Advertisement

Petrology of Young Submarine Hotspot Lava: Composition and Classification

  • R. Hekinian

Abstract

Underwater volcanism is the predominant phenomenon taking place on Earth. About 71% of the Earth’s sea-floor surface is the site of volcanism, which mainly extrudes basaltic rocks. The mineralogical and chemical compositions of oceanic rocks are important factors that affect the formation of the oceanic crust, because the rock’s composition influences its rate of extrusion, the morphology of lava flows, the cooling rate, the mode of emplacement, etc. The magmatic history of the various geological provinces is also controlled by the processes of partial melting of a heterogeneous mantle and of crystal-liquid fractionation within the magmatic reservoir. Thus, the magmatic history (the rocks’ petrology) can be better understood if we first clearly define and understand both the mineral and chemical composition and the morphology of rocks found in different geological settings and provinces of the ocean floor.

Keywords

Mantle Source Alkali Basalt Pillow Lava Spreading Ridge East Pacific Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermand D, Hekinian R, Stoffers P (1998) Magmatic sulfides and oxides in volcanic rocks from the Pitcairn hot spot (South Pacific). Mineral Petrology 64:149–152CrossRefGoogle Scholar
  2. Allan JF, Batiza R, Perfit MR, Fornari DJ, Sack RO (1989) Petrology of lavas from the Lamont Seamount Chain and adjacent East Pacific Rise, 10°N. J Petrol 30:1245–1998Google Scholar
  3. Aumento F (1969) Diorites from the Mid-Atlantic Ridge. Nature 165:112–113Google Scholar
  4. Bach W, Hegner E, Erzinger E, Satir M (1994) Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30°S. Contr Miner Petrol 116:365–380CrossRefGoogle Scholar
  5. Batiza R (1989) Seamount and seamount chains of the Eastern Pacific. In: Winterer EL, Hussong DM, Decker RW (eds) The Eastern Pacific Ocean and Hawaii, the geology of North America. Geol Soc Amer N:145–159Google Scholar
  6. Batiza R, Niu Y (1992) Petrology and magma chamber processes at the East Pacific Rise. J geophys Res 97:6779–6797CrossRefGoogle Scholar
  7. Batiza R, Niu Y, Karsten JL, Boger W, Potts E, Norby L, Butler R (1996) Steady and non-steady state magma chambers below the East Pacific Rise. Geophys Res Lett 23:221–224Google Scholar
  8. Bideau D, Hekinian R (1995) A dynamic model for the generating small-scale heterogeneities in ocean floor basalts. J Geophys Res 100:10141–10162CrossRefGoogle Scholar
  9. Binard N (1991) Les points chaud de la Sciété et des Australes et de Pitcairn (Pacifique Sud): Approche volcanoIogique et petrologique. PhD theses, Université de bretagne OccidentaIe, Avenue Le Gorgeu, Brest, France, pp 372Google Scholar
  10. Binard N, Hekinian R, Stoffers P (1992) Morphostructural study and type of volcanism of submarine volcanoes over the Pitcairn hot spot in the South Pacific. Tectonophysics 206:245–264CrossRefGoogle Scholar
  11. Byerly G (1980) The nature of differentiation trends in some volcanic rocks from the Galapagos Spreading Center. J Geophys Res 85:3797–3810CrossRefGoogle Scholar
  12. Carmichael ISE (1964) Petrology of the Thingmuli, a tertiary volcano in easter Iceland. J Petrol 5:535–460Google Scholar
  13. Clague DA (1988) Petrology of ultramafic xenoliths from Loihi Seamount, Hawaii. J Petrology 29:1161–1186Google Scholar
  14. Clague DA, Frey FA, Thompson G, Rindge S (1981) Minor and trace geochemistry of volcanic rocks dredged from the Galapagos spreading center: Role of crystal fractionation and mantle heterogeneity. J Geophys Res 86:9469–9482CrossRefGoogle Scholar
  15. Coogan LA, KM Gillis, CJ MacLoad, JM Thompson, Hekinian R (2002) Petrology and geochemistry of lower crust formed at the East Pacific Rise and exposed at Hess Deep: A synthesis and new results. Electr J Earth Sci Geochemistry, Geophys, Geosystem G3, Am Geophys Union 3 (11):1–30Google Scholar
  16. Devey CW, Albarède F, Cheminée J-L, Miehard A, Mühe R, Stoffers P (1990) Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study. J Geophys Res 95:5049–5066CrossRefGoogle Scholar
  17. Devey CW, Hekinian R, Ackermand D, Binard N, Francke B, Hémond C, Kapsimalis V, Lorenc S, Maia M, Möller H, Perrot K, Pracht J, Rogers T, Stattegger K, Steinke S, Victor P (1997) The Foundation Seamount Chain: A first survey and sampling. Mar Geol 137:191–200CrossRefGoogle Scholar
  18. Devey CW, Lacksehewitz KS, Mertz DF, Bourdon B, Cheminée J-L, Dubois J, Guivel C, Hekinian R, Stoffers P (2003) Giving birth to hotspot volcanoes: Distribution and composition of young seamounts from the seafloor near Tahiti and Pitcairn Islands. Geology 31(5):395–398CrossRefGoogle Scholar
  19. Fretzdorff S, Haase KM (2002) Geochemistry and petrology of lavas from the submarine flanks of Reunion Island (western Indian Ocean): Implications for magma genesis and the mantle source. Mineralogy Petrology 75:153–184CrossRefGoogle Scholar
  20. Fretzdorff S, Haase KM, Garbe-Schonberg C-D (1996) Petrogenesis of lavas from the Umu volcanic field in young hotspot region of Easter Island, Southeastern Pacific. Lithos 38:23–40CrossRefGoogle Scholar
  21. Frey FA (1980) The origin of pyroxenite and garnet pyroxenites from Salt Lake Crater, Ohau, Hawaii: Trace element evidence. Am J Sci 280A:427–449Google Scholar
  22. Frey FA, Suen CJ, Stockman HW (1985) The Ronda peridotite: Geochemistry and petrogenesis. Geochm Acta 49:2468–2491Google Scholar
  23. Garcia MO, Jorgenson BA, Mahoney JJ (1993) An evaluation of temporal geochemical evolution of Loihi Summit lavas: Results from Alvin submersible dives. J Geophys Res 98:537–550CrossRefGoogle Scholar
  24. Graham DW, Zinlder A, Kurz, MD, Jenkins WJ, Batiza R, Staudigel H (1988) He, Pb, Sr and Nd isotope constraints on magma genesis and mantle heterogeneity beneath young Pacific seamounts Contrib to Mineral Petrol 99:446–463Google Scholar
  25. Haase KM (2002) Geochemical constrats on magmasources and mixing processes in Easter Microplate MORB (SE Pacific): A case study of plume-ridge interaction. Chem Geol 182:335–355CrossRefGoogle Scholar
  26. Haase KM, Devey C (1996) Geochemistry of lava from the Ahu and Tupa volcanic fields, Easter hotspot, southeast Pacific: lmplications for intraplate magma genesis near spreading axis. Earth Planet Sci Lett 137:129–143CrossRefGoogle Scholar
  27. Hawkins J, Melchior J (1983) Petrology of basalts from Loihi Seamount, Hawaii. Earth Planet Scie Let 66:356–369CrossRefGoogle Scholar
  28. Hekinian R, Walker D (1987) Diversity and spatial zonation of volcanic rocks from the East Pacific Rise near 21°N. Contrib Mineral Petrol 96:265–280CrossRefGoogle Scholar
  29. Hekinian R, Thompson G, Bideau D (1989) Axial and off-axial heterogeneity of basaltic rocks from the East Pacific Rise at 12°38’N–12°51’N and 11°26’N–11°30’N. J Geophys Res 94:17437–17463CrossRefGoogle Scholar
  30. Hekinian R, Bideau D, Stoffers P, Cheminée JL, Muhe R, Puteanus D, Binard N (1991) Submarine intraplate volcanism in the South Pacific: Geological setting and petrology. J Geophys Res 96:2109–2138CrossRefGoogle Scholar
  31. Hekinian R, Bideau D, Hébert R, Niu Y (1995a) Magmatism in the Garrett Transform fault. J Geophys Res 100:10163–10185CrossRefGoogle Scholar
  32. Hekinian R, Stoffers P, Ackermand D, Binard N, Francheteau J, Devey CW, Garbe-Shonberg D (1995b) Magmatie evolution of the Easter Microplate-Crough Seamount region (South East Pacific). Marine Geophys Res 17:375–397CrossRefGoogle Scholar
  33. Hekinian R, Francheteau J, Armijo R, Cogné JP, Constantin M, Girardeau J, Hey R, Naar DF Searle R (1996) Petrology of the Easter Microplate region in the South Pacific. J Volc Geotherm Res 72:259–289CrossRefGoogle Scholar
  34. Hekinian R, Stoffers P, Ackermand D, Révillon S, Maia M, Bohn M (1999) Ridge-hotspot interaction: The Pacific-Antarctic Ridge and the Foundation seamounts. Marine Geol 160:199–223CrossRefGoogle Scholar
  35. Hekinian R, Cheminée J-L, Stoffers P, Dubois J, Scott S, Guivel C, Garbe-Schoberg D, Devey CW, Bourdon B, Lacschewitz K, McMurtry G, Le Drezen E (2003) Pitcairn hotspot in the South Pacific: Distribution and composition of submarine volcanic sequences. J Volc Getherm Res 121:219–245CrossRefGoogle Scholar
  36. Hémond C, Devey CW, Chauvel C (1994) Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry. Chemical Geology 115:7–45CrossRefGoogle Scholar
  37. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436CrossRefGoogle Scholar
  38. Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implication for magmatic processes within the mantle. Am J Sci 280:389–426Google Scholar
  39. Juster TC, Grove TL (1989) Experimental constraints on the genesis of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W. J Geophys Res 94:9251–9274CrossRefGoogle Scholar
  40. Juteau T, Maury R (1997) Geologhic de la croute oceanique. Masson, Paris, pp 367Google Scholar
  41. Langmuir CH, Bender JF, Bence AE, Batiza R (1986) Petrological and tectonic segmentation of the East Pacific Rise, 5°30’–14°30’N. Nature 332:422–429CrossRefGoogle Scholar
  42. Le Bas MJ, Streickeisen AL (1986) The IUGS systematics of igneous rocks. J Geol Soc London 148:825–833CrossRefGoogle Scholar
  43. Mahoney JJ, Sinton JM, Kurz MD, Macdougall JD, Spencer KJ, Langmuir CW (1994) Isotope and trace elements characteristics of a super-fast spreading ridge: East Pacific Rise, 13–23° S. Earth Plant Sci Lett 121:173–193CrossRefGoogle Scholar
  44. Maia M, Hémond C, Gente P (2001) Contrasted interactions between plume and lithosphere: The Foundation chain case. Geochem Geophys Geosyst 2 (article), 2000GC000117Google Scholar
  45. Middlemost EAK (1980) A contribution to the nomenclature and classification of volcanic rocks. Geol Mag 117:51–57CrossRefGoogle Scholar
  46. Nielsen RL, Delong SE (1992) A numerical approach to boundary layer fractionation: Application to differentiation in natural magma systems. Contrib Mineral Petrol 110:355–369CrossRefGoogle Scholar
  47. Pan Y, Batiza R (1998) Major element chemistry of volcanic glasses from the Easter Seamount Chain: Constraints on melting conditions in the plume channel. J Geophys Res 103:5287–5304CrossRefGoogle Scholar
  48. Sacks RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferric-ferrous equilibria in naturalsilicate liquids at 1 Bar. Contr Mineral Petrol 75:369–376CrossRefGoogle Scholar
  49. Schilling J-G (1971) Sea-floor evolution: Rare earth evidence. Philos Trans R Soc London Ser A 268:663–706CrossRefGoogle Scholar
  50. Schilling J-G (1973) Iceland mantle plume: Geochemical study of Reykjanes Ridge. Nature 242:565–571CrossRefGoogle Scholar
  51. Schilling J-G (1985) Upper mantle heterogeneities and dynamics. Nature 314:62–67CrossRefGoogle Scholar
  52. Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolite and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22:41–84Google Scholar
  53. Sinton JM, Smaglik SM, Mahoney JJ, Macdonald KC (1991) Magmatic processes at superfast spreading oceanic ridges: Glass variations along the East Pacific Rise, 13° S–23° S. J Geophys Res 96:6133–6155Google Scholar
  54. Stoffers P, Botz R, Cheminée J-L, Devey CW, Froger V, Glasby GP, Hartmann M, Hekinian R, Kögler F, Laschek D, Larqué P, Michaelis W, Mühe RK, Puteanus D, Richnow HH (1989) Geology of Macdonald Seamount region, Austral Islands: Recent hotspot volcanism in the south Pacific. Mar Geophys Res 11:101–112CrossRefGoogle Scholar
  55. Stoffers P, Worthington T, Hekinian R, Petersen S, Hannington M, Turkey M, et al. (2002) Silicic volcanism and hydrothermal activity documented at Pacific-Antarctic Ridge. EOS 83 (28):301–304CrossRefGoogle Scholar
  56. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders AD, Norry MC (eds) Magmatism in the ocean basins. Geol Soc Spec Publication 42:313–345Google Scholar
  57. Tatsamuto M, Hedge CE, Engel AEJ (1965) Potassium, thorium, uranium and Sr/86Sr in oceanic tholeiitic basalt. Science 150:886–888CrossRefGoogle Scholar
  58. Thompson G, Bryan WB, and Humpris SE (1989) Axial volcanism on the East Pacific Rise, 10–12° N. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Pub 42:181–200Google Scholar
  59. Turner S, George R, Jerram DA, Carpenter N, Hawkesworth C (2003) Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordance age information. Earth Planet Sci Lett 214:279–294CrossRefGoogle Scholar
  60. White WM (1985) Sources for oceanic basalts: Radiogenic isotopic evidence. Geology 13:115–118CrossRefGoogle Scholar
  61. White WM, Duncan RA (1996) Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. In: Basu A, Hart SR (eds) Earth processes: Reading the isotopic code. Amer Geophys Union Washington, Geophysical Monograph 95:183–206Google Scholar
  62. White WM, Hofmann AW (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 290:821–825CrossRefGoogle Scholar
  63. Weaver JS, Langmuir CH (1990) calculation of phase equilibrium in mineral-melt sestems. Comput Geosci 16:1–19CrossRefGoogle Scholar
  64. Woodhead JD, Devey CW (1993) Geochemistry of the Pitcairn Seamounts: I. Source character and temporal trends. Earth Planet Sci Lett 116:81–99CrossRefGoogle Scholar
  65. Woodhead JD, McCulloch MT (1989) Ancient seafloor signals in Pitcairn Island lavas and evidence for large amplitude, small length-scale mantle heterogeneities. Earth Planet Sci Lett 94:257–273CrossRefGoogle Scholar
  66. Woodhead JD, Greenwood P, Harmon RS, Stoffers P (1993) Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature 362:809–813CrossRefGoogle Scholar
  67. Zindler A, Hart S (1986) Chemical geodynamics. An Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • R. Hekinian

There are no affiliations available

Personalised recommendations