Hydrothermal Iron and Manganese Crusts from the Pitcairn Hotspot Region

  • J. C. Scholten
  • S. D. Scott
  • D. Garbe-Schönberg
  • J. Fietzke
  • T. Blanz
  • C. B. Kennedy


Submarine iron and manganese deposits have a widespread occurrence in the oceanic environment. Genetically they can be subdivided into three discrete types (Boström 1983; Usui and Terashima 1997): (1) hydrogenetic, (2) diagenetic, and (3) hydrothermal. Hydrogenetic deposits occur as crusts on seamounts and other volcanic outcrops and as nodules on abyssal sediments via the direct precipitation of ironmanganese oxides and hydroxides from seawater (Koschinsky and Halbach 1995). Since these oxides and hydroxides have high adsorption capabilities, hydrogenetic crusts are characterized by relatively high trace element contents (e.g., Pb, Co, Ni) and slow growth rates (on the order of mm Ma−1; Segl et al. 1989). Mineralogically, they are composed of vernadite (Fe-rich δ-MnO2) and X-ray amorphous iron oxyhydroxides (δ-FeOOH) (Hein et al. 1999). The growth and the composition of diagenetic iron-manganese nodules are controlled by diagenetic element supply from the sediments. These nodules are characterized by high growth rates (on the order of 10–200 mm ka−1) and high Mn/Fe ratios as well as low trace element contents (Reyss 1982).The third type of deposit, the hydrothermal iron-manganese crust, is ubiquitous along Mid-Oceanic Ridges and back arc spreading centers. They are characterized by high growth rates (cm ka−1) and low trace element content. Their origin is closely related to the emanation of metal-rich hydrothermal fluids. These fluids are the result of hydrothermal convection cells that are fueled by the heat of a subsurface magma.


Hydrothermal Fluid Rare Earth Element Pattern Ferromanganese Crust Rare Earth Element Manganese Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt JC (1995) Subseafloor processes in mid-oceanic ridge hydro thermal systems. Amer Geophys Monograph 91:85–114CrossRefGoogle Scholar
  2. Binns RA, Scott SD, Bogdanov YA, Lisitzin AP, Gordeev VV, Gurvieh EG, Finlayson EJ, Boyd T, Dotter LE, Wheller GE, Muravyev KG (1993) Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Econ Geol 88:2122–2153CrossRefGoogle Scholar
  3. Boström K (1983) Genesis of ferromanganese deposits — diagnostic criteria for recent and old deposits, In: Rona P, Boström K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. NATO Conference Series 12:473–490Google Scholar
  4. Boström K, Peterson MNA, Joensuu O, Fisher DE (1969) Aluminium-poor ferromanganoan sediments on active oceanic ridges. J Geophys Res 74:3261–3270CrossRefGoogle Scholar
  5. Boyd T, Scott SD (1999) Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from FrankIin Seamount, Western Woodlark Basin, Papua New Guinea. Can Mineralog 37:973–990Google Scholar
  6. Boyd T, Scott SD (2001) Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of FrankIin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem Trans (electronic journal) 7, Scholar
  7. Boyd T, Scott SD, Hekinian R (1993) Trace element patterns in Fe-Si-Mn oxyhydroxides at three hydrothermally active seafloor regions. Resource Geol Spec issue 17:83–95Google Scholar
  8. Butterfield DA, Massoth GJ, McDuff RE, Lupton J, Lilley M (1990) Geochemistry of hydrothermal fluids from axial seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res 95:12895–12921CrossRefGoogle Scholar
  9. Campbell AC, Palmer MR, Klinkhammer GP, Bowers TS, Edmond JM, Lawrence JR, Casey JF, Thompson G, Humpris S, Rona P, Karson JA (1988) Chemistry of hot springs on the Mid-Atlantic Ridge. Nature 335:514–519CrossRefGoogle Scholar
  10. Chase RL, Delaney JR, Karsten JL, Johnson HP, Juniper SK, Lupton JE, Scott D, Tunicliffe V, Hammond SR, McDuff RE (1985) Hydrothermal vents on an axis seamount of the Juan de Fuca Ridge. Nature 313:212–214CrossRefGoogle Scholar
  11. Chen JH, Wasserburg GJ, Von Damm KL, Edmond J (1986) The U-Th systematics in hot springs on the East Pacific Rise at 21°N and Guaymas Basin. Geoehim Cosmoehim Acta 50:2467–2479CrossRefGoogle Scholar
  12. Chukrov FV (1973) On the genes is of thermal sedimentary iron ore deposits. Min Deposita 8:138–147Google Scholar
  13. Cronan DS, Glasby GP, Moorby SA, Thomson J, Knedler KE, McDougall JC (1982) A submarine hydrothermal manganese deposit from the south-west Pacific island are. Nature 298:456–458CrossRefGoogle Scholar
  14. De Baar HJW, Bacon MP, Brewer PG, Bruland K (1985) Rare earth elements in the Pacific and Atlantic Oceans. Geochim Cosmoschim Acta 49:1943–1959CrossRefGoogle Scholar
  15. DeCarlo EH, McMurtry GM (1992) Rare earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific Chem Geol 95:235–250CrossRefGoogle Scholar
  16. DeCarlo EH, McMurtry GM, Yeh H-W (1983) Geochemistry of hydrothermal deposits from Loihi submarine volcano, Hawaii. Earth Planet Sci Lett 66:438–449CrossRefGoogle Scholar
  17. DeCarlo EH, McMurtry GM, Kim KH (1987) Geochemistry of ferromanganese crusts from the Hawaiian Archipelago — I. Northern survey areas. Deep Sea Res 34:441–467CrossRefGoogle Scholar
  18. DeLange GJ, Catalano G, Klinkhammer GP, Luther III GW (1990) The interface between oxic seawater and the anoxic Bannock brine; Its sharpness and the consequences for the redox-related cycling of Mn and Ba. Mar Chem 21:205–217CrossRefGoogle Scholar
  19. Duncan RC, McDougall I, Carter RM, Coombs DS (1974) Pitcairn Island — another Pacific hotspot? Nature 251:679–682CrossRefGoogle Scholar
  20. Edmond JM, Measures C, McDuff RE, Chan LH, Collier R, Grant B, Gordon LI, Corliss JB (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data. Earth Planet Sci Lett 46:1–18CrossRefGoogle Scholar
  21. Emerson D, Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and playa major role in Fe oxide deposition. Appl Environ Microbiol 68: 3085–3093CrossRefGoogle Scholar
  22. Fleet AJ (1983) Hydrothermal and hydrogenous ferro-mangnese deposits: Do they from a continuum? The rare earth element evidence. In: Rona P, Boström K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. NATO Conference Series 12:535–555Google Scholar
  23. Fortin D, Ferris FG, Scott SD (1998) Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean. Am Mineralogist 83:1399–1408Google Scholar
  24. Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453–467CrossRefGoogle Scholar
  25. German CR, Klinkhammer GP, Edmond JM, Mitra A, Elderfield H (1990) Hydrothermal scavenging of rare-earth elements in the ocean. Nature 345:516–518CrossRefGoogle Scholar
  26. German CR, Campbell AC, Edmond JM (1991) Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes. Earth Planet Sci Lett 107:101–114CrossRefGoogle Scholar
  27. Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island. New Zealand Appl Geochem 2:143–161CrossRefGoogle Scholar
  28. Glasby GP, Stüben D, Jeschke G, Stoffers P, Garbe-Schönberg C-D (1997) A model for the formation of the hydrothermal manganese crusts from the Pitcairn Island hotspot. Geochim Cosmochim Acta 61:4583–4597CrossRefGoogle Scholar
  29. Hannington M, Herzig P, Stoffers P, Scholten J, Botz R, Garbe-Schönberg D, Jonasson IR, Roest W, Scientific Party (2001) First observation of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland. Marine Geology 177:199–220CrossRefGoogle Scholar
  30. Hein JR, Gibbs AE, Clague DA, Torresan M (1996) Hydrothermal mineralization along submarine rift zones. Hawaii Mar Georesource Geotechnol 14:177–203CrossRefGoogle Scholar
  31. Hein JR, Koschinsky A, Bau M, Manheim FT (1999) Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan D (ed) Handbook of mineral deposits. CRC Marine Science Series:239–280Google Scholar
  32. Hekinian R, Hoffert M, Larque P, Cheminee JL, Stoffers P, Bideau D (1993) Hydrothermal Fe and Si oxyhydroxide deposits from the South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Econ Geol 88:2099–2121CrossRefGoogle Scholar
  33. Hekinian R, Cheminée J-L, Dubois J, Stoffers P, Scott S, Guivel C, Garbe-Schönberg D, Devey C, Bourdon B, Lacksehewitz K (2003) The Pitcairn hotspot in the South Pacific: Distribution and composition of submarine volcanic sequences. J Volc Geoth Res 121:219–245CrossRefGoogle Scholar
  34. Henderson G, Burton K (1999) Using 234U/238U to asses diffusion rates of isotope tracers in ferromanganese crusts. Earth Planet Sci Lett 170:169–179CrossRefGoogle Scholar
  35. Herzig PM, Hannington MD (1995) Polymetallic massive sulphides at the modern seafloor. A review. Ore Geology Reviews 10:95–115CrossRefGoogle Scholar
  36. Hodkinson RA, Stoffers P, Scholten J, Cronan DS, Jeschke G, Roger TDS (1994) Geochemistry of hydrothermal manganese deposits from the Pitcairn Island hotspot, southeastern Pacific. Geochim Cosmochim Acta 58:5011–5029CrossRefGoogle Scholar
  37. Jeschke G (1991) Charakterisierung und Vergleich hydrogenetischer und hydrothermaler Manganerzkrusten vom Pitcairn Hot Spot (zentraler Südpazifik) und den Gesellschaftsinseln anhand hochauflösender geochemischer Spurenanalytik. Thesis University Kiel (in German)Google Scholar
  38. Karl DM, McMurtry GM, Malahoff A, Gareia MO (1988) Loihi Seamount, Hawaii: Amid-plate volcano with a distinctive hydrothermal system. Nature 335:532–535CrossRefGoogle Scholar
  39. Kaufmann A, Broecker W (1965) Comparison of 230Th and 14C Ages for carbonate materials from Lakes Lahontan and Bonneville. J Geophys Res 70:4039–4055CrossRefGoogle Scholar
  40. Kennedy CB, Scott SD, Ferris FG (2003) Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean. FEMS Microbiol Ecol 43:247–254CrossRefGoogle Scholar
  41. Koeppenkastrop D, DeCarl E (1993) Uptake of rare earth elements from solution by metal oxides. Environ Sci Technol 27:1796–1802CrossRefGoogle Scholar
  42. Koschinsky A, Halbach P (1995) Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochim Cosmochim Acta 59:5113–5132CrossRefGoogle Scholar
  43. Ku T-L, Knauss KG, Mathieu GG (1977) Uranium in open ocean: Concentration and isotopic composition. Deep-Sea Res 24:1005–1017CrossRefGoogle Scholar
  44. Kunzendorf H, Walter P, Stoffers P, Gwozdz R (1984) Metal variation in divergent plate boundary sediments from the Pacific. Chem Geol 47:113–133CrossRefGoogle Scholar
  45. Lalou C, Reyss JL, Brichet E (1993) Actinide-series disequilibrium as a tool to etablish the chronology of deep-sea hydrothermal activity. Geochim Cosmochim Acta 57:1221–1231CrossRefGoogle Scholar
  46. Latter JH (1987) Volcanoes and volcanic risks in the circum-Pacific. Pac Rim Congr 87:745–752Google Scholar
  47. Malahoff A, McMurtry GM, Wiltshire JC, Yeh H-W (1982) Geology and geochemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii. Nature 298:234–239CrossRefGoogle Scholar
  48. Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53:745–750CrossRefGoogle Scholar
  49. Michard A, Albarede F (1986) The REE content of some hydrothermal fluids. Chemical Geology 55:51–60CrossRefGoogle Scholar
  50. Michard A, Michard G, Stüben D, Stoffers P, Cheminee J-L, Binard N (1993) Submarine thermal springs associated with young volcanoes: The Teahitia vents, Society Island, Pacific Ocean. Geochim Cosmochim Acta 57:4977–4986CrossRefGoogle Scholar
  51. Moorby BS, Cronan DS (1983) The geochemistry of hydrothermal and pelagic sediments from the Galapagos hydrothermal mound D. S. D. P. Leg 70. Mineral Mag 47:291–300CrossRefGoogle Scholar
  52. Puteanus D, Glasby GP, Stoffers P, Kunzendorf H (1991) Hydrothermal iron-rich deposits from the Teahitia-Mehitia and Macdonald hot spot areas, Southwest Pacific. Marine Geol 98:389–409CrossRefGoogle Scholar
  53. Reyss JL (1982) Rapid growth of a deep-sea manganese nodule. Nature 295:401–403CrossRefGoogle Scholar
  54. Rogers TDS, Hodkinson RA, Cronan DS (2001) Hydrothermal manganese deposits from the Tonga-Kermadec ridge and Lau Basin region, southwest Pacific. Mar Georesource Geotechnol 19:245–268CrossRefGoogle Scholar
  55. Rudnicki MD, Elderfield H (1993) A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochim Cosmochim Acta 57: 2939–2957CrossRefGoogle Scholar
  56. Sedwick PN, McMurtry GM, MacDougall JD (1992) Chemistry of hydrothermal solutions from Pele’s Vents, Loihi Seamount, Hawaii. Geochim Cosmochim Acta 56:3643–3667CrossRefGoogle Scholar
  57. Segl M, Mangini A, Beer J, Bonani G, Suter M, Wölfli W (1989) Growth rate variations of manganese nodules and crusts induced by paleoceanographic events. Paleoceanography 4:511–530CrossRefGoogle Scholar
  58. Shanks WC, Bohlke JK, Seal RR (1995) Stable isotopes in mid-ocean ridge hydrothermal systems; Interactions between fluids, minerals and organisms. In: Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91: American Geophysical Union, pp 194–221Google Scholar
  59. Stoffers P, Scientific Party (1990) Active Pitcairn hotspot found. Marine Geol 95:51–55CrossRefGoogle Scholar
  60. Stoffers P, Glasby GP, Stüben D, Renner RM, Pierre TG, Webb J, Cardile CM (1993) Comparative mineralogy and geochemistry of hydrothermal iron-rich crusts from the Pitcairn, Teahitia-Mehetia, and Macdonald hot spot areas of the S.W. Pacific. Mar Geores Geotechn 11:45–86CrossRefGoogle Scholar
  61. Stüben D, Stoffers P, Cheminée J-L, Hartmann M, McMurtry GM, Richnow H-H, Jenisch A, Michaelis W (1992) Manganese, methane, iron, zinc, and nickel anomalies in hydrothermal plumes from Teahitia and Macdonald Volcanoes. Geochim Cosmochim Acta 56:3693–3704CrossRefGoogle Scholar
  62. Urabe T, Kuskabe M (1990) Barite silica chimneys from the Sumisu Rift, Izu-Bonin Arc: Possible analog to hematitic chert associated with Kuroko deposits. Earth Planet Sci Lett 100:283–290CrossRefGoogle Scholar
  63. Usui A, Nishimura A (1992) Submersible observations of hydrothermal manganese deposits on the Kaikata Seamount, Izu-Ogasawara (Bonin) Arc. Marine Geol 106:230–216CrossRefGoogle Scholar
  64. Usui A, Terashima S (1997) Deposition of hydrogenetic and hydrothermal manganese minerals in the Ogasawara (Bonin) Arc Area, Northwest Pacific. Mar Georesource Geotechnol 15:127–154CrossRefGoogle Scholar
  65. Varnavas SP, Cronan DS (1991) Hydrothermal metallogenic processes off the islands of Nisiros and Kos in the Hellenic Volcanic Arc. Marine Geol 99:109–133CrossRefGoogle Scholar
  66. Von Damm KL, Edmond JM, Grant B, Measures CI (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49:2197–2210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. C. Scholten
  • S. D. Scott
  • D. Garbe-Schönberg
  • J. Fietzke
  • T. Blanz
  • C. B. Kennedy

There are no affiliations available

Personalised recommendations