Skip to main content

β-Amyloid Imaging In Vivo and Its Possible Implications for Alzheimer’s Disease

  • Chapter

Abstract

A central and initiating biochemical feature of most forms of Alzheimer’s disease (AD) is mis-processing of the neurotoxic amyloid β-peptide (Aβ). Promising therapeutic strategies are being developed directed at various steps in the Aβ biochemical cascade, resulting in reduction of accumulated Aβ. Promising radiotracers such as [18F]FDDNP, [11C]PIB and [11C]SB-13 have been developed for PET imaging of cerebral Aβ accumulation in vivo. The combination of these promising therapeutic strategies and radiotracers will hopefully allow for early detection and preventative treatment of AD. This will need to be studied prospectively in subjects at risk for AD, such as amnestic mild cognitive impairment (MCI), with adequate follow-up. Longitudinal Aβ PET studies may also help us resolve the question whether aging subjects without detectable cognitive impairment but with Aβ accumulation are at increased risk for developing AD. Repeated Aβ PET could be used to study the efficacy of β-amyloid-reducing medications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agdeppa ED, Kepe V, Petri A, Satyamurthy N, Liu J, Huang SC, Small GW, Cole GM, Barrio JR (2003) In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[18F] fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene)malononitrile. Neuroscience 117:723–730

    Article  PubMed  CAS  Google Scholar 

  • Almkvist O, Basun H, Backman L, Herlitz A, Lannfelt L, Small B, Viitanen M, Wahlund LO, Win-blad B (1998) Mild cognitive impairment — an early stage of Alzheimer’s disease? J Neural Transm [Suppl] 54:21–29

    CAS  Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neu-roanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  PubMed  CAS  Google Scholar 

  • Bacskai BJ, Hyman BT (2002) Alzheimer’s disease: what multiphoton microscopy teaches us. Neuroscientist 8:386–390

    Article  PubMed  Google Scholar 

  • Bacskai BJ, Klunk WE, Mathis CA, Hyman BT (2002) Imaging amyloid-beta deposits in vivo. J Cereb Blood Flow Metab 22:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Bornebroek M, Verzijlbergen JF, Haan J, Van Scheyen EJ, Verhoeff NPLG, Pauwels EK, Roos RA (1996) Potential for imaging cerebral amyloid deposits using 1231-labelled serum amyloid P component and SPET. Nucl Med Commun 17:929–933

    Article  PubMed  CAS  Google Scholar 

  • Bozoki A, Giordani B, Heidebrink JL, Berent S, Foster NL (2001) Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Arch Neurol 58:411–416

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1990a) Neurofibrillary changes confined to the entorhinal region and an abundance of cortical amyloid in cases of presenile and senile dementia. Acta Neuropathol (Berl) 80:479–486

    Article  CAS  Google Scholar 

  • Braak H, Braak E (1990b) Alzheimer’s disease: striatal amyloid deposits and neurofibrillary changes. J Neuropathol Exp Neurol 49:215–224

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  • Braak H, Braak E, Bohl J, Lang W (1989) Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 93:277–287

    Article  PubMed  CAS  Google Scholar 

  • Brilliant MJ, Elble RJ, Ghobrial M, Struble RG (1997) The distribution of amyloid beta protein deposition in the corpus striatum of patients with Alzheimer’s disease. Neuropathol Appl Neurobiol 23:322–325

    Article  CAS  Google Scholar 

  • Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, George-Hyslop PS, Westaway D (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Cotman CW (1995) Image analysis of beta-amyloid load in Alzheimer’s disease and relation to dementia severity. Lancet 346:1524–1528

    Article  PubMed  CAS  Google Scholar 

  • DeCarli C (2003) Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol 2:15–21

    Article  PubMed  Google Scholar 

  • Dewachter I, Van Leuven F (2002) Secretases as targets for the treatment of Alzheimer’s disease: the prospects. Lancet Neurol 1:409–416

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts C, Delaere P, Poulain V, Brion JP, Hauw JJ (1988) Does amyloid precede paired helical filaments in the senile plaque? A study of 15 cases with graded intellectual status in aging and Alzheimer disease. Neurosci Lett 91:354–359

    Article  PubMed  CAS  Google Scholar 

  • Engler H, Blomqvist G, Bergström M, Estrada S, Sandell J, Antoni G, Langström B (2002) First human study with a benzothiazole amyloid-imaging agent in Alzheimer’s disease and control subjects. Neurobiol Aging 23:S429

    Google Scholar 

  • Friedland RP, Kalaria R, Berridge M, Miraldi F, Hedera P, Reno J, Lyle L, Marotta CA (1997) Neuroimaging of vessel amyloid in Alzheimer’s disease. Ann N Y Acad Sci 826:242–247

    Article  CAS  Google Scholar 

  • Hansen LA, Masliah E, Galasko D, Terry RD (1993) Plaque-only Alzheimer disease is usually the Lewy body variant, and vice versa. J Neuropathol Exp Neurol 52:648–654

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Head E, McCleary R, Hahn FF, Milgram NW, Cotman CW (2000) Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging 21:89–96

    Article  PubMed  CAS  Google Scholar 

  • Head E, Milgram NW, Cotman CW (2001) Neurobiological models of aging in the dog and other vertebrate species. In: Hof PR, Mobbs CV (eds) Functional neurobiology of aging. Academic, New York, pp 457–470

    Chapter  Google Scholar 

  • Janus C, Chishti MA, Westaway D (2000) Transgenic mouse models of Alzheimer’s disease. Biochim Biophys Acta 1502:63–75

    Article  PubMed  CAS  Google Scholar 

  • Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135:309–319

    PubMed  CAS  Google Scholar 

  • Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, Hamilton RL, Ikonomovic MD, De-Kosky ST, Mathis CA (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 23:2086–2092

    PubMed  CAS  Google Scholar 

  • Kung MP, Skovronsky DM, Hou C, Zhuang ZP, Gur TL, Zhang B, Trojanowski JQ, Lee VM, Kung HF (2003) Detection of amyloid plaques by radioligands for Abeta40 and Abeta42: potential imaging agents in Alzheimer’s patients. Mol Neurosci 20:15–24

    Article  CAS  Google Scholar 

  • Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453

    Article  PubMed  Google Scholar 

  • Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H (2001) Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease. Ann Nucl Med 15:85–92

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, Van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD), part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Price JL (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci 17:101–118

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Storandt M, McKeel DW Jr, Rubin EH, Price JL, Grant EA, Berg L (1996) Cerebral amyloid deposition and diffuse plaques in “normal” aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46:707–719

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    Article  PubMed  CAS  Google Scholar 

  • Mufson EJ, Chen EY, Cochran EJ, Beckett LA, Bennett DA, Kordower JH (1999) Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neurol 158:469–490

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001a) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001b) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, Borowski BJ, Jack CR Jr (2002) Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11:315–329

    Article  PubMed  CAS  Google Scholar 

  • Price DL, Martin LJ, Sisodia SS, Wagster MV, Koo EH, Walker LC, Koliatsos VE, Cork LC (1991) Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathol 1:287–296

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    Article  PubMed  CAS  Google Scholar 

  • Redwine JM, Kosofsky B, Jacobs RE, Games D, Reilly JF, Morrison JH, Young WG, Bloom FE (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci USA 100:1381–1386

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A (2002) Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 59:1729–1734

    Article  PubMed  CAS  Google Scholar 

  • Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1:13–21

    Article  PubMed  Google Scholar 

  • Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35

    PubMed  Google Scholar 

  • Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286:2120–2127

    Article  PubMed  CAS  Google Scholar 

  • Small GW, Agdeppa ED, Kepe V, Satyamurthy N, Huang SC, Barrio JR (2002) In vivo brain imaging of tangle burden in humans. J Mol Neurosci 19:323–327

    PubMed  CAS  Google Scholar 

  • Suenaga T, Hirano A, Llena JF, Yen SH, Dickson DW (1990a) Modified Bielschowsky stain and immunohistochemical studies on striatal plaques in Alzheimer’s disease. Acta Neuropathol (Berl) 80:280–286

    Article  CAS  Google Scholar 

  • Suenaga T, Hirano A, Llena JF, Ksiezak-Reding H, Yen SH, Dickson DW (1990b) Modified Bielschowsky and immunocytochemical studies on cerebellar plaques in Alzheimer’s disease. J Neuropathol Exp Neurol 49:31–40

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Hansen LA, DeTeresa R, Davies P, Tobias H, Katzman R(1987) Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles. J Neuropathol Exp Neurol 46:262–268

    Article  PubMed  CAS  Google Scholar 

  • Thai DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  Google Scholar 

  • Thompson SA, Hodges JR (2002) Mild cognitive impairment: a clinically useful but currently ill-defined concept? Neurocase 8:405–410

    Article  PubMed  Google Scholar 

  • Troncoso JC, Martin LJ, Dal Forno G, Kawas CH (1996) Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiol Aging 17:365–371

    Article  PubMed  CAS  Google Scholar 

  • Troncoso JC, Cataldo AM, Nixon RA, Barnett JL, Lee MK, Checler F, Fowler DR, Smialek JE, Crain B, Martin LJ, Kawas CH (1998) Neuropathology of preclinical and clinical late-onset Alzheimer’s disease. Ann Neurol 43:673–676

    Article  PubMed  CAS  Google Scholar 

  • Verhoeff NPLG (2002) Pharmacotherapy of agitation and psychotic symptoms in Alzheimer’s disease. Expert Rev Neurotherapeut 2:655–664

    Article  CAS  Google Scholar 

  • Verhoeff NPLG (2003) Do NSAIDs reduce the risk of developing AD? CAGP Bull 10:14–15

    Google Scholar 

  • Verhoeff NPLG, Wilson AA, Nobrega J, Milgram NW, Westaway D, Head E, Hussey D, Tapp D, Trop L, Giuliano F, Araujo J, Ginovart N, Richardson L, Singh K, Houle S (2003) Development of positron emission tomography (PET) tracers for beta-amyloid imaging in vivo. J Cereb Blood Flow Metab 23[Suppl 1]:685

    Google Scholar 

  • Visser PJ, Verhey FRJ, Jolles J, Jonker C (2002) Course of minimal dementia and predictors of outcome. Int J Geriatr Psychiatry 17:835–841

    Article  Google Scholar 

  • Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, Tang CY, Aguinaldo G, Pappolla M, Duff K, Wisniewski T, Turnbull DH (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50:293–302

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Klunk WE, Huang GF, Debnath ML, Holt DP, Mathis CA (2002) Synthesis and evaluation of 2-(3′-iodo-4′-aminophenyl)-6-hydroxybenzothiazole for in vivo quantitation of amyloid deposits in Alzheimer’s disease. J Mol Neurosci 19:11–16

    Article  PubMed  Google Scholar 

  • Wolf DS, Gearing M, Snowdon DA, Mori H, Markesbery WR, Mirra SS (1999) Progression of regional neuropathology in Alzheimer disease and normal elderly: findings from the Nun study. Alzheimer Dis Assoc Disord 13:226–231

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS (2001) Secretase targets for Alzheimer’s disease: identification and therapeutic potential. J Med Chem 44:2039–2060

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Nakazato Y (1989) Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain. Acta Neuropathol (Berl) 77:314–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verhoeff, N.P.L.G., Wilson, A.A., Kung, H.F., Hussey, D., Trop, L., Houle, S. (2004). β-Amyloid Imaging In Vivo and Its Possible Implications for Alzheimer’s Disease. In: Otte, A., Audenaert, K., Peremans, K., van Heeringen, K., Dierckx, R.A. (eds) Nuclear Medicine in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18773-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18773-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62287-8

  • Online ISBN: 978-3-642-18773-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics