Skip to main content

The study of high density matter at RHIC

Survey of experimental results from RHIC

  • Conference paper
  • 76 Accesses

Abstract

QCD predicts a phase transition between hadronic matter and a Quark Gluon Plasma at high energy density. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Collins and M.J. Perry: Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  2. See for example K. Rajagopal these proceedings

    Google Scholar 

  3. K. Rajagopal and F. Wilczek: hep-ph/0011333

    Google Scholar 

  4. K. Kanaya: hep-ph/0209116

    Google Scholar 

  5. F. Karsch: Nucl. Phys. A 698, 199c (2002)

    Article  ADS  Google Scholar 

  6. Z. Fodor: hep-lat/0209191

    Google Scholar 

  7. D. Boyanovsky: hep-ph/0102120

    Google Scholar 

  8. N.K. Glendenning and F. Weber: astro-ph/0003426

    Google Scholar 

  9. J.W. Harris and B. Müller: Annu. Rev. Nucl. Part. Sci. B 46, 71 (1966)

    Article  ADS  Google Scholar 

  10. T. Roser: Nucl. Phys. A 698, 23c (2002)

    Article  ADS  Google Scholar 

  11. The Relativistic Heavy Ion Collider and Experiments: Nucl. Inst. Meth. A 499, Issues 2-3 (2003)

    Google Scholar 

  12. Proceedings of Quark Matter 2001, Nucl. Phys. A 698, (2002)

    Google Scholar 

  13. Proceedings of Quark Matter 2002: Nucl. Phys. A 715 (2003)

    Google Scholar 

  14. B.B. Back et al.: nucl-ex/0210015

    Google Scholar 

  15. T.S. Ullrich: Nucl. Phys. A 715, 399c (2003)

    Article  ADS  Google Scholar 

  16. D. Kharzeev and M. Nardi: Phys. Lett. B 507, 121 (2001)

    Article  ADS  Google Scholar 

  17. B.B. Back et al.: Phys. Rev. C 65, 061901 (2002)

    Article  ADS  Google Scholar 

  18. K.J. Eskola, K. Kajantie, and K. Tuominen: Phys. Lett. B 497, 29 (2001)

    ADS  Google Scholar 

  19. D. Kharzeev and E. Levin: Phys. Lett. B 523, 79 (2001)

    Article  ADS  Google Scholar 

  20. A. Bazilevski: Nucl. Phys. A 715, 486c (2003)

    Article  ADS  Google Scholar 

  21. STAR collaboration: private communication

    Google Scholar 

  22. J.D. Bjorken: Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  23. T. Alber et al.: Phys. Rev. Lett. 75, 3814 (1995)

    Article  ADS  Google Scholar 

  24. F. Karsch: Nucl. Phys. A 698, 199 (2002)

    Article  ADS  MATH  Google Scholar 

  25. R. Hagedorn: Suppl. A. Nuovo Cimento Vol III, No.2150 (1965)

    Google Scholar 

  26. U. Heinz: Nucl. Phys. A 661, 140 (1999)

    Article  ADS  Google Scholar 

  27. P. Braun-Munzinger, I. Heppe, and J. Stachel: Phys. Lett. B 465, 15 (1999)

    Article  ADS  Google Scholar 

  28. F. Becattini et al.: Phys. Rev. C 64, 024901 (2001)

    Article  ADS  Google Scholar 

  29. P. Braun-Munzinger et al.: Phys. Lett. B 518, 41–46 (2001)

    Article  ADS  Google Scholar 

  30. F. Becattini: J. Phys. G 28, 1553 (2002)

    Article  ADS  Google Scholar 

  31. G. Van Buren et al.: Nucl. Phys. A 715, 129c (2003)

    Article  ADS  Google Scholar 

  32. M. van Leeuwen et al.: Nucl. Phys. A 715, 161c (2003)

    Article  ADS  Google Scholar 

  33. P.F. Kolb and R. Rapp: Phys. Rev. C 67, 044903 (2003)

    Article  ADS  Google Scholar 

  34. E. Schnedermann, J. Sollfrank, and U. Heinz: Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  35. J.D. Bjorken: FERMILAB-Pub-82/59-THY

    Google Scholar 

  36. M. Gyulassy and M. Plümer: Phys. Lett. B 432, 121 (1990); R. Baier et al.: Phys. Lett. B 345, 277 (1995)

    Google Scholar 

  37. R. Baier, D. Schiff, and B.G. Zakharov: Annu. Rev. Nucl. Part. Sci. B 50, 37 (2000)

    Article  ADS  Google Scholar 

  38. X.N. Wang and M. Gyulassy: Phys. Rev. Lett. 68, 1480 (1992); X.N. Wang: Phys. Rev. C 58, 2321 (1998)

    Article  ADS  Google Scholar 

  39. E. Wang and X.N. Wang: Phys. Rev. Lett. 89, 162301 (2002); F. Arleo: Phys. Lett. B 532, 231 (2002)

    Article  ADS  Google Scholar 

  40. J. Adams et al.: nucl-ex/0305015

    Google Scholar 

  41. S.S. Adler et al.: nucl-ex/0304022

    Google Scholar 

  42. K. Adcox et al.: Phys. Rev. Lett. 88, 022301 (2002); C. Adler et al.: Phys. Rev. Lett. 89, 202301 (2002)

    Article  ADS  Google Scholar 

  43. J. Velkovska: Proceedings of Strange Quark Matter 2003, J. Phys. G. to be published

    Google Scholar 

  44. P. Sorenson et al.: nucl-ex/0305008

    Google Scholar 

  45. B.B. Back et al.: nucl-ex/0302015

    Google Scholar 

  46. X.N. Wang: nucl-th/0305010; private communication. Calculations use model parameters µ0 = 2.0 GeV and ∈o = 2.04 GeV/fm

    Google Scholar 

  47. I. Vitev and M. Gyulassy: Phys. Rev. Lett. 89, 252301 (2002)

    Article  ADS  Google Scholar 

  48. D. Antreasyan et al.: Phys. Rev. D 19, 764 (1979); P.B. Straub et al.: Phys. Rev. Lett. 68, 452 (1992)

    Article  ADS  Google Scholar 

  49. D. Kharzeev, E. Levin, and L. McLerran: Phys. Lett. B 561, 93 (2003); D. Kharzeev: private communication

    Article  ADS  Google Scholar 

  50. R. Lietava, J. Pisut, N. Pisutova, and B. Tomasik: Eur. Phys. J. C 28, 119 (2003)

    Article  ADS  Google Scholar 

  51. K. Gallmeister, C. Greiner, and Z. Xu: Phys. Rev. C 67, 044905 (2003)

    Article  ADS  Google Scholar 

  52. C. Adler et al.: Phys. Rev. Lett. 90, 082302 (2003)

    Article  ADS  Google Scholar 

  53. K. Adcox et al.: Phys. Rev. Lett. 88, 192302 (2002)

    Article  ADS  Google Scholar 

  54. J. Nagle et al.: nucl-ex/0209015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ullrich, T.S. (2004). The study of high density matter at RHIC. In: Boffi, S., Giannini, M.M., Ciofi degli Atti, C. (eds) Perspectives in Hadronic Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18801-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18801-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62297-7

  • Online ISBN: 978-3-642-18801-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics