Mantle Plumes are NOT From Ancient Oceanic Crust

  • Y. Niu
  • M. J. O’Hara


Basaltic volcanism mainly occurs in three tectonic settings on the Earth. Volcanism along sea-floor spreading centers produces Mid-Ocean Ridge basalts(MORB) that are depleted in incompatible elements. Volcanism above intra-oceanic subduction zones produces island arc basalts (IAB) that are enriched in water-soluble incompatible elements (e.g., Ba, Rb, Cs, Th, U, K, Pb, Sr), but depleted in water-insoluble incompatible elements (e.g., Nb, Ta, Zr, Hf, Ti). MORB and IAB are products of plate tectonics, and their geochemical differences result from differences in their respective sources and physical mechanisms through which they form. MORB are formed by plate-separation-induced passive mantle upwelling and decompression melting, thus sampling the uppermost mantle that is depleted in incompatible elements. Depletion of the MORB mantle is widely accepted as resulting from the extraction of incompatible element-enriched continental crust during the Earth’s early history (Armstrong 1968; Gast 1968; O’Nions and Hamilton 1979; Jacobsen and Wasserburg 1979; DePaolo 1980; Allègre et al. 1983; Hofmann 1998). IAB are widely accepted as resulting from subducting slab-dehydration-induced melting of mantle wedge peridotites, giving rise to the characteristic geochemical signatures of slab “component”, which is rich in water and water-soluble elements (e.g., Gill 1981; Tatsumi et al. 1986; McCulloch and Gamble 1991; Stolper and Newman 1994; Hawkins 1995; Pearce and Peate 1995; Davidson 1996).


Earth Planet Oceanic Crust Mantle Plume Lower Mantle Contrib Mineral Petrol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agee CB (1998) Crystal-liquid density inversions in terrestrial and lunar magmas. Phys Earth Planet Inter 107:63–74CrossRefGoogle Scholar
  2. Albarède F (1996) Introduction to geochemical modeling. Cambridge University Press Cambridge, pp 543Google Scholar
  3. Allègre CJ, Hart SR, Minster J-F (1983) Chemical structure and evolution of the mantle and continents determined by invers ion of Nd and Sr isotopic data; I. Theoretical methods. Earth Planet Sci Lett 66:177–190CrossRefGoogle Scholar
  4. Armstrong RL (1968) A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev Geophys Space Phys 6:175–200CrossRefGoogle Scholar
  5. Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258CrossRefGoogle Scholar
  6. Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic crust in the convecting mantle. J Geophys Res 99:19867–19884CrossRefGoogle Scholar
  7. Clague D, Weber WS, Dixon JE (1991) Picrite glasses from Hawaii. Nature 353:553–556CrossRefGoogle Scholar
  8. Davidson JP (1996) Deciphering mantle and crustal signatures in subduction zone magmatism. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction — top to bottom. Geophys Monogr 96:251–264Google Scholar
  9. Davies GF, Richards MA (1992) Mantle convection. J Geol 100:151–206CrossRefGoogle Scholar
  10. DePaolo DJ (1980) Crustal growth and mantel evolution: Inferences from models of element transport and Nd and Sr isotopes. Geochim Cosmochim Acta 44:1185–1196CrossRefGoogle Scholar
  11. Diek HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. Geol Soc Spec Publ 42:71–105CrossRefGoogle Scholar
  12. Diekin AP (1997) Radiogenic isotope geology. Cambridge University Press, CambridgeGoogle Scholar
  13. Eldholm O, Coffin MF (1998) Large igneous provinces and plate tee tonics. Geophys Monogr 121: 309–326CrossRefGoogle Scholar
  14. Elliott T, Plank T, ZindIer A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana Ar. J Geophys Res 102:14991–15019CrossRefGoogle Scholar
  15. Ewart A, Collerson KD, Regelous M, Wendt JI, Niu Y (1988) Geochemical evolution within the Tonga-Kermadec-Lau Arc-Backarc system: The role of varying mantle wedge composition in space and time. J Petrol 39:331–368CrossRefGoogle Scholar
  16. Falloon TJ, Green DH, Hatton CJ, Harris KL (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29:1257–1282Google Scholar
  17. Faure G (1986) Principles of Isotope GeoIogy. John Wiley and Sons, Inc., New YorkGoogle Scholar
  18. Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1055–1086CrossRefGoogle Scholar
  19. Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, BerlinCrossRefGoogle Scholar
  20. Grand SP, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7:1–7Google Scholar
  21. Green TH, Ringwood AE (1968) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18:105–162CrossRefGoogle Scholar
  22. Griffiths RW, Campbell IH (1990) Stirring and structure in mantle starting plumes. Earth Planet Sci Lett 99:66–78CrossRefGoogle Scholar
  23. Hawkins JW (1995) Evolution of the Lau Basin — insights from ODP Leg 135. Geophys Monogr 88:125–174CrossRefGoogle Scholar
  24. Herzberg C, O’Hara MJ (1998) Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth Sci Rev 44:39–79CrossRefGoogle Scholar
  25. Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerzoic age. J. Petrol 43:1857–1883CrossRefGoogle Scholar
  26. Hofmann AW (1988) Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  27. Hofmann AW (1997) Mantle geochemistry: The message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  28. Hofmann AW, Jochum KP (1996) Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project, J Geophys Res 101: 11831–11839CrossRefGoogle Scholar
  29. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57: 421–436CrossRefGoogle Scholar
  30. Jacobsen SB, Wasserburg GJ (1979) The mean age of mantle and crustal reservoirs. J Geophys Res 84:7411–7427Google Scholar
  31. Kaneshima S, Helffrich G (1999) Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity. Science 283:1888–1891CrossRefGoogle Scholar
  32. Kellogg LH, Hager BH, Van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881–1884CrossRefGoogle Scholar
  33. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from travel times. Geophys J Int. 122:108–124CrossRefGoogle Scholar
  34. Kesson SE, Fitz Gerald JD, Shelley JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252–255CrossRefGoogle Scholar
  35. Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subdueted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205CrossRefGoogle Scholar
  36. McCulloeh MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374CrossRefGoogle Scholar
  37. McDonough WF (1991) Partial melting of subdueted oceanic crust and isolation of its residual eclogitic lithology. Phil Trans R Soc Lond A33:407–418CrossRefGoogle Scholar
  38. Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J Petrol 38:1047–1074CrossRefGoogle Scholar
  39. Niu Y, Batiza R (1997) Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle. Earth Planet Sci Lett 148:471–483CrossRefGoogle Scholar
  40. Niu Y, Hekinian R (1997) Basaltic liquids and harzburgitic residues in the Garrett transform: A ease study at fast-spreading ridges Earth Planet Sci Lett 146:243–258CrossRefGoogle Scholar
  41. Niu Y, O’Hara MJ (2003) The origin of ocean island basalts: Anew perspective from petrology, geochemistry and mineral physics considerations. J Geophys Res 108:10.1029/2002JB002048Google Scholar
  42. Niu Y, Collerson KD, Batiza R, Wendt JI, Regelous M (1999) The origin of E-Type MORB at ridges far from mantle plumes: The East Pacific Rise at 11°20’. J Geophys Res 104:7067–7087CrossRefGoogle Scholar
  43. Niu Y, Regelous M, Wendt JI, Batiza R, O’Hara JM (2002a) Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth Planet Sci Lett 199:329–348CrossRefGoogle Scholar
  44. Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002b) Mineral chemistry, whole-rock compositions and petrogenesis of ODP Leg 176 gabbros: Data and discussion. Proc ODP Sci Results 176:1–60 (on line)Google Scholar
  45. Niu Y, O’Hara MJ, Pearce JA (2003) Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrologic perspective. J Petrol 44:851–866CrossRefGoogle Scholar
  46. Norman MD, Garcia MO (1999) Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth Planet Sci Lett 168: 27–44CrossRefGoogle Scholar
  47. O’Hara MJ (1968a) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133CrossRefGoogle Scholar
  48. O’Hara MJ (1968b) Are ocean floor basalts primary magmas? Nature 220:683–686CrossRefGoogle Scholar
  49. O’Hara MJ, Herzberg C (2002) Interpretation of trace element and isotope features of basalts: Relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochim Cosmochim Acta 66:2167–2191CrossRefGoogle Scholar
  50. O’Hara MJ, Yoder Jr HS (1967) Formation and fractionation of basic magmas at high pressures. Scott J GeoI 3:67–117CrossRefGoogle Scholar
  51. O’Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modeling of mantle differentiation and crustal growth. J Geophys Res 84:6091–6101CrossRefGoogle Scholar
  52. Ohtani E, Maeda M (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet Sci Lett 193:69–75CrossRefGoogle Scholar
  53. Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57–63CrossRefGoogle Scholar
  54. Patchet PJ, White WM, Feldmann H, Kielinezuk S, Hofmann AW (1984) Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet Sci Lett 69:365–378CrossRefGoogle Scholar
  55. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic are magmas. Ann Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  56. Phipps Morgan J, Morgan WJ, Zhang Y-S, Smith WHF (1995) Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. J. Geophys Res 100:12753–12767CrossRefGoogle Scholar
  57. Plank T, Langmuir CH (1998) The chemical compositions of subducting sediments and its consequences for the crust and mantle. Chem GeoI 145:325–394CrossRefGoogle Scholar
  58. Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem GeoI 145:447–460CrossRefGoogle Scholar
  59. Stolper E (1980) A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74:13–27CrossRefGoogle Scholar
  60. Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325CrossRefGoogle Scholar
  61. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalt: Implications for mantle composition and processes. Geol Soc Spec Publ 42:323–345CrossRefGoogle Scholar
  62. Suzuki A, Ohtani E, Kato T (1998) Density and thermal expansion of a peridotite melt at high pressure. Phys Earth Planet Inter 107:53–61CrossRefGoogle Scholar
  63. Tatsumi Y, Kogiso T (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 2. Origin of chemical and physical characteristics in arc magmatism. Earth Planet Sci Lett 148:207–221CrossRefGoogle Scholar
  64. Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res 29:293–309CrossRefGoogle Scholar
  65. Taylor SR, McLennan SM (1985) The continental crust: Its composition and evolution. Oxford University Press, New YorkGoogle Scholar
  66. van der Hilst RD, Kárason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: Toward a hybrid convection model. Science 283:1885–1888CrossRefGoogle Scholar
  67. van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584CrossRefGoogle Scholar
  68. Weaver BL (1991) The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397CrossRefGoogle Scholar
  69. White WM, Patchett PJ, BenOthman D (1986) Hf isotope ratios of marine sediments and Mn nodules: evidence for a mantle source of Hf in seawater. Earth Planet Sci Lett 79:46–54CrossRefGoogle Scholar
  70. Williams Q, Garnero EJ (1996) Seismic evidence of partial melt at the base of Earth’s mantle. Science 273:1528–1530CrossRefGoogle Scholar
  71. Wyllie PJ (1970) Ultramafic rocks and upper mantle. Mineral Soc Am Spec Paper 3:3–32Google Scholar
  72. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Y. Niu
  • M. J. O’Hara

There are no affiliations available

Personalised recommendations