Skip to main content

Homogenization Method for Transport of DNA Particles in Heterogeneous Arrays

  • Conference paper
Multiscale Modelling and Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 39))

Abstract

In this paper we study the large scale transport of the DNA particles through a heterogeneous micro array in the framework of homogenization theory. We derive the macro scale particle transport equation and show that for transport of particles in a divergence free electric field as proposed by Duke and Austin [Du98] and Ertas [Er98] separation according to particle mass or size cannot been achieved. Our results explain the experimental findings of Duke and Austin [Du98] and Ertas [Er98] and thus close the gap between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Abdulle, Fourth order Chebyshev methods with recurrence relation, SISC, Vol.23, NO.6, pp. 2041–20542002.

    MathSciNet  MATH  Google Scholar 

  2. A. Abdulle and C. Schwab, Heterogeneous multi-scale FEM for diffusion problem on rough surfaces, submitted to SIAM MMS.

    Google Scholar 

  3. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic StructuresNorth Holland, Amsterdam1978.

    MATH  Google Scholar 

  4. T.A. Duke and R.H. Austin, Microfabricated Sieve for the Continuous Sorting of MacromoleculesPhys. rev. Lett. Vol. 89, No. 71998.

    Google Scholar 

  5. W. E and B. Engquist, The Heterogeneous Multi-Scale MethodsComm. Math. Sci., Vol. 1, No. 1, pp. 87–1322003.

    MathSciNet  MATH  Google Scholar 

  6. L.C. Evans, Partial Differential EquationsAMS, Providence, Rhode Island1998.

    MATH  Google Scholar 

  7. D. Ertas, Lateral Separation of Macromolecules and Polyelectrolytes in Microlithographic ArraysPhys. Rev. Lett. Vol. 80, No. 71998.

    Google Scholar 

  8. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer Verlag Series in Comput. Math., Vol. 8Berlin1996.

    MATH  Google Scholar 

  9. L.R. Huang, P. Silberzan, J.O. Tegenfeldt, E.C. Cox, J.C. Sturm, R.H. Austin and H. Craighead, Role of Molecular Size in Ratchet FractionationPhys. rev. Lett. Vol. 89, No. 172002.

    Google Scholar 

  10. R.H. Austin, N. Darnton, R. Huang, J. Sturm, O. Bakajin, T. Duke Ratchets: the problems with boundary conditions in insulating fluidsAppl. Phys.A 752792842002.

    Google Scholar 

  11. M. Magnasco, Forced Thermal RatchetsPhys. Rev. Lett.7114771993.

    Article  Google Scholar 

  12. J. Prost, J.F. Chaudwin, L. Peliti, and A. Ajdari, Asymmetric Pumping of ParticlesPhys. Rev. Lett.7217661994.

    Article  Google Scholar 

  13. Gelhar, L.W., and C.L. AxnessThree-Dimensional stochastic analysis of macrodispersion in aquifersWater Resour. Res., Vol 19161–1801983.

    Article  Google Scholar 

  14. G. Dagan, Flow andTransport in Porous FormationsSpringer-Verlag, New York1989.

    Book  Google Scholar 

  15. M. Dentz, H. Kinzelbach, S. Attinger and W. Kinzelbach, Temporal behaviour of a solute cloud in a heterogeneous porous medium: Point like injectionWater Resour. Res., Vol. 36, No. 123591–36042000

    Article  Google Scholar 

  16. I. Lunati, S. Attinger and W. Kinzelbach, Large Scale Dispersivities for Transport in arbitrary Nonuniform Flow FieldsWater Resour. Res., Vol 38, No.1011872002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdulle, A., Attinger, S. (2004). Homogenization Method for Transport of DNA Particles in Heterogeneous Arrays. In: Attinger, S., Koumoutsakos, P. (eds) Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18756-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18756-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21180-8

  • Online ISBN: 978-3-642-18756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics