Advertisement

A Posteriori Estimation of Dimension Reduction Errors

  • Sergey Repin
  • Stefan Sauter
  • Anton Smolianski
Conference paper

Summary

A new a-posteriori error estimator is presented for the verification of the dimensionally reduced models stemming from the elliptic problems on thin domains. The original problem is considered in a general setting, without any specific assumptions on the domain geometry, coefficients and the right-hand sides. The estimator provides a guaranteed upper bound for the modelling error in the energy norm, exhibits the optimal convergence rate as the domain thickness tends to zero and accurately indicates the local error distribution.

Keywords

Elliptic Problem Posteriori Error Energy Norm Posteriori Error Estimation Dimensional Reduction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška, I., Lee, I., Schwab, C. (1994): On the a posteriori estimation of the modeling error for the heat conduction in a plate and its use for adaptive hierarchical modeling. Appl. Numer. Math., 14, 5–21MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Babuška, I., Schwab, C. (1996): A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal., 33, 221–246MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Oden, J.T., Cho, J.R. (1996): Adaptive hpq-finite element methods of hierarchical models for plate-and shell-like structures. Comput. Meth. Appl. Mech. Engrg., 136, 317–345MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Repin, S.I. (2000): A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp., 69, 481–600MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Repin, S.I., Sauter, S.A., Smolianski, A.A. (2003): A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing, 70, 205–233MathSciNetzbMATHGoogle Scholar
  6. 6.
    Repin, S.I., Sauter, S.A., Smolianski, A.A. (2003): A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. Preprint 02-2003, Institut of Mathematics, Zurich University, http://www.math.unizh.ch/index.php?preprint
  7. 7.
    Repin, S.I., Sauter, S.A., Smolianski, A.A. (2003): A posteriori estimation of dimension reduction errors for elliptic problems on thin domains. Preprint 18-2003, Institut of Mathematics, Zurich University, http://www.math.unizh.ch/index.php?preprint
  8. 8.
    Stein, E., Ohnimus, S. (1997): Coupled model-and solution-adaptivity in the finite-element method. Comput. Meth. Appl. Mech. Engrg., 150, 327–350MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Vogelius, M., Babuška, I. (1981): On a dimensional reduction method I. The optimal selection of basis functions. Math. Comp., 37, 31–46MathSciNetzbMATHGoogle Scholar
  10. 10.
    Vogelius, M., Babuška, I. (1981): On a dimensional reduction method III. A posteriori error estimation and an adaptive approach. Math. Comp., 37, 361–384MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sergey Repin
    • 1
  • Stefan Sauter
    • 2
  • Anton Smolianski
    • 2
  1. 1.V.A. Steklov Institute of MathematicsSt. PetersburgRussia
  2. 2.Institute of MathematicsZurich UniversityZurichSwitzerland

Personalised recommendations