Advertisement

Methane Venting into the Water Column Above the Pitcairn and the Society — Austral Seamounts, South Pacific

  • O. Thießen
  • M. Schmidt
  • R. Botz
  • M. Schmitt
  • P. Stoffers

Abstract

In the past, marine hydrothermal systems were studied by numerous work groups that focused on different research aspects. For instance, mechanisms of fluid -associated particle transport and diverse hydrothermal mineralizations have been studied by von (1987), (1992), (1993), (1993), (1994), (1995), (1997), Scholten et al. (see Sect. 12.2) and others. Moreover, biologists found that hydrothermal vent systems can host chemosynthetic organisms (Tunnicliffe 1991; Jannasch 1995; Nelson and Fischer 1995; Dando et al. 1995). Hydrocarbons observed in hydrothermal systems were ascribed to abiogenic and biogenic formation processes. In particular, numerous hydrothermal vents on deep-seated sea floor show CH4 of abiogenic origin (Welhan 1988; Charlou et al. 1996, 2002). Hydrocarbon formation could occur via diverse processes like water-/rock reactions (including serpentinization processes) investigated by (1980), (1985), (1995), and (2002). Moreover, hydrothermal trace gases can also be introduced by mantle emanations (Craig and Lupton 1981; Welhan 1988) or formed in the Earth’s crust by thermocatalytic (Simoneit 1983; Michaelis et al. 1990) or abiogenic reactions (Apps 1985; Sherwood Lollar et al. 1993). On the other hand, biogenic methane formation (and/or hydrocarbon oxidation) may be caused by microbial activities within the vents and at or near the sediment surface at temperatures below 113 °C (Huber et al. 1990; Burggraf et al. 1990). These biogenic gases of relatively shallow origin may be superimposed on hydrothermal trace gas components formed by abiogenic reactions in the Earth’s crust.

Keywords

Hydrothermal Fluid Hydrothermal System Methane Concentration Loihi Seamount Abiogenic Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt JC (1995) Subseafloor processes in Mid-Ocean Ridge hydrothermal Systems. Amer Geophys Union/Geophys Monograph 91:85–114.CrossRefGoogle Scholar
  2. Apps JA (1985) Methane formation during hydrolysis by mafic rocks. Lawrence Berkeley Lab Annu Rep 84:13–17Google Scholar
  3. Bange HW, Rapsomanikis S, Andreae MO (1996) The Aegean Sea as a source of atmospheric nitrous oxide and methane. Marine Chemistry 53:41–49CrossRefGoogle Scholar
  4. Binard N, Stoffers P, Hekinian R, Cheminée J-L (2004) South Pacific intraplate volcanism: Structure, morphology and style of eruption. this volume Google Scholar
  5. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen and sp nov, represents a novel group of archaea, extending the upper temperature limit for Iife to 113 °C. Extremophiles 1:14–21CrossRefGoogle Scholar
  6. Both R, Crook K, Taylor B, Brogan S, Chappell B, Frankel E, Liu L, Sinton J, Tiffin D (1986) Hydrothermal chimneys and associated fauna in the Manus Back-Are Basin, Papua New Guinea. Eos, Trans Amer Geophys Union 67:489–490CrossRefGoogle Scholar
  7. Botz R, Pokojski HD, Schmitt M, Thomm M (1996) Carbon isotope fractionation during bacterial methanogenesis by CO2 reduction. Org Chem 25:255–262Google Scholar
  8. Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Woese CR, Stetter KO (1990) Methanococcus igneus sp nov, a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. System Appl Mierobiol 13:263–269CrossRefGoogle Scholar
  9. Butterfield DA, Massoth GJ (1994) Geochemistry of north Cleft segment vent fluids: Temporal changes in chlorinity and their possible relation to recent volcanism. J Geophys Res 99:4951–4969CrossRefGoogle Scholar
  10. Charlou JL, Bougault H, Appriou P, Jean-Baptiste P, Etoubleau J, Biroleau A (1991) Water column anomalies associated with hydrothermal activity between 11°40’ and 13°N on the east Pacific Rise: Discrepancies between tracers. Deep Sea Res 38:569–596CrossRefGoogle Scholar
  11. Charlou JL, Fouquet Y, Donval JP, Auzende JM, Jean-Baptiste P, Stievenard M, Michel S (1996) Mineral and gas chemistry of hydro thermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19° S (Naudur cruise, 1993) phase seperation processes controlled by volcanic and tectonic activity. J Geophys Res 101:15899–15919CrossRefGoogle Scholar
  12. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’N,MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  13. Cheminée J-L, Stoffers P, McMurtry GM, Richnow H, Puteanus D, Sedwick P (1991) Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount. Earth Plant Sci Lett 107:318–327CrossRefGoogle Scholar
  14. Corliss JB, Dymond J, Gordon LI, Edmond JM, Von Herzen RP, Ballard RD, Green K, William s D, Brainbridge A, Crane K, Van Adel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083CrossRefGoogle Scholar
  15. Craig H, Lupton JE (1981) Helium-3 and mantle volatiles in the ocean and oceanic crust. In: Emiliani C (ed): The sea. Wiley, New York, pp 391–428Google Scholar
  16. Crough ST (1983) Hotspots swells. Annu Rev Earth Planet Sci 11:165–193CrossRefGoogle Scholar
  17. Dando PR, Hughes JA, Thiermann F (1995) Preliminary observations on biological communities at shallow hydrothermal vent in the Aegean Sea. In: Parson LM, Walker CL, Dixon DR (eds) Hydrothermal vents and processes. Geological Society, London, Special Publication 87:301–317Google Scholar
  18. Dumke I, Faber E, Poggenburg J (1989) Determination of stable carbon and hydrogen isotopes of light hydrocarbons. Analytical Chemistry 61:2149–2154CrossRefGoogle Scholar
  19. Faber E, Gerling P, Berner U, Sohns E (1994) Methane in ocean waters; Concentration and carbon isotope variability at East Pacific Rise and in the Arabian Sea. Environmental Monitoring and Assessment 31:139–144CrossRefGoogle Scholar
  20. Fouquet Y, Von Stackelberg U, Charlou JL, Donval JP, Erzinger J, Foucher JP, Herzig P, Mühe R, Soakai S, Wiedicke M, Whitechurch H (1991) Hydrothermal activity and metallogenesis in the Lau backarc basin. Nature 349:778–781CrossRefGoogle Scholar
  21. Fritz P, Fontes JC (1980) Handbook of environmental isotope geochemistry, vol. 1. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  22. Gamo T, Ishibashi JJ, Sakai H (1987) Methane anomalies in seawater above the Loihi submarine summit area, Hawaii. Geochim Cosmochim Acta 51:2857–2864CrossRefGoogle Scholar
  23. Glasby GP, Stüben D, Jeschke G, Stoffers P, Garbe-Schönberg D (1997) A model for the formation of the hydro thermal manganese crusts from the Pitcairn Island hot spot. Geochim Cosmochim Acta 61:4583–4597CrossRefGoogle Scholar
  24. Halbach P, Pracejus B, Märten A (1993) Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan. Econ Geol 88:2206–2221CrossRefGoogle Scholar
  25. Hannington MD, Jonasson IR, Herzig P, Petersen S (1995) Physical and chemical processes of seafloor mineralization at Mid-Ocean Ridges. Amer Geophys Union/Geophys Monograph 91:115–157CrossRefGoogle Scholar
  26. Hekinian R, Renard V, Cheminée J-L (1984) Hydrothermal deposits on the East Pacific Rise near 13° N: Geological setting and distribution of active sulfide chimneys. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum Publishing Corporation 571–602Google Scholar
  27. Hekinian R, Bideau D, Stoffers P, Cheminée J-L, Mühe R, Puteanus D, Binard N (1991) Submarine intraplate voIcanism in the South Pacific: Geological setting and petrology of the Society and Austral regions. J Geophys Res 96:2109–2138CrossRefGoogle Scholar
  28. Hoffert M, Cheminée J-L, Person A, Larque P (1987) Dépot hydrothermal associé au voIcanisme sousmarine intraplaque: prélèvements effectués avec la Cyana sur le voIcan actif de Teahitia (Polynésie Francaise). C R Acad Sci, Paris, 304:829–832Google Scholar
  29. Huber R, Stoffers P, Cheminée J-L, Richnow HH, Stetter KO (1990) Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345:179–182CrossRefGoogle Scholar
  30. Ishibashi J, Wakita H, Nojiri Y, Grimaud D, Jean-Baptiste P, Gamo T, Auzende JM, Urabe T (1994) Helium and carbon geochemistry of hydrothermal fluids from the North Fiji Basin spreading ridge (southwest Pacific). Earth Plan Sci Letters 128:183–197CrossRefGoogle Scholar
  31. Ishibashi J, Sano Y, Wakita H, Gamo T, Tsutsumi M, Sakai H (1995) Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough back arc basin, southwest of Japan. Chem Geol 123:1–15CrossRefGoogle Scholar
  32. Ishibashi J, Wakita H, Okamura K, Nakayamy E, Feely RA, Lebon GT, Baker ET, Marumo K (1997) Hydrothermal methane and manganese variation in the plume over the superfast spreading southern East Pacific Rise. Geochim Cosmochim Acta 61:485–500CrossRefGoogle Scholar
  33. Jannasch H (1995) Microbial interactions with hydrothermal fluids. In: Humphris S, Zierenberg R, Mullineaux L, Thomson R (eds) Physical, chemical, biological and geological interactions within seafloor. Hydrothermal Systems 91:273–296Google Scholar
  34. Karl DM, McMurtry GM, Malahoff A, Garcia MO (1988) Loihi Seamount, Hawaii: Amid-plate voIcano with a distinctive hydrothermal system. Nature 335:532–535CrossRefGoogle Scholar
  35. Lancet HS, Anders E (1970) Carbon isotope fractionation in the Fischer-Tropsch synthesis of methane. Science 170:980–982CrossRefGoogle Scholar
  36. Lonsdale PF, Bischoff JL, Burns VM, Kastner M, Sweeny RE (1980) A high temperature hydrothermal deposit on the seabed at the Gulf of California spreading center. Earth Planet Sci Lett 49:8–20CrossRefGoogle Scholar
  37. Lyon GL, Hulston JR (1984) Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochim Cosmochim Acta 48:1161–1171CrossRefGoogle Scholar
  38. Malahoff A, McMurtry G, Wishire JC, Yehy HW (1982) Geology and chemistry of hydrothermal deposits from active submarine voIcano Loihi, Hawaii. Nature 298:234–239CrossRefGoogle Scholar
  39. Michaelis W, Jenisch A, Richnow HH (1990) Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Appl Geochem 5:103–114CrossRefGoogle Scholar
  40. Michard A, Michard G, Stüben D, Stoffers P, Cheminée J-L, Binard N (1993) Submarine thermal springs associated with young volcanoes: The Teahitia vents, Society Island, Pacific Ocean. Geochim Cosmochim Acta 57:4977–4986CrossRefGoogle Scholar
  41. Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at vents and seeps. In: Karl DM (ed) Microbiology of deep sea hydrothermal vent habitats. CRC Press, Boca RatonGoogle Scholar
  42. Polynaut Cruise Report (2000) La campagne Polynaut de 1999. Rapport de Mission, Departement des Observatoire Volcanologiques, Institut de Physique du Globe, Paris, 4 Place Jussieu, ParisGoogle Scholar
  43. Rehder G, Keir RS, Suess E, Pohlmann T (1998) The multiple sources and patterns of methane in North Sea waters. Aquatic Geochemistry 4:403–427CrossRefGoogle Scholar
  44. Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110CrossRefGoogle Scholar
  45. Rona PA, Scott SD (1993) A special issue on sea-floor hydrothermal mineralization; New perspectives; preface. Economic Geology and the Bulletin of the Society of Economic Geologists 88:1933–1974Google Scholar
  46. Sakai H, Tsubota H, Nakai T, Ishibashi J, Akagi T, Gamo T, Tilbrock B, Igarashi G, Kodera M, Shitashima K, Nalamura S, Fujioka K, Watanabe M, McMurtry GM, Malahoff A, Oruma M (1987) Hydrothermal acticity on the summit of Loihi Seamount, Hawaii. Geochem J 21:11–21CrossRefGoogle Scholar
  47. Schmitt M (1989) “Gaswasserschöpfer” Internal Report. Geochemische Analysen, Sehnde-lltenGoogle Scholar
  48. Schmitt M, Faber E, Botz R, Stoffers P (1991) Extraction of methane from seawater using ultrasonic vacuum degassing. Anal Chem 63:529–532CrossRefGoogle Scholar
  49. Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661CrossRefGoogle Scholar
  50. Sedwick PN, McMurtry GM, Macdougall JD (1992) Chemistry of hydrothermal solutions from Pele’s Vents, Loihi Seamount, Hawaii. Geochim Cosmochim Acta 57:5087–5097Google Scholar
  51. Seyfried WE, Dibble WE (1980) Seawater-peridotite interaction at 300°C and 500 bars; Implications for the origin of oceanic serpentinites. Geochimica et Cosmochimica Acta 44:309–322CrossRefGoogle Scholar
  52. Seyfried WE, Janecky DR (1985) Sr and Ca exchange during hydrothermal alteration of basalt/diabase. Eos, Transaction Amer Geophy Union 66:921Google Scholar
  53. Sherwood-Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097CrossRefGoogle Scholar
  54. Simoneit BRT (1983) Effects of hydrothermal activity on sedimentary organic matter: Guaymas Basin, Gulf of California — Petroleum genesis and protokerogen degradation. In: Rona PA, Boström K, Laubier L (eds) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, pp 451–471Google Scholar
  55. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962Google Scholar
  56. Stoffers P, Hekinian R (1990) Cruise report Sonne 65 — Midplate II, Hot Spot Vulkanismus im zentralen Südpazifik. Berichte-Reports, Geol Paläont Inst Univ Kiel, 40Google Scholar
  57. Stoffers P, et al. (1987) Cruise Report SO-47: Midplate volcanism, Central South Pacific, French Polynesia. Berichte-Reports, Geol Paläont Inst Univ Kiel, 19Google Scholar
  58. Stoffers P, Botz R, Cheminée J-L, Devey CW, Froger V, Glasby GP, Hartmann M, Hekinian R, Kögler F, Laschek D, Larque P, Michaelis W, Mühe R, Puteanus D, Richnow HH (1989) Geology of MacDonald Seamount region, Austral Islands: Recent hotspot volcanism in the South Pacific. Marine Geophysical Researches 11:101–112CrossRefGoogle Scholar
  59. Stüben D, Stoffers P, Cheminée J-L, Hartmann M, McMurtry G, Richnow HH, Jenisch A, Michaelis W (1992) Manganese, methane, iron, zinc, and nickel anomalies in hydrothermal plumes from Teahitia and Macdonald Volcanoes. Geochim Cosmochim Acta 56:3693–3704CrossRefGoogle Scholar
  60. Talandier J (1989) Submarine volcanic activity; Detection, monitoring, and interpretation. Eos, Transaction, Amer Geophys Union 70:568–569Google Scholar
  61. Tsunogai U, Yoshida N, Ishibashi J, Gamo T (2000) Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: Implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochimica et Cosmochimica Acta 64:2439–2452CrossRefGoogle Scholar
  62. Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and ecolution. Oceanography and Mar Biol Annual Rev 29:319–407Google Scholar
  63. Urabe T, Baker ET, Ishibashi J, Feely RA, Marumo K, Massoth GJ, Maruyama A, Shitashima K, Okamura K, Lupton JE, Sonoda A, Yamazaki T, Aoki M, Gendron J, Greene R, Kaiho Y, Kisimoto K, Lebon G, Matsumoto T, Nakamura K, Nishizawa A, Okano O, Paradis G, Roe K, Shibata T, Dennant D, Vance T, Walker SL, Yabuki T, Ytow N (1995) The effect of magmatic activity on hydrothermal venting along the superfast-spreading East Pacific Rise. Science 269:1092–1095CrossRefGoogle Scholar
  64. Von Damm KL, Bischoff JL (1987) Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. J Geophys Res 92:11334–11346CrossRefGoogle Scholar
  65. Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71:183–198CrossRefGoogle Scholar
  66. Whiticar MJ (1990) A geochemical perspective of natural gas and atmospheric methane. Org Chem 16:759–768Google Scholar
  67. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  68. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments isotope evidence. Org Geochem 10:759–768CrossRefGoogle Scholar
  69. Wiesenburg DA, Guinasso J (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and seawater. J Chem Eng Data 24:356–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • O. Thießen
  • M. Schmidt
  • R. Botz
  • M. Schmitt
  • P. Stoffers

There are no affiliations available

Personalised recommendations