Skip to main content

Petrology of Young Submarine Hotspot Lava: Composition and Classification

  • Chapter

Abstract

Underwater volcanism is the predominant phenomenon taking place on Earth. About 71% of the Earth’s sea-floor surface is the site of volcanism, which mainly extrudes basaltic rocks. The mineralogical and chemical compositions of oceanic rocks are important factors that affect the formation of the oceanic crust, because the rock’s composition influences its rate of extrusion, the morphology of lava flows, the cooling rate, the mode of emplacement, etc. The magmatic history of the various geological provinces is also controlled by the processes of partial melting of a heterogeneous mantle and of crystal-liquid fractionation within the magmatic reservoir. Thus, the magmatic history (the rocks’ petrology) can be better understood if we first clearly define and understand both the mineral and chemical composition and the morphology of rocks found in different geological settings and provinces of the ocean floor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermand D, Hekinian R, Stoffers P (1998) Magmatic sulfides and oxides in volcanic rocks from the Pitcairn hot spot (South Pacific). Mineral Petrology 64:149–152

    Article  Google Scholar 

  • Allan JF, Batiza R, Perfit MR, Fornari DJ, Sack RO (1989) Petrology of lavas from the Lamont Seamount Chain and adjacent East Pacific Rise, 10°N. J Petrol 30:1245–1998

    Google Scholar 

  • Aumento F (1969) Diorites from the Mid-Atlantic Ridge. Nature 165:112–113

    Google Scholar 

  • Bach W, Hegner E, Erzinger E, Satir M (1994) Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30°S. Contr Miner Petrol 116:365–380

    Article  Google Scholar 

  • Batiza R (1989) Seamount and seamount chains of the Eastern Pacific. In: Winterer EL, Hussong DM, Decker RW (eds) The Eastern Pacific Ocean and Hawaii, the geology of North America. Geol Soc Amer N:145–159

    Google Scholar 

  • Batiza R, Niu Y (1992) Petrology and magma chamber processes at the East Pacific Rise. J geophys Res 97:6779–6797

    Article  Google Scholar 

  • Batiza R, Niu Y, Karsten JL, Boger W, Potts E, Norby L, Butler R (1996) Steady and non-steady state magma chambers below the East Pacific Rise. Geophys Res Lett 23:221–224

    Google Scholar 

  • Bideau D, Hekinian R (1995) A dynamic model for the generating small-scale heterogeneities in ocean floor basalts. J Geophys Res 100:10141–10162

    Article  Google Scholar 

  • Binard N (1991) Les points chaud de la Sciété et des Australes et de Pitcairn (Pacifique Sud): Approche volcanoIogique et petrologique. PhD theses, Université de bretagne OccidentaIe, Avenue Le Gorgeu, Brest, France, pp 372

    Google Scholar 

  • Binard N, Hekinian R, Stoffers P (1992) Morphostructural study and type of volcanism of submarine volcanoes over the Pitcairn hot spot in the South Pacific. Tectonophysics 206:245–264

    Article  Google Scholar 

  • Byerly G (1980) The nature of differentiation trends in some volcanic rocks from the Galapagos Spreading Center. J Geophys Res 85:3797–3810

    Article  Google Scholar 

  • Carmichael ISE (1964) Petrology of the Thingmuli, a tertiary volcano in easter Iceland. J Petrol 5:535–460

    Google Scholar 

  • Clague DA (1988) Petrology of ultramafic xenoliths from Loihi Seamount, Hawaii. J Petrology 29:1161–1186

    Google Scholar 

  • Clague DA, Frey FA, Thompson G, Rindge S (1981) Minor and trace geochemistry of volcanic rocks dredged from the Galapagos spreading center: Role of crystal fractionation and mantle heterogeneity. J Geophys Res 86:9469–9482

    Article  Google Scholar 

  • Coogan LA, KM Gillis, CJ MacLoad, JM Thompson, Hekinian R (2002) Petrology and geochemistry of lower crust formed at the East Pacific Rise and exposed at Hess Deep: A synthesis and new results. Electr J Earth Sci Geochemistry, Geophys, Geosystem G3, Am Geophys Union 3 (11):1–30

    Google Scholar 

  • Devey CW, Albarède F, Cheminée J-L, Miehard A, Mühe R, Stoffers P (1990) Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study. J Geophys Res 95:5049–5066

    Article  Google Scholar 

  • Devey CW, Hekinian R, Ackermand D, Binard N, Francke B, Hémond C, Kapsimalis V, Lorenc S, Maia M, Möller H, Perrot K, Pracht J, Rogers T, Stattegger K, Steinke S, Victor P (1997) The Foundation Seamount Chain: A first survey and sampling. Mar Geol 137:191–200

    Article  Google Scholar 

  • Devey CW, Lacksehewitz KS, Mertz DF, Bourdon B, Cheminée J-L, Dubois J, Guivel C, Hekinian R, Stoffers P (2003) Giving birth to hotspot volcanoes: Distribution and composition of young seamounts from the seafloor near Tahiti and Pitcairn Islands. Geology 31(5):395–398

    Article  Google Scholar 

  • Fretzdorff S, Haase KM (2002) Geochemistry and petrology of lavas from the submarine flanks of Reunion Island (western Indian Ocean): Implications for magma genesis and the mantle source. Mineralogy Petrology 75:153–184

    Article  Google Scholar 

  • Fretzdorff S, Haase KM, Garbe-Schonberg C-D (1996) Petrogenesis of lavas from the Umu volcanic field in young hotspot region of Easter Island, Southeastern Pacific. Lithos 38:23–40

    Article  Google Scholar 

  • Frey FA (1980) The origin of pyroxenite and garnet pyroxenites from Salt Lake Crater, Ohau, Hawaii: Trace element evidence. Am J Sci 280A:427–449

    Google Scholar 

  • Frey FA, Suen CJ, Stockman HW (1985) The Ronda peridotite: Geochemistry and petrogenesis. Geochm Acta 49:2468–2491

    Google Scholar 

  • Garcia MO, Jorgenson BA, Mahoney JJ (1993) An evaluation of temporal geochemical evolution of Loihi Summit lavas: Results from Alvin submersible dives. J Geophys Res 98:537–550

    Article  Google Scholar 

  • Graham DW, Zinlder A, Kurz, MD, Jenkins WJ, Batiza R, Staudigel H (1988) He, Pb, Sr and Nd isotope constraints on magma genesis and mantle heterogeneity beneath young Pacific seamounts Contrib to Mineral Petrol 99:446–463

    Google Scholar 

  • Haase KM (2002) Geochemical constrats on magmasources and mixing processes in Easter Microplate MORB (SE Pacific): A case study of plume-ridge interaction. Chem Geol 182:335–355

    Article  Google Scholar 

  • Haase KM, Devey C (1996) Geochemistry of lava from the Ahu and Tupa volcanic fields, Easter hotspot, southeast Pacific: lmplications for intraplate magma genesis near spreading axis. Earth Planet Sci Lett 137:129–143

    Article  Google Scholar 

  • Hawkins J, Melchior J (1983) Petrology of basalts from Loihi Seamount, Hawaii. Earth Planet Scie Let 66:356–369

    Article  Google Scholar 

  • Hekinian R, Walker D (1987) Diversity and spatial zonation of volcanic rocks from the East Pacific Rise near 21°N. Contrib Mineral Petrol 96:265–280

    Article  Google Scholar 

  • Hekinian R, Thompson G, Bideau D (1989) Axial and off-axial heterogeneity of basaltic rocks from the East Pacific Rise at 12°38’N–12°51’N and 11°26’N–11°30’N. J Geophys Res 94:17437–17463

    Article  Google Scholar 

  • Hekinian R, Bideau D, Stoffers P, Cheminée JL, Muhe R, Puteanus D, Binard N (1991) Submarine intraplate volcanism in the South Pacific: Geological setting and petrology. J Geophys Res 96:2109–2138

    Article  Google Scholar 

  • Hekinian R, Bideau D, Hébert R, Niu Y (1995a) Magmatism in the Garrett Transform fault. J Geophys Res 100:10163–10185

    Article  Google Scholar 

  • Hekinian R, Stoffers P, Ackermand D, Binard N, Francheteau J, Devey CW, Garbe-Shonberg D (1995b) Magmatie evolution of the Easter Microplate-Crough Seamount region (South East Pacific). Marine Geophys Res 17:375–397

    Article  Google Scholar 

  • Hekinian R, Francheteau J, Armijo R, Cogné JP, Constantin M, Girardeau J, Hey R, Naar DF Searle R (1996) Petrology of the Easter Microplate region in the South Pacific. J Volc Geotherm Res 72:259–289

    Article  Google Scholar 

  • Hekinian R, Stoffers P, Ackermand D, Révillon S, Maia M, Bohn M (1999) Ridge-hotspot interaction: The Pacific-Antarctic Ridge and the Foundation seamounts. Marine Geol 160:199–223

    Article  Google Scholar 

  • Hekinian R, Cheminée J-L, Stoffers P, Dubois J, Scott S, Guivel C, Garbe-Schoberg D, Devey CW, Bourdon B, Lacschewitz K, McMurtry G, Le Drezen E (2003) Pitcairn hotspot in the South Pacific: Distribution and composition of submarine volcanic sequences. J Volc Getherm Res 121:219–245

    Article  Google Scholar 

  • Hémond C, Devey CW, Chauvel C (1994) Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry. Chemical Geology 115:7–45

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Article  Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implication for magmatic processes within the mantle. Am J Sci 280:389–426

    Google Scholar 

  • Juster TC, Grove TL (1989) Experimental constraints on the genesis of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W. J Geophys Res 94:9251–9274

    Article  Google Scholar 

  • Juteau T, Maury R (1997) Geologhic de la croute oceanique. Masson, Paris, pp 367

    Google Scholar 

  • Langmuir CH, Bender JF, Bence AE, Batiza R (1986) Petrological and tectonic segmentation of the East Pacific Rise, 5°30’–14°30’N. Nature 332:422–429

    Article  Google Scholar 

  • Le Bas MJ, Streickeisen AL (1986) The IUGS systematics of igneous rocks. J Geol Soc London 148:825–833

    Article  Google Scholar 

  • Mahoney JJ, Sinton JM, Kurz MD, Macdougall JD, Spencer KJ, Langmuir CW (1994) Isotope and trace elements characteristics of a super-fast spreading ridge: East Pacific Rise, 13–23° S. Earth Plant Sci Lett 121:173–193

    Article  Google Scholar 

  • Maia M, Hémond C, Gente P (2001) Contrasted interactions between plume and lithosphere: The Foundation chain case. Geochem Geophys Geosyst 2 (article), 2000GC000117

    Google Scholar 

  • Middlemost EAK (1980) A contribution to the nomenclature and classification of volcanic rocks. Geol Mag 117:51–57

    Article  Google Scholar 

  • Nielsen RL, Delong SE (1992) A numerical approach to boundary layer fractionation: Application to differentiation in natural magma systems. Contrib Mineral Petrol 110:355–369

    Article  Google Scholar 

  • Pan Y, Batiza R (1998) Major element chemistry of volcanic glasses from the Easter Seamount Chain: Constraints on melting conditions in the plume channel. J Geophys Res 103:5287–5304

    Article  Google Scholar 

  • Sacks RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferric-ferrous equilibria in naturalsilicate liquids at 1 Bar. Contr Mineral Petrol 75:369–376

    Article  Google Scholar 

  • Schilling J-G (1971) Sea-floor evolution: Rare earth evidence. Philos Trans R Soc London Ser A 268:663–706

    Article  Google Scholar 

  • Schilling J-G (1973) Iceland mantle plume: Geochemical study of Reykjanes Ridge. Nature 242:565–571

    Article  Google Scholar 

  • Schilling J-G (1985) Upper mantle heterogeneities and dynamics. Nature 314:62–67

    Article  Google Scholar 

  • Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolite and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22:41–84

    Google Scholar 

  • Sinton JM, Smaglik SM, Mahoney JJ, Macdonald KC (1991) Magmatic processes at superfast spreading oceanic ridges: Glass variations along the East Pacific Rise, 13° S–23° S. J Geophys Res 96:6133–6155

    Google Scholar 

  • Stoffers P, Botz R, Cheminée J-L, Devey CW, Froger V, Glasby GP, Hartmann M, Hekinian R, Kögler F, Laschek D, Larqué P, Michaelis W, Mühe RK, Puteanus D, Richnow HH (1989) Geology of Macdonald Seamount region, Austral Islands: Recent hotspot volcanism in the south Pacific. Mar Geophys Res 11:101–112

    Article  Google Scholar 

  • Stoffers P, Worthington T, Hekinian R, Petersen S, Hannington M, Turkey M, et al. (2002) Silicic volcanism and hydrothermal activity documented at Pacific-Antarctic Ridge. EOS 83 (28):301–304

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders AD, Norry MC (eds) Magmatism in the ocean basins. Geol Soc Spec Publication 42:313–345

    Google Scholar 

  • Tatsamuto M, Hedge CE, Engel AEJ (1965) Potassium, thorium, uranium and Sr/86Sr in oceanic tholeiitic basalt. Science 150:886–888

    Article  Google Scholar 

  • Thompson G, Bryan WB, and Humpris SE (1989) Axial volcanism on the East Pacific Rise, 10–12° N. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Pub 42:181–200

    Google Scholar 

  • Turner S, George R, Jerram DA, Carpenter N, Hawkesworth C (2003) Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordance age information. Earth Planet Sci Lett 214:279–294

    Article  Google Scholar 

  • White WM (1985) Sources for oceanic basalts: Radiogenic isotopic evidence. Geology 13:115–118

    Article  Google Scholar 

  • White WM, Duncan RA (1996) Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. In: Basu A, Hart SR (eds) Earth processes: Reading the isotopic code. Amer Geophys Union Washington, Geophysical Monograph 95:183–206

    Google Scholar 

  • White WM, Hofmann AW (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 290:821–825

    Article  Google Scholar 

  • Weaver JS, Langmuir CH (1990) calculation of phase equilibrium in mineral-melt sestems. Comput Geosci 16:1–19

    Article  Google Scholar 

  • Woodhead JD, Devey CW (1993) Geochemistry of the Pitcairn Seamounts: I. Source character and temporal trends. Earth Planet Sci Lett 116:81–99

    Article  Google Scholar 

  • Woodhead JD, McCulloch MT (1989) Ancient seafloor signals in Pitcairn Island lavas and evidence for large amplitude, small length-scale mantle heterogeneities. Earth Planet Sci Lett 94:257–273

    Article  Google Scholar 

  • Woodhead JD, Greenwood P, Harmon RS, Stoffers P (1993) Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature 362:809–813

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. An Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hekinian, R. (2004). Petrology of Young Submarine Hotspot Lava: Composition and Classification. In: Hekinian, R., Cheminée, JL., Stoffers, P. (eds) Oceanic Hotspots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18782-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18782-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62290-8

  • Online ISBN: 978-3-642-18782-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics