Advertisement

Submarine Landslides in French Polynesia

  • V. Clouard
  • A. Bonneville

Abstract

Landslides are common features of oceanic islands and playa key role in their evolution. Caused by caldera collapse or flank collapses, they can be classified into three types: (1) rock falls, (2) slumps or (3) debris avalanches (Moore et al. 1989). Rock falls, or superficial landslides, are mainly related to erosion processes of the subaerial parts of the island. The pieces of debris are less than 1 m in size, and their surface is rippled. Flank collapses generally produce giant submarine landslides, with a horseshoe-shaped feature at their head (Moore et al. 1989). The landslides due to a deep listric fault are cataclysmic events producing fast moving debris avalanches. Deposits can extend over several hundred kilometers away from an island and are characterized by thicknesses less than 2 km, with a hummocky terrain at their lower part. Side-slip over deep fault is termed slump Fig. 6.1. Slumps are slow-moving slope instabilities. The thickness of the deposits can be as much as 10 km, since the primitive volcano flank is less shattered and disrupted than in the case of a debris avalanche. The causes of major lateral collapses are still a matter of debate, but in most cases they are thought to be related to magma intrusion in the rift zones (Denlinger and Okubo 1995; Keating and McGuire 2000).

Keywords

Rift Zone Debris Avalanche Submarine Landslide Landslide Deposit Sediment Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blais S, Guille G, Maury R, Guillou H, Miau H, Cotton J (1997) Géologie et pétrologie de l’île de Raiatea (Société, Polynésie Prançaise). C R Acad Sci Paris, série IIa 324:435–442Google Scholar
  2. Blais S, Guille G, Guillou H, Chauvel C, Maury RC, Caroff M (2000) Géologie, géochimie et géochronologie de l’île de Bora Bora (Société, Polynésie Française), C R Acad Sci Paris, série IIa 331:579–585Google Scholar
  3. Blanchard F, Liotard JM, Brousse R (1981) Origine mantellique des benmoréites de Moorea (îles de la Société, Pacifique), Bull Volc 44:691–710CrossRefGoogle Scholar
  4. Bonneville A, Le Suavé R, Audin L, Clouard V, Dosso L, Gillot P-Y, Janney P, Jordahl K, Maamaatuaiahutapu K (2002) Arago Seamount, the missing hotspot found in the Austral Islands. Geology 30:1023–1026CrossRefGoogle Scholar
  5. Brousse R, Berger ET (1985) Raiatea dans l’archipel de la Société (Polynésie française), C R Acad Sci Paris, série IIa 301:115–118Google Scholar
  6. Calmant S, Cazenave A (1986) The effective elastic lithosphere under the Cook Austral and Society Islands. Earth Planet Sci Lett 77:187–202CrossRefGoogle Scholar
  7. Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19CrossRefGoogle Scholar
  8. Cheminée J-L, Hekinian R, Talandier J, Albarède F, Devey CW, Francheteau J, Lancelot Y (1989) Geology of an active hotspot: Teahitia-Mehetia region in the south Central Pacific, Mar Geol Res 11:27–50CrossRefGoogle Scholar
  9. Clouard V, Bonneville A, Barsczus HG (2000) Size and depth of frozen magma chambers under atolls and islands of French Polynesia using detailed gravity studies. J Geophys Res 105:8173–8192CrossRefGoogle Scholar
  10. Clouard V, Bonneville A, Gillot P-Y (2001) A giant landslide on the southern flank of Tahiti Island, French Polynesia. Geophys Res Lett 28:2253–2256CrossRefGoogle Scholar
  11. Day SJ, Heleno da Silva SIN, Fonseca JFBD (1999) A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands. J Volcanol Geotherm Res 94:191–218CrossRefGoogle Scholar
  12. Deneufbourg G (1965) Carte géologique, notice explicative sur la feuille Huahine, Bur Rech Géol MinierGoogle Scholar
  13. DenIinger RP, Okubo P (1995) Structure of the mobile south flank of Kilauea Volcano, Hawaii. J Geophys Res 100:24499–24507CrossRefGoogle Scholar
  14. Diraison C, Bellon H, Léotot C, Brousse R, Barsczus HG (1991) L’alignement de la Société (Polynésie française): volcanologie, géochronologie, proposition d’un modèle de point chaud. Bull Soc Geol Fran. 162:479–496Google Scholar
  15. Duncan RA, McDougall I (1976) Linear volcanism in French Polynesia. J Volcanol Geotherm Res 1:197–227CrossRefGoogle Scholar
  16. Duncan RA, Fisk MR, White WM, Nielsen RL (1994) Tahiti: Geochemical evolution of a French Polynesian volcano. I Geophys Res 99:24341–24357CrossRefGoogle Scholar
  17. Fornari DJ, Moore JG, Calk L (1979) A large submarine sand-rubble flow on the Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 5:239–256CrossRefGoogle Scholar
  18. Gillot P-Y, Lefèver J-C, Nativel P-E (1994) Model for the structural evolution of the volcanoes of Réunion Island. Earth Planet Sci Lett 122:291–302CrossRefGoogle Scholar
  19. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59CrossRefGoogle Scholar
  20. Hekinian R, Bideau D, Stoffers P, Cheminée J-L, Muhe R, Puteanus G, Binard N (1991) Submarine intraplate volcanism in the South Pacific; Geological setting and petrology of the Society and the Austral regions. J Geophys Res 96:2109–2138CrossRefGoogle Scholar
  21. Herron EM (1972) Sea-floor spreading and the Cenozoic history of the east-central Pacific. Geol Soc Am Bull 83:1671–1692CrossRefGoogle Scholar
  22. Hildenbrand A, Bonneville A, Gillot P-Y (2003) Off shore evidence for a landslide on the northern flank of Tahiti-Nui, (French Polynesia). Geophys Res Lett, submitted Google Scholar
  23. Holcomb RT, Searle RC (1991) Large land slides from oceanic volcanoes. Mar Geotechnol 10:19–32CrossRefGoogle Scholar
  24. Johnson RH, Mahaloff A (1971) Relation of Macdonald Volcano to migration of volcanism along the Austral Chain. J Geophys Res 76:3282–3290CrossRefGoogle Scholar
  25. Jordahl KA (1999) Tectonic evolution and midplate volcanism in the south Pacific. PhD thesis, MITGoogle Scholar
  26. Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–55CrossRefGoogle Scholar
  27. Le Dez A, Maury RC, Guillou H, Cotten J, Blais S, Guille G (1998) L’île de Moorea (Société): Édification rapide d’un volcan-bouclier polynésien. Geol France 3:51–64Google Scholar
  28. Lénat J-F, Vincent P, Bachelery P (1989) The off-shore continuation of an active basaltic volcano: Piton de la Fournaise (Reunion Island, Indian Ocean); Structural and geomorphological interpretation from seabeam mapping. J Volcanol Geotherm Res 36:1–36CrossRefGoogle Scholar
  29. Leroy I (1994) Evolution des volcans en système de point chaud: île de Tahiti, archipel de la Société (Polynésie française), PhD thesis, Univ. Paris XI, OrsayGoogle Scholar
  30. Matsuda J, Notsu K, Okano J, Yaskawa K, Chungue L (1984) Geochemical implications from Sr isotopes and K-Ar age determinations for the Cook Austral Islands chain. Tectonophysics 104:145–154CrossRefGoogle Scholar
  31. Mayes CL, Lawver LA, Sandwell DT (1990) Tectonic history and new isochron chart of the South Pacific. J Geophys Res 95:8543–8567CrossRefGoogle Scholar
  32. McNutt MK, Caress DW, Reynolds J, Jordahl KA, Duncan RA (1997) Failure of plume theory to explain midplate volcanism in the Southern Austral Islands. Nature 389:479–482CrossRefGoogle Scholar
  33. Minster JB, Jordan TG (1978) Present-day plate motions. J Geophys Res 83:5331–5354CrossRefGoogle Scholar
  34. Mitchell NC (2001) The transition from circular to stellate forms of submarine volcanoes. J Geophys Res 106:1987–2003CrossRefGoogle Scholar
  35. Moore JG (1964) Giant submarine landslides on Hawaiian Ridge. US Geol Surv Prof Pap 501-D:D95–D98Google Scholar
  36. Moore JG, Fiske RS (1969) Volcanic substructure inferred from dredge samples and ocean-bottom photographs. Hawaii Geol Soc Am Bull 80:1191–1202CrossRefGoogle Scholar
  37. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan MT (1989) Prodigeous submarine landslides on Hawaiian Ridge. J Geophys Res 94:17645–17484Google Scholar
  38. Moore JG, Bryan WB, Besson MH, Normark WR (1995) Giant blocks in the South Kona landslide, Hawaii. Geophysics 23:125–128Google Scholar
  39. Munschy M, Antoine C, Gachon A (1996) Evolution tectonique de la région des Tuamotu, océan Pacifique Central. C R Acad Sci Paris, série IIa 323:941–948Google Scholar
  40. Norris A, Johnson RH (1969) Submarine volcanic eruptions recently located in the Pacific by SOFAR hydrophones. J Geophys Res 74:650–664CrossRefGoogle Scholar
  41. ORSTOM (1993) Atlas de la Polynésie française. Ed de l’Orstom, ParisGoogle Scholar
  42. Ouassaa K (1996) Etude de la structure sismique de la croûte océanique dans la partie active du point chaud de Tahiti. Traitement et Interprétation des données sismiques des campagnes Midplate 2 et Teahitita 4. PhD thesis, Univ. Bretagne Occidentale, BrestGoogle Scholar
  43. Service de l’Urbanisme (1992) Carte topographique 1: 20 000, Papeete, Tahiti, French PolynesiaGoogle Scholar
  44. Smith JR, Malahoff A, Shor AN (1999) Submarine geology of the Hilina Slump and morpho-structural evolution of Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 94:59–88CrossRefGoogle Scholar
  45. Steiger RH, Jaeger E (1977) Subcomission on geochronology: Convention on the use of decay constants in geo-, cosmo-chronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  46. Stillman CJ (1999) Giant Miocene landslides and the evolution of Fuerteventura, Canary Islands. J Volcanol Geotherm Res 94:89–104CrossRefGoogle Scholar
  47. Talandier J (2004) Seismicity of the Society and Austral hotspot in the South pacific: Seismic direction, monitoring and interpretations of underwater volcanism. In: Hekinian R (ed) Oceanic hotspots. Springer-Verlag, Berlin Heidelberg New York, this volume Google Scholar
  48. Talandier J, Okal EA (1984) New surveys of Macdonald Seamount, south Central Pacific, following volcanoseismic activity, 1977–1983. Geophys Res Lett 11:813–816CrossRefGoogle Scholar
  49. Turner DL, Jarrard RD (1982) K-Ar dating of the Cook-Austral island chain: A test of the hot-spot hypothesis. J Volcanol Geotherm Res 12:187–220CrossRefGoogle Scholar
  50. Walker GPL (1988) Three Hawaiian calderas: An origin through loading by shallow intrusions? J Geophys Res 93:14773–14784CrossRefGoogle Scholar
  51. Watts AB, Masson DG (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res 100:24487–24498CrossRefGoogle Scholar
  52. Watts AB, ten Brink US, Buhl P, Brocher TM (1985) A multichannel seismic study of the lithosphere flexure across the Hawaiian-Emperor seamount chain. Nature 315:105–111CrossRefGoogle Scholar
  53. White WM, Duncan RA (1996) Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. In: Basu A, Hart S (eds) Earth processes: Reading the isotopic code. Am Geophys Union Geophys Monograph. 95:183–206Google Scholar
  54. Wynn RB, Masson DG, Stow DAV, Weaver PPE (2000) Turbidity current sediment waves on the submarine slopes of the western Canary Islands. Mar Geol 163:185–198CrossRefGoogle Scholar
  55. ZEPOLYF (2003) Bathymetry of French Polynesia: Digital bathymetric model based on a multi-beam and single-beam data compilation. Univ. Polynésie française, Tahiti, French PolynesiaGoogle Scholar
  56. ZEPOLYF1 (1996) Rapport de mission de la campagne ZEPOLYF1. Univ. Polynéste française, IFREMER, SHOM, Tahiti, French PolynesiaGoogle Scholar
  57. ZEPOLYF2 (2001) Rapport de campagne, documents et travaux ZEPOLYF. Univ. Polynésie française, Tahiti, French PolynesiaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • V. Clouard
  • A. Bonneville

There are no affiliations available

Personalised recommendations