The Sources for Hotspot Volcanism in the South Pacific Ocean

  • C. W. Devey
  • K. M. Haase


The South Pacific is characterized by a large number of active hotspots, many of which have been active for long periods of time (possibly as long as 120 Ma, Staudigel et al. 1991) producing extensive island and/or seamount chains (see Introduction, Fig. 0.1. The hotspots are presently located either beneath relatively old lithosphere (e.g., Society, Pitcairn, Australs, Marquesas, Juan Fernandez) or lie closer to the spreading axis (Foundation, Easter) (see Sect. 5.1). During the last fifteen years, the German-French initiative to study these hotspots has resulted in a vast amount of petrological and geochemical data being collected on fresh, mainly submarine volcanics.


Mantle Plume Contrib Mineral Petrol Ocean Island Basalt Trace Element Pattern Spreading Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker PE, Buckley F, Holland JG (1974) Petrology and geochemistry of Easter Island. Contrib Mineral Petrol 44:85–100Google Scholar
  2. Baker PE, Gledhill A, Harvey PK, Hawkesworth CJ (1987) Geochemical evolution of the Juan Fernandez Islands, SE Pacific. J Geol Soc London 144:933–944Google Scholar
  3. Binard N, Maury RC, Guille G, Talandier J, Gillot PY, Cotten J (1993) Mehetia Island, South Pacific: Geology and petrology of the emerged part of the Society hot spot. J Volcanol Geotherm Res 55:239–260Google Scholar
  4. Bonatti E, Harrison CGA (1976) Hot Iines in the Earth’s mantle. Nature 263:402–404Google Scholar
  5. Bonatti E, Harrison CGA, Fisher DE, Honnorez J, Schilling J-G, Stipp JJ, Zentilli M (1977) Easter volcanic chain (Southeast Pacific): A mantle hot line. J Geophys Res 82:2457–2478Google Scholar
  6. Bonneville A, Suavé RL, Audin L, Clouard V, Dosso L, Gillot PY, Janney P, Jordahl K, Maamaatuaiahutapu, K (2002) Arago Seamount: The missing hotspot found in the Austral Islands. Geology 30:1023–1026Google Scholar
  7. Caroff M, Maury RC, Vidal P, Guille G, Dupuy C, Cotten J, Guillou H, Gillot P-Y (1995) Rapid temporal changes in ocean island basalt composition: Evidence from an 800 m deep drill hole in Eiao Shield (Marquesas). J Petrol 36:1333–1363Google Scholar
  8. Caroff M, Guillou H, Lamiaux M, Maury RC, Guille G, Cotten J (1999) Assimilation of ocean crust by hawaiitic and mugearitic magmas: An example from Eiao (Marquesas). Lithos 46:235–258Google Scholar
  9. Chauvel C, Hofmann AW, Vidal P (1992) HIMU-EM: The French Polynesian connection. Earth Planet Sci Letts 1l0:99–119Google Scholar
  10. Chauvel C, Goldstein SL, Hofmann AW (1995) Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chem Geol 126:65–75Google Scholar
  11. Chauvel C, McDonough W, Guille G, Maury R, Duncan RA (1997) Contrasting old and young volcanism in Rurutu Island, Austral Chain. Chem Geol 139:125–143Google Scholar
  12. Cheminée JL, Hekinian R, Talandier J, Albarède F, Devey CW, Francheteau J, Lancelot Y (1989) Geology of an active hot spot: Teahitia-Mehetia region in the south-central Pacific. Mar Geophys Res 11:27–50Google Scholar
  13. Cheng QC, Macdougall JD, Lugmair GW (1993) Geochemical studies of Tahiti, Teahitia and Mehetia, Society Island chain. J Volcanol Geotherm Res 55:155–184Google Scholar
  14. Cheng QC, Macdougall JD, Zhu P (1999) Isotopic constraints on the Easter Seamount cha in source. Contrib Mineral Petrol 135:225–233Google Scholar
  15. Clague DA, Dalrymple GB (1987) The Hawaiian-Emperor volcanic cha in: Part 1 geologic evolution. US Geol Surv Prof Paper 1350:5–54Google Scholar
  16. Clark JG, Dymond J (1977) Geochronology and petrochemistry of Easter and Sala y Gómez Islands: Implications for the origin of the Sala y Gómez Ridge. J Volcanol Geotherm Res 2:29–48Google Scholar
  17. Clouard V, Bonneville A (2001) How man y Pacific hotspots are fed by deep mantle plumes? Geology 29:695–698Google Scholar
  18. Crough ST, Jurdy DM (1980) Subducted lithosphere, hotspots, and the Geold. Earth Planet Sci Lett 48:15–22Google Scholar
  19. Davaille A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–760Google Scholar
  20. Desonie DL, Duncan RA, Natland JH (1993) Temoral and geochemical variability of volcanic products of the Marquesas Hotspot. J Geophys Res 98:17649–17665Google Scholar
  21. Devey CW, Albarede F, Cheminee J-L, Michard A, Mühe R, Stoffers P, (1990) Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study. J Geophys Res 95:5049–5066Google Scholar
  22. Devey CW, Hekinian R, Ackermand D, Binard N, Francke B, Hémond C, Kapsimalis V, Lorenc S, Maia M, Möller H, Perrot K, Pracht J, Rogers T, Stattegger K, Steinke S, Vietor P (1997) The Foundation Seamount chain: A first survey and sampling. Mar Geol 137:191–200Google Scholar
  23. Devey CW, Hémond C, Stoffers P (2000) Metasomatic reactions between carbonated plume melts and mantle harzburgite: The evidence from Friday and Domingo Seamounts (Juan Fernandez Chain, SE Pacific). Contrib Mineral Petrol 139:68–84Google Scholar
  24. Devey CW, Lackschewitz KS, Mertz DF, Bourdon B, Cheminé J-L, Dubois J, Guivel C, Hekinian R, Stoffers P (2001) Evidence for preferential melting of the enriched components in Polynesian plumes. Eos Trans AGU Fall Meet Suppl 82:F1397Google Scholar
  25. Devey CW, Lackschewitz KS, Mertz DF, Bourdon B, Cheminée J-L, Dubois J, Guivel C, Hekinian R, Stoffers P (2003) Giving birth to hot spot volcanoes: Distribution and composition of young sea-mounts from the seafloor near Tahiti and Pitcairn Islands. Geology 31(5):395–398Google Scholar
  26. Dixon JE, Leist L, Langmuir CH, Schilling J-G (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalts. Nature 420:385-389 Dostal J, Cousens B, Dupuy C (1998) The incompatible element characteristics of an ancient subducted sedimentary component in ocean island basalts from French Polynesia. J Petrol 39(5):937–952 Duncan RA, McDougall I (1976) Linear volcanism in French Polynesia. J Volcanol Geotherm Res 1:197-227Google Scholar
  27. Duncan RA, McDougall I, Carter RM, Coombs DS (1974) Pitcairn Island — another Pacific hot spot. Nature 251:679–682Google Scholar
  28. Duncan RA, McCulloch MT, Barsczus HG, Nelson DR (1986) Plume versus lithospheric sources for melts at Ua Pou, Marquesas Islands. Nature 322:534–538Google Scholar
  29. Duncan RA, Fisk MR, White WM, Nielsen RL (1994) Tahiti: Geochemical evolution of a French Polynesian volcano. J Geophys Res 99:24341–24357Google Scholar
  30. Dupuy C, Vidal P, Barsczus HG, Chauvel C (1987) Origin of basalts from the Marquesas Archipelago (south central Pacific Ocean): Isotope and trace element constraints. Earth Planet Sci Letts 82:145–152Google Scholar
  31. Dupuy C, Barsczus HG, Liotard JM, Dostal J (1988) Trace element evidence for the origin of ocean island basalts: An example from the Austral Islands (French Polynesia). Contrib Mineral Petrol 98:293–302Google Scholar
  32. Dupuy C, Vidal P, Maury RC, Guille G (1993) Basalt s from Mururoa, Fangataufa and Gambier Islands (French Polynesia ): Geochemical dependence on the age of the lithosphere. Earth Planet Sci Lett 117:89–110Google Scholar
  33. Eiler JM, Farley KA. Valley JW, Stopler EM, Hauri EH, Craig H (1995) Oxygen isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn Island lavas. Nature 377:138–141Google Scholar
  34. EiseIe J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hot spot. Earth Planet Sci Lett 196:197–212Google Scholar
  35. Farley KA, Natland JH, Craig H (1992) Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet Sci Lett 111:183–199Google Scholar
  36. Farley KA, Basu AR, Craig H (1993) He, Sr and Nd isotopie variations in lavas from the Juan Fernandez Archipelago, SE Pacific. Contrib Mineral Petrol 115:75–87Google Scholar
  37. Fretzdorff S, Haase KM, Garbe-Schönberg C-D (1996) Petrogenesis of lavas from the Umu volcanic field in the young hotspot region west of Easter Island, southeastern Pacific. Lithos 38:23–40Google Scholar
  38. Gareia MO, Park K-H, Davis GT, Staudigel H, Mattey DP (1993) Petrology and isotope geochemistry of lavas from the Line islands chain, Central Pacific Basin. In: Pringle MS, Sager WW, Sliter WV, Stein S (eds ) The Mesozoic Pacific: Geology, tectonics and volcanism. AGU Geophys Monograph, Washington DC 77:217–231Google Scholar
  39. Gasperini D, Blichert-Toft J, Bosch D, Del Moro A, Macera P, Télouk P, Albarède F (2000) Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth’s mantle. Nature 408:701–704Google Scholar
  40. Gast PW, Tilton GR, Hedge C (1964) Isotopic composition of lead and strontium from Ascension and Gough Islands. Science 145:1181–1185Google Scholar
  41. Gerlach DC, Hart SR, Morales VWJ, Palacios C (1986) Mantle heterogeneity beneath the Nazca plate: San Felix and Juan Fernandez islands. Nature 322:165–169Google Scholar
  42. Griffiths RW, Campbell IH (1991) On the dynamics of long-lived plume conduits in the convecting mantle. Earth Planet Sci Lett 103:214–227Google Scholar
  43. Gu YJ, Dziewonski AM, Su W, Ekström G (2001) Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J Geophys Res 106:11169–11199Google Scholar
  44. Guillou H, Gareia MO, Turpin L(1997) Unspiked K-Ar dating of young volcanic rocks from Loihi and Pitcairn hot spot seamounts. J Volcanol Geotherm Res 78:239–249Google Scholar
  45. Haase KM, Devey CW (1996) Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter Hotspot, southeast Pacific: Implications for intraplate magma genesis near a spreading axis. Earth Planet Sci Letts 137:129–143Google Scholar
  46. Haase KM, Devey CW, Goldstein SL (1996) Two-way exchange between the Easter mantle plume and the Easter microplate spreading axis. Nature 382:344–346Google Scholar
  47. Haase KM, Stoffers P, Garbe-Schönberg C-D (1997) The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near-ridge hotspot volcanoes in the SE Pacific. J Petrol 38:785–813Google Scholar
  48. Hagen RA, Baker NA, Naar DF, Hey RN (1990) A SeaMARC II survey of Recent submarine volcanism near Easter Island. Mar Geophys Res 12:297–315Google Scholar
  49. Hanan BB, Graham DW (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991–995Google Scholar
  50. Hanan BB, Schilling J-G (1989) Easter Microplate evolution: Pb isotope evidence. J Geophys Res 94: 7432–7448Google Scholar
  51. Hauri EH, Whitehead JA, Hart SR (1994) Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res 99:24275–24300Google Scholar
  52. Hekinian R, Stoffers P, Devey CW, Ackermand D, Hémond C, O’Connor J, Binard N, Maia M (1997) Intraplate versus ridge volcanism on the Pacific-Antarctic Ridge near 37° S-111 W. J Geophys Res 102:12265–12286Google Scholar
  53. Hekinian R, Stoffers P, Ackermand D, Revillion S, Maia M, Bohn M (1999) Ridge-hotspot interaction: The Pacific-Antarctic Ridge and the Foundation seamounts. Mar Geol 160:199–233Google Scholar
  54. Hémond C, Devey CW (1996) The Foundation Seamount chain, Southeast Pacific: First isotopic evidence of a newly discovered hotspot track. J Conf Abstr 1:255Google Scholar
  55. Hémond C, Devey CW, Chauvel C (1994) Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem Geol 115:7–45Google Scholar
  56. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Letts 57: 421–436Google Scholar
  57. Janney PE, Macdougall JD, Natland JH, Lynch MA (2000) Geochemical evidence from the Pukapuka volcanic ridge system for a shallow enriched mantle domain beneath the South Pacific Superswell. Earth Planet Sci Lett 181:47–60Google Scholar
  58. Jordahl KA, McNutt MK, Webb HF, Kruse SE, Kuykendall MG (1995) Why there are no earthquakes on the Marquesas Fracture Zone. J Geophys Res 100:24431–24447Google Scholar
  59. Kaneoka I, Katsui Y (1985) K-Ar ages of volcanic rocks from Easter Island. Bull Volcanol Soc Japan 30: 33–36Google Scholar
  60. Kingsley R, Schilling J-G (1998) Plume-ridge interaction in the Easter-Salas y Gómez Seamount chain-Easter Microplate system: Pb isotope evidence. J Geophys Res 103:24159–24177Google Scholar
  61. Kingsley RH, Schilling J-G, Dixon JE, Swart P, Poreda R, Simons K(2002) D/H ratios in basalt glasses from the Salas y Gómez mantle plume interacting with the East Pacific Rise: Water from old D-rich recycled crust or primordial water from the lower mantle? Geochem Geophys Geosys 3Google Scholar
  62. Le Dez A, Maury RC, Vidal R, Bellon H, Cotton J, Brousse R (1996) Geology and geochemistry of Nuku Hiva, Marquesas: Temporal trends in a large Polynesian shield volcano. Bull Soc Geol France 167:197–209Google Scholar
  63. Liotard J-M, Barsczus HG (1983a) Contribution à la connaissance pétrographique et géochemique de I’ile de Hatutu, Archipel des Marquises, Polynésie francaise (Océan Pacifique Centre — Sud). CR Acad Sc Paris 297:725–728Google Scholar
  64. Liotard J-M, Barsczus HG (1983b) Contribution à la connaissance pétrographique et géochemique de I’ile de Fatu Huku, Archipel des Marquises, Polynésie francaise (Océan Pacifique Centre — Sud). CR Acad Sc Paris 297:509–512Google Scholar
  65. Liotard J-M, Barsczus HG (1984) Contribution à la connaissance pétrographique et géochemique de I’ile d’Eiao, Archipel des Marquises, Polynéste francaise (Océan Pacifique Centre — Sud). CR Acad Sc Paris 298:347–349Google Scholar
  66. Macdonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:82–133Google Scholar
  67. Mahoney JJ, Nicollet C, Dupuy C (1991) Madagascar basalts: Tracking oceanic and continental sources. Earth Planet Sci Lett 104:350–363Google Scholar
  68. Maia M, Ackermand D, Dehghani GA, Gente P, Hekinian R, Naar D, O’Connor J, Perrot K, Phipps Morgan J, Ramillien G, Revillon S, Sabetian A, Sandwell D, Stoffers P (2000) The Pacific-Arctic Ridge Foundation hot spot interaction: A case study of a ridge approaching a hotspot. Mar Geol 167:61–84Google Scholar
  69. Maia M, Hémond C, Gente P (2001) Contrasted interactions between plume, upper mantle, and litho-sphere: Foundation Chain case. Geochem Geophys Geosys 2:101029/2000GC000117Google Scholar
  70. Mammerickx J (1992) The Foundation Seamounts: Tectonic setting of a newly discovered seamount chain in the South Pacific. Earth Planet Sci Lett 113:293–306Google Scholar
  71. McKenzie D, O’Nions RK (1983) Mantle reservoirs and ocean island basalts. Nature 301:229–231Google Scholar
  72. McNutt MK (1998) Superswells. Rev Geophys 36(2):211–244Google Scholar
  73. McNutt MK, Fischer KM (1987) The south Pacific superswell. In: Keating BH, Fryer P, Batiza R, Boehlert GW (eds) Seamounts, islands and atolls. Am Geophys Union geophys Monograph 43:25–34Google Scholar
  74. McNutt MK, Judge AV (1990) The Super swell and mantle dynamics beneath the South Pacific. Science 248:969–975Google Scholar
  75. McNutt MK, Fischer K, Kruse S, Natland J (1989) The origin of the Marquesas fracture zone ridge and its implications for the nature of hot spots. Earth Planet Sci Letts 91:381–393Google Scholar
  76. McNutt MK, Caress DW, Reynolds J, Jordahl KA, Duncan RA (1997) Failure of plume theory to ex-plain midplate volcanism in the southern Austral islands. Nature 389:479–482Google Scholar
  77. Morgan WJ (1972) Deep mantle convection plumes and plate mot ions. American Association of Petroleum Geologists Memoir 56:203–213Google Scholar
  78. Nakamura Y, Tatsumoto M (1988) Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes. Geochim Cosmochim Acta 52:2909–2924Google Scholar
  79. Niu F, Solomon SC, Silver PG, Suetsugu D, Inoue H (2002) Mantle transition-zone structure beneath the South Pacific superswell and evidence for a mantle plume underlying the Society hotspot. Earth Planet Sci Lett 198:371–380Google Scholar
  80. O’Connor JM, Stoffers P, McWilliams MO (1995) Time-space mapping of Easter Chain volcanism. Earth Planet Sci Lett 136:197–212Google Scholar
  81. O’Connor JM, Stoffers P, Wijbrans JR (1998) Migration rate of volcanism along the Foundation Chain, SE Pacific. Earth Planet Sci Lett 164:41–59Google Scholar
  82. O’Connor JM, Stoffers P, Wijbrans JR (2001) En echelon volcanic elongate ridges connecting intraplate Foundation Chain volcanism to the Pacific-Antarctic spreading center. Earth Planet Sci Letts 192: 633–648Google Scholar
  83. Okal EA, Cazenave A (1985) A model for the plate tectonic evolution of the east-central Pacific based on SEASAT investigations. Earth Planet Sci Lett 72:99–116Google Scholar
  84. Palacz ZA, Saunders AD (1986) Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific. Earth Planet Sci Letts 79:270–280Google Scholar
  85. Pan Y, Batiza R (1998) Major element chemistry of volcanic glasses from the Easter Seamount chain: Constraints on melting conditions in the plume channel, J Geophys Res 103:5287–5304Google Scholar
  86. Rappaport Y, Naar DF, Barton CC, Liu ZJ, Hey RN (1997) Morphology and distribution of seamounts surrounding Easter Island. J Geophys Res 102:24713–24728Google Scholar
  87. Richards MA, Griffiths RW (1989) Thermal entrainment by deflected mantle plumes. Nature 342: 900–902Google Scholar
  88. Simons K, Dixon J, Schilling J, Kingsley R, Poreda R (2002) Volatiles in basaltic glasses from the Easter-Salas Gómez Seamount chain and Easter Microplate: Implications for geochemical cycling of volatile elements. Geochem Geophys Geosys 3(7):1–29Google Scholar
  89. Sleep NH (2002) Ridge-crossing mantle plume s and gaps in tracks. Geochem Geophys Geosys 3:1010291 2001GC000290Google Scholar
  90. Smith W, Sandwell D (1997) Measured and estimated seafloor topography (version 42) World Data Center A for Marine Geology and Geophysics research publication RP-1Google Scholar
  91. Staudigel H, Park K-H, Pringle MS, Rubenstone JL, Smith WHF, Zindler A (1991) The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet Sci Letts 102:24–44Google Scholar
  92. Stoffers P, Botz R, Cheminée J-L, Devey CW, Froger V, Glasby GP, Hartmann M, Hekinian R, Kögler F, Laschek D, Larqué P, Michaelis W, Mühe RK, Puteanus D, Richnow HH (1989) Geology of Macdonald Seamount region, Austral Islands: Recent hotspot volcanism in the south Pacific. Mar Geophys Res 11:101–112Google Scholar
  93. Stoffers P, Hekinian R, Haase KM, Scientific Party (1994) Geology of young submarine volcanoes west of Easter Island, Southeast Pacific. Mar Geol 118:177–185Google Scholar
  94. Stoffers P, SO-65 tsp (1990) Active Pitcairn hotspot found. Mar Geol 95:51–55Google Scholar
  95. Sun S-S (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil Trans R Soc Lond A 297:409–445Google Scholar
  96. Talandier J, Okal EA (1984) The volcano seismic swarms of 1981–1983 in the Tahiti-Mehetia area, French Polynesia. J Geophys Res 89:11216–11234Google Scholar
  97. Tanaka S (2002) Very low shear wave velocity at the base of the mantle under the South Pacific superswell. Earth Planet Sci Letts 203:879–893Google Scholar
  98. Turner DL, Jarrard RD (1982) K-Ar dating of the Cook-Austral island chain: A test of the hotspot hypothesis. J Volcanol Geotherm Res 12:187–220Google Scholar
  99. Vidal P, Chauvel C, Brousse R (1984) Large mantle heterogeneity beneath French Polynesia. Nature 307:536–538Google Scholar
  100. Watson S, McKenzie D (1991) Melt generation by plumes: A study of Hawaiian volcanism. J Petrol 32:501–537Google Scholar
  101. Weaver BL (1991) The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet Sci Letts 104:381–397Google Scholar
  102. Weaver BL, Wood DA, Tarney J, Joron JL (1987) Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet, St Helena, Gough and Tristan da Cunha alkaline igneous rocks. Geol Soc Spec Publ 30:253–267Google Scholar
  103. White WM, Duncan RA (1996) Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. In: Basu A, Hart S (eds) Earth processes: Reading the isotopic code, vol 95. Am Geophys Union, Geophys Monogr, Washington, DC, pp 183–206Google Scholar
  104. White WM, Hofmann AW (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296:821–825Google Scholar
  105. White WM, McBirney AR, Duncan RA (1993) Petrology and geochemistry of the Galapagos Islands: Portrait of a pathological mantle plume. J Geophys Res 98:19533–19563Google Scholar
  106. Wilson JT (1973) Mantle plumes and plate motions. Tectonophys 19:149–164Google Scholar
  107. Woodhead JD (1992) Temporal geochemical evolution in oceanic intra-plate volcanics: A case study from the Marquesas (French Polynesia) and comparison with other hot spots. Contrib Mineral Petrol 111:458–467Google Scholar
  108. Woodhead JD (1996) Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook-Austral hotspot. J Volcanol Geotherm Res 72:1–19Google Scholar
  109. Woodhead JD, Devey CW (1993) Geochemistry of the Pitcairn seamounts, I: Source character and temporal trends. Earth Planet Sci Lett 116:81–99Google Scholar
  110. Woodhead JD, McCulloch MT (1989) Ancient seafloor signals in Pitcairn Island lavas and evidence for large amplitude, small length-scale mantle heterogeneities. Earth Planet Sci Letts 94:257–273Google Scholar
  111. Woodhead JD, Greenwood P, Harmon RS, Stoffers P (1993) Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature 362:809–813Google Scholar
  112. Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • C. W. Devey
  • K. M. Haase

There are no affiliations available

Personalised recommendations