Skip to main content

Neoplastic Bone Diseases

  • Chapter
Orthopedic Nuclear Medicine

Abstract

Benign and malignant primary bone tumors are rare, while metastatic disease is a common occurrence. The efficacy of the several currently available imaging modalities in the detection, staging, and follow-up of patients with skeletal neoplasia varies. Evaluation of bone tumors involves a multi-modality approach. Standard radiographs play an important role in the diagnosis of both primary and metastatic tumors. Computed tomography (CT) scan and magnetic resonance imaging (MRI) are often complementary and are particularly useful in primary bone tumors. CT scan is especially useful in evaluating the cortex. MRI is superior in evaluating the extent of several primary tumors and detecting bone marrow lesions. The role of bone scintigraphy in preoperative evaluation of primary tumors is limited. Bone scintigraphy, on the other hand, is an excellent cost-effective screening modality in detecting metastatic disease in patients with skeletal and extra-skeletal malignancies. In breast, lung, and head and neck tumors bone scan is rarely positive for metastasis in patients with low stage disease. Metaiodobenzylguanidine (MIBG) scintigraphy is valuable in children with neuroblastoma. Bone scintigraphy and other radionuclide modalities are valuable in the long-term follow up of several cancers and in estimating the prognosis. The therapeutic response of malignant bone disease can particularly be assessed using Tl-201, Tc-99m methoxyisobutylisonitrile (MIBI) and PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mungo DV, Zhang X, O’Keefe RJ, Rosier RN, Puzas JE, Schwarz EM (2002) COX-1 and COX-2 expression in osteoid osteomas. J Orthop Res 20:159–162

    CAS  PubMed  Google Scholar 

  2. Kawaguchi Y, Hasegawa T, Oka S, Sato C, Arima N, Norimatsu H (2001) Mechanism of intramedullary high intensity area on T2-weighted magnetic resonance imaging in osteoid osteoma: a possible role of COX-2 expression. Pathol Int 51:933–937

    CAS  PubMed  Google Scholar 

  3. Dablin DC, Conventry MB (1967) Osteogenic sarcoma: a study of 600 cases. J Bone Joint Surg (Am) 49:101–110

    Google Scholar 

  4. Link NP, Eiber F (1997) Osteosarcoma. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology, 3rd edn. Lippincott-Raven, Philadelphia, pp 889–920

    Google Scholar 

  5. Uribe-Botero G, Russel W, Sutow W et al (1997) Primary osteosarcoma of bone: A clinicopathologic investigation of 243 cases, with necropsy studies in 54. Am J Clin Pathol 67:427–435

    Google Scholar 

  6. Parham DM, Pratt CB, Parvey LS et al (1985) Childhood multifocal osteosarcoma: clinicopathologic and radiologic correlates. Cancer 55:2653–2658

    CAS  PubMed  Google Scholar 

  7. Gunawardena S, Chintagumpala M, Trautwein L et al (1999) Multifocal osteosarcoma: an unusual presentation. J Pediatr Hematol Oncol 21:58–62

    CAS  PubMed  Google Scholar 

  8. Elhasid R, Vlodavsky E, Nachtigal A, Keidar Z, Postovsky S, Ben Arush M (2001) Pediatric tumors. J Clin Oncol 19:276–278

    CAS  PubMed  Google Scholar 

  9. McCarthy EF (1997) Histopathologic correlates of a positive bone scan. Semin Nucl Med 27:309–320

    CAS  PubMed  Google Scholar 

  10. Huvos AG (1991) Bone tumors; diagnosis, treatment and prognosis, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  11. Dorland’s illustrated medical dictionary, 27th edn. (1988) Saunders, Philadelphia

    Google Scholar 

  12. Batson OV (1995) The function of the vertebral veins and their role in the spread of metastases. Clin Orthop Relat Res 312:4–9

    PubMed  Google Scholar 

  13. Resnick D, Niwayama K (1998) Skeletal metastases. In: Resnick D, Niwayama K (eds) Diagnosis of bone and joint disorders, 2nd edn. Saunders, Philadelphia, pp 3945–4010

    Google Scholar 

  14. Hanagiri T, Kodate M, Nagashima A, Sugaya M, Dobashi K, Ono M, Yasumoto K (2000) Bone metastasis after a resection of stage I and II primary lung cancer. Lung Cancer 27:199–204

    CAS  PubMed  Google Scholar 

  15. Resnick D, Niwayama K, Galasko CSD (1981) Bone metastasis studied in experimental animal. Clin Orthop Relat Res 155:269

    Google Scholar 

  16. Galasko CSD (1982) Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop Relat Res 20:20–27

    Google Scholar 

  17. Tondevold E, Eliasen P (1982) Blood flow rates in canine cortical and cancellous bone measured with Tc 99m, labeled human albumin microspheres. Acta Orthop Scand 53:7–11

    CAS  PubMed  Google Scholar 

  18. Esther RJ, Bos GD (2000) Management of metastatic disease of other bones. Orthop Clin North Am 31:647–759

    CAS  PubMed  Google Scholar 

  19. Gates GF (1998) SPECT bone scanning of the spine. Semin Nucl Med 28:78–94

    CAS  PubMed  Google Scholar 

  20. Garrett IR (1993) Bone destruction in cancer. Semin Oncol 20:4–9

    CAS  PubMed  Google Scholar 

  21. Arrambide K, Toto RD (1993) Tumor lysis syndrome. Semin Nephrol 13:273

    CAS  PubMed  Google Scholar 

  22. Jan de Beur SM, Streeten EA, Civelek AC, McCarthy EF, Uribe L, Marx SJ, Onobrakpeya O, Raisz LG (2002) Localisation of mesenchymal tumors by somatostatin receptor imaging. Lancet 359:761–763

    Google Scholar 

  23. Ell PJ, Dixon HJ, Abdullah AZ (1980) Unusual spread of juxtacortical osteosarcoma. J Nucl Med 21:190–191

    Google Scholar 

  24. Elgazzar AH, Malki AA, Abdel-Dayem HM, Sahweil A, Razzak S, Jahan S, Elsayed M, Omar YT (1989) Role of thallium 201 in the diagnosis of solitary bone lesions. Nucl Med Commun 10:477–485

    CAS  PubMed  Google Scholar 

  25. Elgazzar AH, Fernendaz-Ulloa M, Silberstein EB (1993) Thallium 201 as a tumor imaging agent: current status and future consideration. Nucl Med Commun 14:96–103

    CAS  PubMed  Google Scholar 

  26. Van der Wall H, Murray IP, Huckstep RL, Philips RL (1993) The role of thallium scintigraphy in excluding malignancy in bone. Clin Nucl Med 18:551–557

    PubMed  Google Scholar 

  27. Caner B, Kitapcl M, Unlu M et al (1992) Technetium 99m MIBI uptake in benign and malignant bone lesions: a comparative study with technetium 99m MDP. J Nucl Med 33:319–324

    CAS  PubMed  Google Scholar 

  28. Pneumaticos SG, Chatziioannou SN, Moore WH, Johnson M (2001) The role of radionuclides in primary musculoskeletal tumors beyond the bone scan. Crit Rev Oncol Hematol 37:217–226

    CAS  PubMed  Google Scholar 

  29. Sumiya H, Taki J, Higuchi T, Tonami N (2001) Nuclear imaging of bone tumors: thallium-201 scintigraphy. Semin Musculoskel Radiol 5:177–182

    CAS  Google Scholar 

  30. Schulte M, Brecht-Krauss D, Werner M et al (2000) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643

    Google Scholar 

  31. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O (2000) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission. Clin Nucl Med 25:874–878

    CAS  PubMed  Google Scholar 

  32. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    CAS  PubMed  Google Scholar 

  33. Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31:206–211

    CAS  PubMed  Google Scholar 

  34. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, Sato N, Inoue T, Endo K (2001) FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 219:774–777

    CAS  PubMed  Google Scholar 

  35. Dimitrakopoulou-Strauss A, Heichel TO, Lehner B, Bernd L, Ewerbeck V, Burger C, Strauss LG (2001) Quantitative evaluation of skeletal tumors with dynamic FDG PET: SUV in comparison to Patlak analysis. Eur J Nucl Med 28:704–710

    PubMed  Google Scholar 

  36. Smith FW, Gilday DL (1980) Scintigraphic appearance of osteoid osteoma. Radiology 137:191–195

    CAS  PubMed  Google Scholar 

  37. Miller SL, Hoffer FA (2001) Malignant and benign bone tumors. Radiol Clin North Am 39:673–699

    CAS  PubMed  Google Scholar 

  38. Buhler M, Binkert C, Exner GU (2001) Osteoid osteoma: technique of computed tomography-controlled percutaneous resection using standard equipment available in most orthopaedic operating rooms. Arch Orthop Trauma Surg 121:458–461

    CAS  PubMed  Google Scholar 

  39. Moser RP Jr, Masewell JF (1987) An approach to primary bone tumors. Radiol Clin North Am 25:1049–1093

    PubMed  Google Scholar 

  40. Woerthler K, Linder N, Gosheger G, Brinkschmidt C, Heindel W (2000) MR imaging of tumor-related complications. Eur Radiol 10:832–840

    Google Scholar 

  41. Brian WE, Mirra JM, Luck JV Jr (1999) Benign and malignant tumors of bone and joint: their anatomical and theoretical basis with an emphasis on radiology, pathology and clinical biology II. Juxtacortical cartilage tumors. Skeletal Radiol 28:1–20

    Google Scholar 

  42. Moody EB, Classman SB, Hansen AV, Lawrence SK, Delbeke D (1992) Nuclear medicine case of the day. AJR 158:1382–1386

    CAS  PubMed  Google Scholar 

  43. Siddiqui AR, Ellis JH (1982) “Cold spots” on bone scan at the site of primary osteosarcoma. Eur J Nucl Med 7:480–481

    CAS  PubMed  Google Scholar 

  44. Rossleigh MA, Smith J, Yeh SD, Huvos AG (1987) Case reports: a photopenic lesion in osteosarcoma. Br J Radiol 60:497–499

    CAS  PubMed  Google Scholar 

  45. Bloem JL, Taminiau AHM, Eulderink F, Hermans J, Pauwels EKJ (1988) Radiologic staging of primary bone sarcoma: MR imaging, scintigraphy, angiography, and CT correlated with pathologic examination. Radiology 169:805–810

    CAS  PubMed  Google Scholar 

  46. McKillop JH, Etcubanas E, Goris ML (1981) The indications for and limitations of bone scintigraphy in osteogenic sarcoma. Cancer 48:1133–1138

    CAS  PubMed  Google Scholar 

  47. Franzius C, Daldrup-Link HE, Wagner-Bohn A, Sciuk J, Heindel WL, Jurgens H, Schober O (2002) FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 13:157–160

    CAS  PubMed  Google Scholar 

  48. Abdel-Dayem HM (1997) The role of nuclear medicine in primary bone and soft tissue tumors. Semin Nucl Med 27:355–363

    CAS  PubMed  Google Scholar 

  49. Burak Z, Ersoy O, Moretti JL, Erinc R, Ozcan Z, Dirlik A, Sabah D, Basdemir G (2001) The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med 28:1341–1350

    CAS  PubMed  Google Scholar 

  50. Gorlick R, Liao AC, Antonescu C, Huvos AG, Healey JH, Sowers R, Daras M, Calleja E, Wexler LH, Panicek D, Meyers PA, Yeh SD, Larson SM (2001) Lack of correlation of functional scintigraphy with (99m)technetium-methoxyi-sobutylisonitrile with histological necrosis following induction chemotherapy or measures of P-glycoprotein expression in high-grade osteosarcoma. Clin Cancer Res 7:3065–3070

    CAS  PubMed  Google Scholar 

  51. Kaste SC, Billips C, Tan M, Meyer WH, Parham DM, Rao BN, Pratt CB, Fletcher BD (2001) Thallium bone imaging as an indicator of response and outcome in nonmetastatic primary extremity osteosarcoma. Pediatr Radiol 31:251–256

    CAS  PubMed  Google Scholar 

  52. Franzius F, Bielack S, Flege S, Sciuk J, Heribert Jürgens H, Schober O (2002) Prognostic significance of 18F-FDG and 99Tc-mehylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    Google Scholar 

  53. Schulte M, Brecht-Krauss D, Heymer B et al (2000) Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 41:1695–1701

    CAS  PubMed  Google Scholar 

  54. Kile AC, Nieweg OE, Hoekstra HJ, van Horn JR, Koops HS, Vaalburg W (1998) Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 39:810–815

    Google Scholar 

  55. Mariette X, Khalifa P, Ravaud P et al (1992) Bone densitometry in patients with multiple myeloma. Am J Med 93:595

    CAS  PubMed  Google Scholar 

  56. Mariette X, Bergot C, Ravaud P et al (1995) Evolution of bone densitometry in patients with myeloma treated with conventional or intensive therapy. Cancer 76:1559

    CAS  PubMed  Google Scholar 

  57. Murthy NJ, Rao H, Friedman AS (2000) Positive findings on bone scan in multiple myeloma. South Med J 93:1028–1029

    CAS  PubMed  Google Scholar 

  58. Waxman AD, Steimsen JK, Levine AM et al (1981) Radiographic and radionuclide imaging in multiple myeloma: the role of gallium scintigraphy. Concise communication. J Nucl Med 22:232–236

    CAS  PubMed  Google Scholar 

  59. Silberstein EB, McAfee JG, Spasoff AP (1998) Diagnostic patterns in Nuclear Medicine. Soc Nucl Med, Reston, pp 223–230

    Google Scholar 

  60. Watanabe N, Shimizu M, Kageyama M, Tanimura K, Kinuya S, Shuke N, Yokoyama K, Tonami N, Watanabe A, Seto H, Goodwin DA (1999) Multiple myeloma evaluated withTl-201 scintigraphy compared with bone scintigraphy. J Nucl Med 40:1138–1142

    CAS  PubMed  Google Scholar 

  61. Alexandrakis MG, Kyriakou DS, Passam F, Koukouraki S, Karkavitsas N (2001) Value of Tc-99m sestamibi scintigraphy in the detection of bone lesions in multiple myeloma: comparison with Tc-99m methylene diphosphonate. Ann Hematol 80:349–353

    CAS  PubMed  Google Scholar 

  62. Kusumoto S, Jinnai I, Itoh K et al (1997) Magnetic resonance imaging patterns in patients with multiple myeloma. Br J Hematol 99:649–655

    CAS  Google Scholar 

  63. Van de Berg BC, Lecouvet FE, Michaux L et al (1996) Stage I multiple myeloma: value of MR imaging of bone marrow in the determination of prognosis. Radiology 201:243–246

    PubMed  Google Scholar 

  64. Kyle RA, Schreiman J, McLeod R (1985) Computed tomography in diagnosis of multiple myeloma and its variants. Arch Intern Med 145:1451–1460

    CAS  PubMed  Google Scholar 

  65. Vagler JB, Murphy WA (1988) Bone marrow imaging: state of the art. Radiology 168:676–686

    Google Scholar 

  66. Durie BG, Waxman AD, D’Angelo A, Williams CM (2002) Whole body f-18 FDG PET identifies high risk myeloma. J Nucl Med 43:1457–1463

    PubMed  Google Scholar 

  67. Franzius C, Schulte M, Hillmann A, Winkelmann W, Jurgens H, Bockisch A, Schober O (2001) Clinical value of positron emission tomography (PET) in the diagnosis of bone and soft tissue tumors. 3rd interdisciplinary consensus conference “PET in Oncology”: results of the Bone and Soft Tissue Study Group. Chirurg 72:1071–1077

    CAS  PubMed  Google Scholar 

  68. Hung GU, Tan TS, Kao CH, Wang SJ (2000) Multiple skeletal metastases of Ewing’s sarcoma demonstrated on FDGPET and compared with bone and gallium scans. Kaohsiung J Med Sci 16:315–318

    CAS  PubMed  Google Scholar 

  69. Connolly LP, Drubach LA, Ted Treves S (2002) Applications of nuclear medicine in pediatric oncology. Clin Nucl Med 27:117–125

    Google Scholar 

  70. Bar-Sever Z, Cohen IJ, Connolly LP, Horev G, Perri T, Treves T, Hardoff R (2000) Tc-99m MIBI to evaluate children with Ewing’s sarcoma. Clin Nucl Med 25:410–413

    CAS  PubMed  Google Scholar 

  71. Rybak LD, Rosenthal DI (2001) Radiological imaging for the diagnosis of bone metastases. Quart J Nucl Med 45:53–64

    CAS  Google Scholar 

  72. Ron IG, Striecker A, Lerman H, Bar-Am A, Frisch B (1999) Bone scan and bone biopsy in the detection of skeletal metastases. Oncol Rep 6:185–188

    CAS  PubMed  Google Scholar 

  73. Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129

    CAS  PubMed  Google Scholar 

  74. Taoka T, Mayr NA, Lee HJ, Yuh WT, Simonson TM, Rezai K, Berbaum KS (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. Am J Roentgenol 176:1525–1530

    CAS  Google Scholar 

  75. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, Schober O, Rummeny EJ (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR 177:229–236

    CAS  PubMed  Google Scholar 

  76. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Yen RF (2000) Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99m MDP bone scan to detect bone metastases. Anticancer Res 20:2189–2192

    CAS  PubMed  Google Scholar 

  77. Moog F, Kotzerke J, Reske SN (1999) FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 40:1407–1413

    CAS  PubMed  Google Scholar 

  78. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B, Trager H, Nussle K, Reske SN (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus F18 PET. J Nucl Med 40:1623–1629

    CAS  PubMed  Google Scholar 

  79. Asthana S, Deo SV, Shukla NK, Raina V (2001) Carcinoma breast metastatic to the hand and the foot. Austr Radiol 45:380–382

    CAS  Google Scholar 

  80. Al-Mulhim F, Ibrahim EM, El-Hassan AY, Moharram HM (1995) Magnetic resonance imaging of tuberculous spondylitis. Spine 20:2287–2292

    CAS  PubMed  Google Scholar 

  81. Elgazzar AH, Abdel-Dayem HM, Shible O (1991) Brucellosis simulating metastases on Tc99m MDP bone scan. Clin Nucl Med 16:162–164

    PubMed  Google Scholar 

  82. Caglar M, Naldoken S (2000) Multiple brown tumors simulating bone metastases: a case of parathyroid adenoma coexisting with papillary carcinoma of the thyroid. Clin Nucl Med 25:772–774

    CAS  PubMed  Google Scholar 

  83. Hadi A, Al-Nahhas A, Vivian G, Hickling P (2002) Tc-99m MDP and Tc-99m MIBI in the assessment of spondyloarthritis presenting as bone metastasis before treatment with infliximab. Clin Nucl Med 27:297–298

    PubMed  Google Scholar 

  84. Reginato AJ, Falasca GF, Pappu R, McKnight B, Agha A (1999) Musculoskeletal manifestations of osteomalacia: report of 26 cases and literature review. Semin Arthritis Rheum 28:287–304

    CAS  PubMed  Google Scholar 

  85. Puig S, Staudenherz A,Steiner B, Eisenhuber E, Leitha T (1998) Differential diagnosis of atypically located single or bouble spots in whole bone scanning. J Nucl Med 39:1263–1266

    CAS  PubMed  Google Scholar 

  86. Reinartz P, Schaffeldt J, Sabri O, Zimny M, Nowak B, Ostwald E, Cremerius U, Buell U (2000) Benign versus malignant osseous lesions in the lumbar vertebrae: differentiation by means of bone SPET. Eur J Nucl Med 27:721–726

    CAS  PubMed  Google Scholar 

  87. Shirazi RH, Rayudu GVS, Fordham EW (1974) Review of solitary 18-F bone scan lesions. Radiology 112:369–372

    CAS  PubMed  Google Scholar 

  88. Corcoran RJ, Thrall JH, Kyle RW, Kaminski RJ, Johnson MC (1976) Solitary abnormalities in bone scans of patients with extraosseous malignancies. Radiology 121:663–667

    CAS  PubMed  Google Scholar 

  89. Rappaport AH, Hoffer PB, Genant HK (1978) Unifocal bone findings by scintigraphy. Clinical significance in patients with known primary cancer. West J Med 129:188–192

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Brown ML (1983) Significance of solitary lesion in pediatric bone scanning: concise communication. J Nucl Med 24:114–115

    CAS  PubMed  Google Scholar 

  91. Tumeh SS, Beadle G, Kaplan WD (1985) Clinical significance of solitary bone lesions in patients with extraskeletal malignancies. J Nucl Med 26:1140–1143

    CAS  PubMed  Google Scholar 

  92. Matsumoto K (1987) Bone metastasis from renal cell carcinoma. Gan To Kagaku Ryoho 14:1710–1716

    CAS  PubMed  Google Scholar 

  93. Kwai AH, Stomper PC, Kaplan WD (1988) Clinical significance of isolated sternal lesions in patients with breast cancer. J Nucl Med 29:324–328

    CAS  PubMed  Google Scholar 

  94. Boxer DL, Todd CE, Coleman R, Fogelman I (1989) Bone secondaries in breast cancer: the solitary metastases. J Nucl Med 30:1318–1320

    CAS  PubMed  Google Scholar 

  95. Brown ML (1989) The role of radionuclides in the patient with osteogenic sarcoma. Semin Roentgenol 24:185–192

    CAS  PubMed  Google Scholar 

  96. Coakley FV, Jones AR, Finlay DB, Belton IP (1995) The etiology and distinguishing features of solitary spinal hot spots on planar bone scans. Clin Radiol 50:327–330

    CAS  PubMed  Google Scholar 

  97. Baxter AD, Coakley FV, Finlay DB, West C (1995) The etiology of solitary hot spots in ribs on planar bone scans. Nucl Med Commun 16:834–837

    CAS  PubMed  Google Scholar 

  98. Hashmi R, Uetani M, Ogawa Y, Aziz A (1999) Clinical significance of a solitary hot spot in the skull. Nucl Med Commun 20:703–710

    CAS  PubMed  Google Scholar 

  99. Tomoda Y, Ishino Y, Nakata H (2001) Assessmenet of solitary hot spots of bone scintigraphy in patients with extraskeletal malignancies. Jpn J Nucl Med 38:721–726

    CAS  Google Scholar 

  100. Aglar M, Ceylan E (2001) Isolated carpal bone metastases from bronchogenic cancer evident on bone scintigraphy. Clin Nucl Med 26:352–353

    Google Scholar 

  101. Veluvolu P, Collier BD, Isitman AT (1984) Scintigraphic skeletal doughnut sign due to giant cell tumor of the fibula. Clin Nucl Med 9:631–634

    CAS  PubMed  Google Scholar 

  102. Greenspan A, Stadalnik RC (1995) Bone island: scintigraphic findings and their clinical applications. Canadian Assoc Radiol J 46:368–379

    CAS  Google Scholar 

  103. Sundaram M (1999) Magnetic resonance imaging for solitary lesions of bone: when, why, how useful? J Orthop Sci 4:384–396

    CAS  PubMed  Google Scholar 

  104. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V (2002) The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 43:510–518

    PubMed  Google Scholar 

  105. Goris ML, Basso LV, Etcublanaas E (1980) Photopenic lesions in bone scintigraphy. Clin Nucl Med 5:299–301

    CAS  PubMed  Google Scholar 

  106. Han JK, Shih WJ, Stipp V, Magoun S (1999) Normal variants of a photon-deficient area in the lower sternum demonstrated by bone SPECT. Clin Nucl Med 24:248–251

    CAS  PubMed  Google Scholar 

  107. Sy WM, Westring DW, Weinberger G (1975) Cold lesions on bone imaging. J Nucl Med 16:1013–1016

    CAS  PubMed  Google Scholar 

  108. Galasko CSB (1980) Mechanism of uptake of bone imaging isotopes by skeletal metastases. Clin Nucl Med 12:565

    Google Scholar 

  109. Pollen JJ, Witztum KF, Ashburn WL (1984) The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR 142:773

    CAS  PubMed  Google Scholar 

  110. Fossa SD, Heilo A, Lindegaard M et al (1983) Clinical significance of routine follow up examination in patients with metastatic cancer of the prostate under hormone treatment. Eur J Urol 9:262–266

    CAS  Google Scholar 

  111. Koizumi M, Matsumoto S, Takahashi S, Yamashita T, Ogata E (1999) Bone metabolic markers in the evaluation of bone scan flare phenomenon in bone metastases of breast cancer. Clin Nucl Med 24:15–20

    CAS  PubMed  Google Scholar 

  112. Nobuaki M, Hiroshi Y, Hidetoshi O, Noboru I, Tomio E, Keigo (1999) Fluorodeoxyglucose positron emission tomography scan of prostate cancer bone metastases with flare reaction after endocrine therapy. Am J Urol 16:608–609

    Google Scholar 

  113. Fukuda T, Inoue Y, Ochi H et al (1982) Abnormally high diffuse activity on bone scintigram: the importance of exposure time for its recognition. Eur J Nucl Med 7: 275–277

    CAS  PubMed  Google Scholar 

  114. Howman-Giles RB, Gilday DL, Ash J (1979): Radionuclide skeletal survey in neuroblastoma. Radiology 131:497–502

    CAS  PubMed  Google Scholar 

  115. Reddy MP, Floresca J, Juweid M, Graham MM (2002) Unusual bilateral symmetrical osteolytic metastases visualized by bone scintigraphy. Clin Nucl Med 27:299–301

    PubMed  Google Scholar 

  116. Clark DG, Painter RW, Sziklas JJ (1978) Indications for bone scans in preoperative evaluation of breast cancer. Am J Surg 135:667–670

    CAS  PubMed  Google Scholar 

  117. Lee YN (1981) Bone scanning in patients with early breast carcinoma: should it be a routine staging procedure? Cancer 47:486–495

    CAS  PubMed  Google Scholar 

  118. Baker RR (1978) Preoperative assessment of the patient with breast cancer. Surg Clin North Am 58:681–691

    CAS  PubMed  Google Scholar 

  119. Fogelman I, McKillop JH (1991) The bone scan in metastatic disease. In: Rubess RD, Fogelman I (eds) Bone metastases: diagnosis and treatment. Springer, Berlin Heidelberg New York, pp 31–61

    Google Scholar 

  120. O’Connell MJ, Wahner HW, Ahmann DL et al (1978) Value of preoperative radionuclide bone scan in suspected primary breast carcinoma. Mayo Clin Proc 53:221–226

    PubMed  Google Scholar 

  121. Elgazzar AH, Omar A, Higazi E, Abdel-Dayem HM, Omar YT (1990) Reevaluation of bone scanning in breast cancer. Eur J Nucl Med 16:S63

    Google Scholar 

  122. Curigliano G, Ferretti G, Colleoni M, Marrocco E, Peruzzotti G, De Cicco C, Paganelli G, Goldhirsch A (2001) Bone scan had no role in the staging of 765 consecutive operable T(1-2)N(0-1) breast cancer patients without skeletal symptoms (letter). Ann Oncol 12:724–725

    CAS  PubMed  Google Scholar 

  123. Samant R, Ganguly P (1999) Staging investigations in patients with breast cancer: the role of bone scans and liver imaging. Arch Surg 134:551–553

    CAS  PubMed  Google Scholar 

  124. Charkes ND, Malmud LS, Caswell T et al (1975) Preoperative bone scans. JAMA 233:516–518

    CAS  PubMed  Google Scholar 

  125. Shutte H (1979) The influence of bone pain of the results of bone scans. Cancer 34:2039–2043

    Google Scholar 

  126. Whitlock JP, Evans AJ, Jackson L, Chan SY, Robertson JF (2001) Imaging of metastatic breast cancer: distribution and radiological assessment at presentation. Clin Oncol (R Coll Radiol) 13:181–188

    CAS  Google Scholar 

  127. Massie JD (1984) Bone scanning and metastatic disease. Proceedings of 35th annual meeting, South Eastern Chapter, Society of Nuclear Medicine, pp V1–V20

    Google Scholar 

  128. Smith TJ, Davidson NE, Schapira DV, Grunfeld E, Muss GE, Vogel VG III, Somerfield MR, for the American Society of Clinical Oncology Breast Cancer Surveillance Expert Panel (1999) American Society of Clinical Oncology 1998 update of recommended breast cancer surveillance guidelines. J Clin Oncol 17:1080–1082

    CAS  PubMed  Google Scholar 

  129. Jacobson AF, Shapiro CL, Van den Abbeele AD, Kaplan WD (2001) Prognostic significance of the number of bone scan abnormalities at the time of initial bone metastatic recurrence in breast carcinoma. Cancer 91:17–24

    CAS  PubMed  Google Scholar 

  130. Fogelman I, Coleman R (1988) The bone scan and breast cancer. In: Freeman LM, Weissman HS (eds) Nuclear medicine annual. Raven, New York, pp 1–38

    Google Scholar 

  131. Jacobson Af, Shapiro CL, Kaplan WD (1993) Bone metastases in patients with breast cancer: significance of scintigraphic patterns at presentation and follow-up. J Nucl Med 34:74P9 (abstract)

    Google Scholar 

  132. Yamashita K, Ueda T, Komatsubara Y et al (1991) Breast cancer with bone-only metastases visceral metastasesfree rate in relation to anatomic distribution of bone metastasis. Cancer 68:634–637

    CAS  PubMed  Google Scholar 

  133. Coleman RE, Smith P, Rubens RD (1998) Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 77:336–340

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Janicek MJ, Shaffer K (1995) Scintigraphic and radiographic patterns of skeletal metastases in breast cancer: value of sequential imaging in predicting outcome. Skeletal Radiol 24:597–600

    CAS  PubMed  Google Scholar 

  135. Vogel CL, Schoenfelder J, Shemano I et al (1995) Worsening bone scan in the evaluation of antitumor response during hormonal therapy of breast cancer. J Clin Oncol 13:1123–1128

    CAS  PubMed  Google Scholar 

  136. Nishimura R, Nagao K, Miyayama H, Yasunaga T, Asao C, Matsuda M, Baba K, Matsuoka Y, Yamashita H, Fukuda M (1999) Diagnostic problems of evaluating vertebral metastasis from breast carcinoma with a higher degree of malignancy. Cancer 85:1782–1788

    CAS  PubMed  Google Scholar 

  137. Altehoefer C, Ghanem N, Hogerle S, Moser E, Langer M (2001) Comparative detectability of bone metastases and impact on therapy of magnetic resonance imaging and bone scintigraphy in patients with breast cancer. Eur J Radiol 40:16–23

    CAS  PubMed  Google Scholar 

  138. Cook GJ, Fogelman I (1999) Skeletal metastases from breast cancer: imaging with nuclear medicine. Semin Nucl Med 29:69–79

    CAS  PubMed  Google Scholar 

  139. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, Nasu S, Suzuki Y, Yasuda S, Shohtsu A (2001) Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 22:875–879

    CAS  PubMed  Google Scholar 

  140. Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kuhn T, Kreienberg R, Messer P, Nussle K, Elsner K, Glatting G, Trager H, Neumaier B, Diederichs C, Reske SN (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17:2381–2389

    CAS  PubMed  Google Scholar 

  141. Pollen JJ, Gerber K, Ashburn WL et al (1981) The value of nuclear bone imaging in advanced prostate cancer. J Urol 125:222–223

    CAS  PubMed  Google Scholar 

  142. Fitzpatrick JM, Constable AR, Sherwood T et al (1978) Serial bone scanning: the assessment of treatment response in carcinoma of the prostate. Br J Urol 50:555–561

    CAS  PubMed  Google Scholar 

  143. Spiers AS, Deal DR, Kasimis BS et al (1982) Evaluation of the bones and bone marrow in patients with metastatic carcinoma of the prostate: radiologic, cytologic and cytogenetic findings. J Med 13:303–307

    CAS  PubMed  Google Scholar 

  144. McGregor B, Tulloch AG, Quinlan MF et al (1978) The role in bone scanning in the assessment of prostatic carcinoma. Br J Urol 50:178–181

    CAS  PubMed  Google Scholar 

  145. O’Donoghue, EP, Constable AR, Sherwood T et al (1978) Bone scanning and plasma phosphatases in carcinoma of the prostate. Br J Urol 50:172–177

    PubMed  Google Scholar 

  146. Jacobson AF (2000) Association of prostate-specific antigen levels and patterns of benign and malignant uptake detected. On bone scintigraphy in patients with newly diagnosed prostate carcinoma. Nucl Med Commun 21:617–622

    CAS  PubMed  Google Scholar 

  147. Yuksel M, Cermik TF, Kaya M, Salan A, Ustun F, Salihoglu YS, Yigitbasi ON, Berkarda S (2001) Extensive bone metastases in a patient with prostatic adenocarcinoma and normal serum prostate-specific antigen and prostatic acid phosphatase. Clin Nucl Med 26:962

    CAS  PubMed  Google Scholar 

  148. Wymenga LF, Boomsma JH, Groenier K, Piers DA, Mensink HJ (2001) Routine bone scans in patients with prostate cancer related to serum prostate-specific antigen and alkaline phosphatase. BJU Int 88:226–230

    CAS  PubMed  Google Scholar 

  149. Rydh A, Tomic R, Tavelin B, Hietala SO, Damber JE (1999) Predictive value of prostate-specific antigen, tumour stage and tumour grade for the outcome of bone scintigraphy in patients with newly diagnosed prostate cancer. Scand J Urol Nephrol 33:89–93

    CAS  PubMed  Google Scholar 

  150. Lund F, Smith PH, Suciu S et al (1984) Do bone scans predict prognosis in prostatic cancer? A report of the EORTC protocol 30762. Br J Urol 56:58–63

    CAS  PubMed  Google Scholar 

  151. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43:181–186

    CAS  PubMed  Google Scholar 

  152. Nunez R, Macapinlac HA, Yeung HW, Akhurst T, Cai S, Osman I, Gonen M, Riedel E, Scher HI, Larson SM (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46–55

    PubMed  Google Scholar 

  153. Bury T, Bareeto A, Daenen F, Barthelemy N, Ghaye B, Rigo P (1998) Fluorine-18 deoxyglucose positron tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 25:1244–1247

    CAS  PubMed  Google Scholar 

  154. Schirrmeister H, Glatting G, Hetzel J, Nussle K, Arslandemir C, Buck AK, Dziuk K, Gabelmann A, Reske SN, Hetzel M (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42:1800–1804

    CAS  PubMed  Google Scholar 

  155. Park JY, Kim KY, Lee J, Kam S, Son JW, Kim CH, Jung TH (2000) Impact of abnormal uptakes in bone scan on the prognosis of patients with lung cancer. Lung Cancer 28:55–62

    CAS  PubMed  Google Scholar 

  156. Saitoh H (1981) Distant metastasis of renal adenocarcinoma. Cancer 48:1487

    CAS  PubMed  Google Scholar 

  157. Galsko CSB (1980) Mechanism of uptake of bone imaging isotopes by skeletal metastases. Clin Nucl Med 12:565

    Google Scholar 

  158. Fogelman I, McKillop JH (1991) The bone scan in metastatic disease. In: Rubess RD, Fogelman I (eds) Bone metastases: diagnosis and treatment. Springer, Berlin Heidelberg New York, pp 31–61

    Google Scholar 

  159. Aktolun C, Berk F, Demir H (2001) Detection of cold bone metastasis by Tc-99m MIBI imaging. Ann Nucl Med 15:393–395

    CAS  PubMed  Google Scholar 

  160. Aso Y, Homma Y (1992) A survey on incidental renal cell carcinoma in Japan. J Urol 147:340

    CAS  PubMed  Google Scholar 

  161. Staudenherz A, Steiner B, Puig S, Kainberger F, Leitha T (1999) Is there a diagnostic role for bone scanning of patients with a high pretest probability for metastatic renal cell carcinoma? Cancer 85:153–155

    CAS  PubMed  Google Scholar 

  162. Mundy GR (1997) Mechanism of bone metastases. Cancer [Suppl] 80:1546

    CAS  PubMed  Google Scholar 

  163. Staudenherz A, Steiner B, Puig S, Kainberger F, Leitha T (1999) Is there a diagnostic role for bone scanning of patients with high protect probability for metastatic renal cell carcinoma? Cancer 85:153–155

    CAS  PubMed  Google Scholar 

  164. Coleman RE (1997) Skeletal complication of malignancy. Cancer [Suppl] 80:1588

    CAS  PubMed  Google Scholar 

  165. Bos SD, Piers DA, Mensink HA (1995) Routine bone scan and serum alkaline phosphatase for staging in patients with renal cell carcinoma is not cost-effective. Eur J Cancer 31A:2422

    CAS  PubMed  Google Scholar 

  166. Seaman E, Goluboff ET, Ross S et al (1996) Association of radionuclide bone scan and serum alkaline phosphatase in patients with metastatic renal cell carcinoma. Urology 48:692

    CAS  PubMed  Google Scholar 

  167. Atlas I, Kwan D, Stone N (1991) Value of serum alkaline phosphatase and radionuclide bone scans in patients with renal cell carcinoma. Urology 38:220

    CAS  PubMed  Google Scholar 

  168. Koga S, Tsuda S, Nishikido M, Ogawa Y, Hayashi K, Hayashi T, Kanetake H (2001) The diagnostic value of bone scan in patients with renal cell carcinoma. Clin Urol 166:2126–2128

    CAS  Google Scholar 

  169. Wu HC, Yen RF, Shen YY, Kao CH, Lin CC, Lee CC (2002) Composing whole body 18-F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with renal cell carcinomas-a preliminary report. Cancer Res Clin Oncol 50:503–506

    Google Scholar 

  170. Schirrmeister H, Buck A, Guhlmann A, Reske SN (2001) Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer assessed with F-18 sodium fluoride positron emission tomography. Thyroid 11:677–683

    CAS  PubMed  Google Scholar 

  171. Lorberboym M, Murthy S, Mechanick JF, Bergman D, Morris JC, Kim CK (1996) Thallium-201 and Iodine-131 scintigraphy in differentiated thyroid carcinoma. J Nucl Med 37:1487–1491

    CAS  PubMed  Google Scholar 

  172. Shiga (2001) Comparison of FDG, I-131 & Tl-201 in the diagnosis of recurrent or metastatic thyroid CA. J Nucl Med 42:414

    Google Scholar 

  173. Kumar R, Gupta R, Khullar S, Padhy AK, Julka PK, Malhotra A (2000) Bone scanning for bone metastasis in carcinoma cervix. J Assoc Physic India 48:808–810

    CAS  Google Scholar 

  174. Ozdemirli M, Mankin HJ, Aisenberg AC et al (1996) Hod-gkin’s disease presenting as a solitary bone tumor: a report of four cases and review of literature. Cancer 77:79–88

    CAS  PubMed  Google Scholar 

  175. Schmidt AG, Kohn D, Bernards J et al (1994) Solitary skeletal lesions as primary manifestations of non-Hodgkin’s lymphoma. Arch Orthop Trauma Surg 113:121–128

    CAS  PubMed  Google Scholar 

  176. Baar J, Burkes RL, Bell R et al (1994) Primary non-Hodgkin’s lymphoma of bone. Cancer 73:1194–1199

    CAS  PubMed  Google Scholar 

  177. Stroszczynski C, Oellinger J, Hosten N et al (1999) Staging and monitoring of malignant lymphoma of the bone.: comparison of Ga-67 and MRI. J Nucl Med 40:387–393

    CAS  PubMed  Google Scholar 

  178. Landgren O, Axdorph U, Jacobsson H, Johansson B, Grimfors G, Bjorkholm M (2000) Routine bone scintigraphy is of limited value in the clinical assessment of untreated patients with Hodgkin’s disease. Med Oncol 17:174–178

    CAS  PubMed  Google Scholar 

  179. Israel O, Meckel M, Bar-shalom R, Epelbaum R, Hermony N, Haim N, Dann E et al (2002) Bone lymphoma: Ga-67 scintigraphy and CT for prediction of outcome after treatment. J Nucl Med 43:1295–1303

    PubMed  Google Scholar 

  180. Carr R, Barrington SF, Madan B, O’Doherty MJ, Saunders CA, van der Walt J, Timothy AR (1998) Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 91:3340–3346

    CAS  PubMed  Google Scholar 

  181. Choi CW, Lee DS, Chung J et al (1993) Evaluation of bone metastases by tc99m MDP imaging in patients with stomach cancer. Clin Nucl Med 20:310–314

    Google Scholar 

  182. Sundram FX, Chua ET, Goh AS et al (1990) Bone scintigraphy in nasopharyngeal carcinoma. Clin Radiol 42:160–168

    Google Scholar 

  183. Yui N, Togawa T, Kinoshita F et al (1992) Assessment of skull base involvement of nasopharyngeal carcinoma by bone SPECT using three detector system. Jpn J Nucl Med 29:37–40

    CAS  Google Scholar 

  184. Piepsz A, Gordon I, Hahn K (1991) Pediatric nuclear medicine. Eur J Nucl Med 18:41–66

    CAS  PubMed  Google Scholar 

  185. Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, Pritchard J (1990) Skeletal assessment of neuroblastoma. The pitfalls of I-123 MIBG scans. J Nucl Med 31:129–134

    CAS  PubMed  Google Scholar 

  186. Gelfand MJ (1993) Metaiodobenzylguanidine in children. Semin Nucl Med 23:231–242

    CAS  PubMed  Google Scholar 

  187. Gelfand MJ, Paltiel HJ, Elgazzar AH et al (1992) I-123 MIBG imaging in pediatric neural crest tumors. J Nucl Med 33:1072 (abstract)

    Google Scholar 

  188. Shulkin BL, Shapiro B, Hutchinson RJ (1992) Iodine-131 metaiodobenzylguanidine and bone scintigraphy in detection of neuroblastoma. J Nucl Med 33:1735–1740

    CAS  PubMed  Google Scholar 

  189. Hadj-Djiiani NL, Lebtahi NE, Bischof Delaloye A, Laurini R, Beck D (1995) Diagnosis and follow up of neuroblasoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan and the influence of histology. Eur J Nucl Med 22:322–329

    Google Scholar 

  190. Abdel-Dayem HM, Scott AM, Macpinlac HA et al (1994) Role of Tl-201 chloride and Tc99m sestamibi in tumor imaging. Nuclear medicine annual. Raven, New York

    Google Scholar 

  191. Abdel-Dayem HM (1994) Thallium and gallium scintigraphy in pulmonary kaposi sarcoma in HIV-positive patient. Letter to the editor. Clin Nucl Med 19:473

    Google Scholar 

  192. Gomez MA, Beiras JM, Gallardo FG, Verdejo AJ (1994) Thallium and gallium scintigraphy in pulmonary kaposi sarcoma in HIV-positive patient. Clin Nucl Med 19:467–468

    Google Scholar 

  193. Meijer WG, van der Veer E, Jager PL, van der Jagt EJ, Piers BA, Kema IP, de Vries EGE, Willemse PHB (2003) Bone metastases in carcinoid tumors: clinical features, imaging characteristics, and markers of bone metabolism. J Nucl Med 44:184–191

    PubMed  Google Scholar 

  194. Muroff LR (1981) Optimizing the performance and interpretation of bone scans. Clin Nucl Med 6:68–76

    Google Scholar 

  195. Citrin DL, Hougen C, Zweibel W et al (1981) The use of serial bone scans in assessing response of bone metastases to systemic treatment. Cancer 47:680–685

    CAS  PubMed  Google Scholar 

  196. Alexander JL, Gillespie PJ, Edelstyn GA (1976) Serial bone scanning using technician 99m diphosphonate in patients cyclical combination chemotherapy for advanced breast cancer. Clin Nucl Med 1:13–17

    Google Scholar 

  197. Helms CA (1995) Fundamentals of skeletal radiology, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  198. Baqer MM, Qurtom MA, Al-Ajmi AJ, Collier BD, Elgazzar AH (2002) Multifocal brucellosis spondylodiscitis. Clin Nucl Med 27:842–843

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elgazzar, A.H. (2004). Neoplastic Bone Diseases. In: Orthopedic Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18790-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18790-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62293-9

  • Online ISBN: 978-3-642-18790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics