of MTMR3: an inositol lipid 3-phosphatase with novel substrate activity. Curr. Biol. 11, 1600–1605PubMedCrossRefGoogle Scholar
  93. Wishart, M.J. and Dixon, J.E. (2002). PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Phosphatase and tensin homolog deleted on chromosome ten. Trends Cell Biol, 12, 579–585PubMedCrossRefGoogle Scholar
  94. Wishart, M.J., Taylor, G.S., and Dixon, J.E. (2001). Phoxy lipids: revealing PX domains as phosphoinositide binding modules. Cell 105, 817–820PubMedCrossRefGoogle Scholar
  95. Worby, C.A. and Dixon, J.E. (2002). Sorting out the cellular functions of sorting nexins. Nat. Rev. Mol. Cell Biol. 3, 919–931PubMedCrossRefGoogle Scholar
  96. Wurmser, A.E. and Emr, S.D. (1998). Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 17, 4930–4942PubMedCrossRefGoogle Scholar
  97. Wurmser, A.E. and Emr, S.D. (2002). Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J. Cell Biol. 158, 761–772PubMedCrossRefGoogle Scholar
  98. Xu, Y.H.H., Seet, L., Wong, S.H., and Hong, W. (2001). Sorting nexin 3 (SNX3) regulates endosomal function via its PX domain-mediated interaction with phosphatidylinositol 3-phosphate. Nature Cell Biol, 3, 658–666PubMedCrossRefGoogle Scholar
  99. Yu, J.W. and Lemmon, M.A. (2001). All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J. Biol. Chem. 276, 44179–44184PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • H. C. G. Birkeland
    • 1
  • H. Stenmark
    • 1
  1. 1.Department of BiochemistryNorwegian Radium HospitalOsloNorway

Personalised recommendations