Skip to main content

Strukturelle, zelluläre und subzelluläre Veränderungen des Gehirns bei physiologischem Altern und der senilen Demenz vom Alzheimer-Typ

  • Chapter
Molekularmedizinische Grundlagen von altersspezifischen Erkrankungen

Part of the book series: Molekulare Medizin ((MOLMED))

  • 183 Accesses

Zusammenfassung

Zelluläre Altersveränderungen haben schon frühzeitig die Alterungsforschung beschäftigt. 1910 stellte Mühlmann die Hypothese auf, dass die Anhäufung des Alterspigments „Lipofuszin“ in Nervenzellen zu einer Nervenzelldegeneration führt. Nach seiner Theorie sollte das Leben in letzter Konsequenz in einem physiologischen Erschöpfungstod enden. Rund dreißig Jahre später zog die altersbedingte Abnahme des Wassergehalts des Gehirns das Interesse auf sich. Diesen Befund griff Max Bürger (1947) auf und baute ihn in sein Konzept der altersabhängigen Wasserverarmung bradytropher Gewebe ein. Die mit Wasserverlust einhergehende Abnahme des Hirngewichtes jenseits des 50. Lebensjahres (Roessle u. Roulet 1932) sah Bürger als Folge eines „Verdichtungsprozesses“ des Gehirns an. Diese Abnahme des Wassergehaltes betrachtete er als von hysteretischen Vorgängen begleitet, welche zur Bildung seniler Plaques und Alzheimer-Fibrillen führen sollten. Bürger beurteilte diese Vorgänge als geänderte kolloidchemische Prozesse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abernethy WB, Bell MA, Morris M et al(1993) Microvascular density of the human paraventricular nucleus decreases with aging but not hypertension. Exp Neurol 121:270–274

    Article  PubMed  CAS  Google Scholar 

  • Alavi A, Newberg AB, Souder E et al(1993) Quantitative analysis of PET and MRI data in normal aging and Alzheimer’s disease: atrophy weighted total brain metabolism and absolute whole brain metabolism as reliable discriminators. J Nucl Med 34:1681–1687

    PubMed  CAS  Google Scholar 

  • Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154

    PubMed  CAS  Google Scholar 

  • Aletrino MA, Vogels OJ, Van Domburg PH et al(1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13:461–468

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JC, Diaz C, Suarez C et al(1998) Neuronal loss in human medial vestibular nucleus. Anat Rec 251:431–438

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JC, Diaz C, Suarez C et al(2000) Aging and the human vestibular nuclei: morphometric analysis. Mech Ageing Dev 114:149–172

    Article  PubMed  CAS  Google Scholar 

  • Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Auen EL, Bourke RS, Barron KD et al(1979) Alteration in cat cerebrocortical capillary morphometrical parameters following K+-induced cerebrocortical swelling. Acta Neuropathol (Berl) 47:175–181

    Article  CAS  Google Scholar 

  • Azari NP, Pettigrew KD, Pietrini P et al(1994) Detection of an Alzheimer disease pattern of cerebral metabolism in Down syndrome. Dementia 5:69–78

    PubMed  CAS  Google Scholar 

  • Baloyannis SJ, Costa V, Psaroulis D et al(1994) The nucleus basalis of Meynert of the human brain: a Golgi and electron microscope study. Int J Neurosci 78:33–41

    Article  PubMed  CAS  Google Scholar 

  • Bard F, Cannon C, Barbour R et al(2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med 6:916–919

    Article  PubMed  CAS  Google Scholar 

  • Begega A, Cuesta M, Santin LJ et al(1993) Unbiased estimation of the total number of nervous cells and volume of medial mammilary nucleus in humans. Exp Gerontol 34:771–782

    Article  Google Scholar 

  • Bell MA, Ball MJ (1981) Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities. Acta Neuropathol (Berl) 53:299–318

    Article  CAS  Google Scholar 

  • Bentourkia M, Bol A, Ivanoiu A et al(2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181:19–28

    Article  PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Casoli T et al(1990) Morphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer’s disease. Brain Res 517:69–75

    Article  PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Casoli T et al(1993a) Compensatory enlargement of synaptic size in aging and senile dementia. Boll Soc Ital Biol Sper 69:57–63

    PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Casoli T et al(1993b) Morphological plasticity of synaptic mitochondria during aging. Brain Res 628:193–200

    Article  PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Casoli T et al(1996) Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Anal Quant Cytol Histol 18:209–213

    PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Paoloni R et al(1997) Impaired dynamic morphology of cerebellar mitochondria in physiological aging and Alzheimer’s disease. Ann NY Acad Sci 826:479–482

    Article  PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Casoli T et al(2001) Oversized junctions in physiological and pathological (Alzheimer’s disease) brain aging provide clues to a novel interpretation of perforated synapses. Scanning Microsc 23:127–128

    Google Scholar 

  • Beyreuther K, Bush, AJ, Dyrks Th et al(1991) Mechanisms of amyloid deposition in Alzheimer’s disease. Ann NY Acad Sc 640:129–139

    CAS  Google Scholar 

  • Bigl V, Arendt T, Fischer S et al(1987) The cholinergic system in aging. Gerontology 33:172–180

    Article  PubMed  CAS  Google Scholar 

  • Blanchard BJ, Park T, Fripp WJ et al(1993) A mitochondrial DNA deletion in normally aging and in Alzheimer brain tissue. Neuroreport 4:799–802

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Bouras C, Hof PR, Giannakopoulos P et al(1994) Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 4:138–150

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, Davison AN (1980) Biochemical changes in the cholinergic system of the ageing brain and in senile dementia. Psychol Med 10:315–319

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, Davison AN (1983) The failing brain. J Chronic Dis 36:3–13

    Article  PubMed  CAS  Google Scholar 

  • Brayne C, Calloway P (1988) Normal ageing, impaired cognitive function, and senile dementia of the Alzheimer’s type: a continuum? Lancet 1:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–516

    Article  PubMed  CAS  Google Scholar 

  • Bürger M (1947) Altern und Krankheit. Thieme, Leipzig

    Google Scholar 

  • Burns A, Tyrrell P (1992) Association of age with regional cerebral oxygen utilization: a positron emission tomography study. Age Ageing 21:316–320

    Article  PubMed  CAS  Google Scholar 

  • Cambon K, Davies KA, Stewart MG (2000) Synaptic loss is accompanied by an increase in synaptic area in the dentate gyrus of aged human apolipoprotein E4 transgenic mice. Neuroscience 97:685–692

    Article  PubMed  CAS  Google Scholar 

  • Chagnon P, Betard C, Robitaille Y et al(1995) Distribution of brain cytochrome oxidase activity in various neurodegenerative diseases. Neuroreport 6:711–715

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay V, Asan E (1989) Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J Comp Neurol 287:357–372

    Article  PubMed  CAS  Google Scholar 

  • Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621–629

    Google Scholar 

  • Chui HC, Bondareff W, Zarow C et al(1984) Stability of neuronal number in the human nucleus basalis of Meynert with age. Neurobiol Aging 5:83–88

    Article  PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott MT et al(1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329

    Article  PubMed  CAS  Google Scholar 

  • Davies DC, Horwood N, Isaacs SL et al(1992) The effect of age and Alzheimer’s disease on pyramidal neuron density in the individual fields of the hippocampal formation. Acta Neuropathol (Berl) 83:510–517

    Article  CAS  Google Scholar 

  • Davis M, Whitely T, Turnbull DM et al(1997) Selective impairments of mitochondrial respiratory chain activity during aging and ischemic brain damage. Acta Neurochir Suppl (Wien) 70:56–58

    CAS  Google Scholar 

  • Davis RE, Miller S, Hermstadt C et al(1997) Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc Natl Acad Sci USA 94:4526–4531

    Article  PubMed  CAS  Google Scholar 

  • Diaz BR, Chen S, Montoya M et al(2000) The women’s health initiative estrogen replacement therapy is neurotrophic and neuroprotective. Neurobiol Aging 21:475–496

    Article  Google Scholar 

  • Dyson SE, Jones DG (1984) Synaptic remodeling during development and maturation: junction differentiation and splitting as a mechanism for modifying connectivity. Dev Brain Res 13:125–137

    Article  Google Scholar 

  • Egensperger R, Kosel S, Schnopp NM et al(1997) Association of the mitochondrial tRNA (A4336G) mutation with Alzheimer’s and Parkinson’s diseases. Neuropathol Appl Neurobiol 23:315–321

    Article  PubMed  CAS  Google Scholar 

  • Eggers R, Knebel G, Haug H (1991) Morphometric studies of biological changes in synapses of the human caudate nucleus. Z Gerontol 24:302–305

    PubMed  CAS  Google Scholar 

  • Emmerling MR, Morganti-Kossmann MC, Kossmann T et al (2000) Traumatic brain injury elevates the Alzheimer’s amyloid peptide A beta 42 in human CSE A possible role for nerve cell injury. Ann NY Acad Sci 903:118–122

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Silver JA (1989) ATP and brain functions. J Cereb Blood Flow Metab 9:2–19

    Article  PubMed  CAS  Google Scholar 

  • Eustache F, Rioux P, Desgranges B et al(1995) Healthy aging, memory subsystems and regional cerebral oxygen consumption. Neuropsychologia 33:867–887

    Article  PubMed  CAS  Google Scholar 

  • Fattoretti P, Bertoni-Freddari C, Caselli U et al(1996) Morphologic changes in cerebellar mitochondria during aging. Anal Quant Cytol Histol 18:205–208

    PubMed  CAS  Google Scholar 

  • Ferrandiz ML, Martinez M, Juan de E et al(1994) Impairment of mitochondrial oxidative phosphorylation in the brain of aged mice. Brain Res 644:335–338

    Article  PubMed  CAS  Google Scholar 

  • Frey KA, Minoshima S, Kuhl DE (1998) Neurochemical imaging of Alzheimer’s disease and other degenerative dementias. Q J Nucl Med 42:166–178

    PubMed  CAS  Google Scholar 

  • Frolich L, Blum-Degen D, Bernstein HG et al(1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438

    Article  PubMed  CAS  Google Scholar 

  • Gedye A, Beattic BC, Tuokko H et al(1989) Severe head injury hastens age onset of Alzheimer’s disease. J Am Geriatr Soc 37:970–973

    PubMed  CAS  Google Scholar 

  • George-Hyslop PH, Tanzi RE, Polinsky RJ et al(1987a) Absence of duplication of chromosome 21 genes in familial and sporadic Alzheimer’s disease. Science 238:664–666

    Article  Google Scholar 

  • George-Hyslop P, Tanzi RE, Polinsky RJ et al(1987b) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–890

    Article  Google Scholar 

  • Giacobini E (2000) Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann NY Acad Sci 920:321–327

    Article  PubMed  CAS  Google Scholar 

  • Giaume C, Tabernero A, Medina JM (1997) Metabolic trafficking through astrocytic gap junctions. Glia 21:114–123

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105:855–870

    Article  PubMed  CAS  Google Scholar 

  • Gomez PA, Lobato RD, Boto GR et al(2000) Age and outcome after severe head injury. Acta Neurochir (Wien) 142:373–380

    Article  CAS  Google Scholar 

  • Gottfries CG (1990) Neurochemical aspects on aging and diseases with cognitive impairment. J Neurosci Res 27:541–547

    Article  PubMed  CAS  Google Scholar 

  • Grandi D, Arcari ML (1992) Neuronal aspects and plasticity of inferior olivary complex and nucleus dentatus. Acta Biomed Ateneo Parmense 63:17–25

    PubMed  CAS  Google Scholar 

  • Gray EG, Gullery RW (1966) Synaptic morphology in the normal and degenerating nervous system. Int Rev Cytol 19:111–182

    Article  PubMed  CAS  Google Scholar 

  • Grodstein F, Chen J, Pollen DA et al(2000) Postmenopausal hormone therapy and cognitive function in healthy older women. J Am Geriatr Soc 48:746–752

    PubMed  CAS  Google Scholar 

  • Hardy J, Goate A, Owen M, Rossor N (1989) Presenile dementia associated with mosaic trisomy 21 in a patient with a Down syndrome child. Lancet ii:743

    Article  Google Scholar 

  • Harman D (1981) The aging process. Proc Nati Acad Sci USA 78:7124–7128

    Article  CAS  Google Scholar 

  • Haug H, Knebel G, Mecke E et al (1981) The aging of cortical cytoarchitectonics in the light of stereological investigations. Prog Clin Biol Res 59B:193–197

    PubMed  CAS  Google Scholar 

  • Heiss WD, Szelies B, Kessler J et al(1991) Abnormalities of energy metabolism in Alzheimer’s disease studied with PET. Ann NY Acad Sci 640:65–71

    PubMed  CAS  Google Scholar 

  • Henderson VW (2000) Oestrogens and dementia. Novartis Found Symp 230:254–265

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA, Fliers E, Goudsmit E et al(1988) Morphometric analysis of the suprachiasmatic and paraventricular nuclei in the human brain: sex differences and agedependent changes. J Anat 160:127–143

    PubMed  CAS  Google Scholar 

  • Hoyer S (1990) Brain glucose and energy metabolism during normal aging. Aging (Milano) 2:245–258

    CAS  Google Scholar 

  • Hoyer S (1995) Age-related changes in cerebral oxidative metabolism. Implications for drug therapy. Drugs Aging 6:210–218

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1997) Models of Alzheimer’s disease: cellular and molecular aspects. J Neural Transm Suppl 49:11–21

    PubMed  CAS  Google Scholar 

  • Hoyer S (1998) Risk factors for Alzheimer’s disease during aging. Impacts of glucose/energy metabolism. J Neural Transm Suppl 54:187–194

    PubMed  CAS  Google Scholar 

  • Hubbard BM, Fenton GW, Anderson JM (1990) A quantitative histological study of early clinical and preclinical Alzheimer’s disease. Neuropathol Appl Neurobiol 16:111–121

    Article  PubMed  CAS  Google Scholar 

  • Hunziker O, Abdel’Al S, Schulz U (1979) The aging human cerebral cortex: a stereological characterization of changes in the capillary net. J Gerontol 34:345–350

    Article  PubMed  CAS  Google Scholar 

  • Ikebe S, Tanaka M, Ohnko K et al(1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170:1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Weis S, Mehraein P et al(1996) Cytochrome c oxidase defects of the human substantia nigra in normal aging. Neurobiol Aging 17:843–848

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Hatazawa J, Miyazawa H et al(1990) Stability of cerebral blood flow and oxygen metabolism during normal aging. Gerontology 36:43–48

    Article  PubMed  CAS  Google Scholar 

  • Iwangoff P, Armbruster R, Enz A et al(1980) Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases. Mech Ageing Dev 14:203–209

    Article  PubMed  CAS  Google Scholar 

  • Jagust WJ, Eberling JL, Richardson BC et al(1993) The cortical topography of temporal lobe hypometabolism in early Alzheimer’s disease. Brain Res 629:189–198

    Article  PubMed  CAS  Google Scholar 

  • Jendroska K, Cervos-Navarro J, Poewe W (1993) Deposition of beta-amyloid associated with cerebral hypoxia. Clin Neuropathol 12:252

    Google Scholar 

  • Jendroska K, Poewe W, Daniel SE et al(1995) Ischemic stress induces deposition of amyloid beta immunoreactivity in human brain. Acta Neuropath (Berl) 90:461–466

    Article  CAS  Google Scholar 

  • Johanson A, Gustafson L, Brun A et al(1991) A longitudinal study of dementia of Alzheimer type in Down’s syndrome. Dementia 2:159–168

    Google Scholar 

  • Kalaria RN, Bhatti SU, Lust WD et al(1993) The amyloid precursor protein in ischemic brain injury and chronic hypoperfusion. Ann NY Acad Sci 695:190–193

    Article  PubMed  CAS  Google Scholar 

  • Kapsa RM, Jean-Francois MJ, Lertrit P et al(1996) Mitochondrial DNA polymorphism in substantia nigra. J Neurol Sci 144:204–211

    Article  PubMed  CAS  Google Scholar 

  • Kaufer DI (1999) Cholinergic therapy for neuropsychiatrie symptoms in neurologic disorders. Curr Psychiatry Rep 1:78–84

    Article  PubMed  CAS  Google Scholar 

  • Kennedy AM, Rossor MN, Frackowiak RS (1995) Positron emission tomography in familial Alzheimer disease. Alzheimer Dis Assoc Disord 9:17–20

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Burgeron C, Rajput A et al(1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779

    Article  PubMed  CAS  Google Scholar 

  • Kormann-Bortolotto MH, Smith M, Toniolo NJ (1992) Fragile sites, Alzheimer’s disease, and aging. Mech Ageing Dev 65:9–15

    Article  PubMed  CAS  Google Scholar 

  • Korr H, Kurz C, Seidler TO et al(1998) Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo. Braz J Med Biol Res 31:289–298

    Article  PubMed  CAS  Google Scholar 

  • Kosky de ST, Scheff S (1990) Synapses loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  Google Scholar 

  • Kuhl DE, Minoshima S, Fessier JA et al(1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410

    Article  PubMed  CAS  Google Scholar 

  • Lacalle de S, Iraizoz I, Ma GL (1991) Differential changes in cell size and number in topographic subdivisions of human basal nucleus in normal aging. Neuroscience 43:445–456

    Article  PubMed  Google Scholar 

  • Landin K, Blennow K, Wallin A et al(1993) Low blood pressure and blood glucose levels in Alzheimer’s disease: evidence for a hypometabolic disorder? J Intern Med 233:357–363

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA, Ingvar DH, Skinhoj E (1978) Brain function and blood flow. Sci Am 239:62–71

    Article  PubMed  CAS  Google Scholar 

  • Lindenberg R (1957) Die Gefäßversorgung und ihre Bedeutung für Art und Ort von kreislaufbedingten Gewebeschäden und Gefäßprozessen. In: Henke F, Lubarsch O, Rössle R (Hrsg) Störungen des Blutkreislaufes und ihre Folgen für das Zentralnerven-System. Handbuch der speziellen pathologischen Anatomie und Histologie: Nervensystem, Vol XIII, Bd 1. Springer, Berlin Heidelberg New York, S 1071–1164

    Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T et al (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 642–645

    Google Scholar 

  • Lino M, Goto K, Kakegawa W et al(2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292:926–929

    Article  Google Scholar 

  • Lippa CF, Hamos JE, Pulaski-Salo D et al(1992) Alzheimer’s disease and aging: effects on perforant pathway perikarya and synapses. Neurobiol Aging 13:405–411

    Article  PubMed  CAS  Google Scholar 

  • Livingston G, Katona C (2000) How useful are cholinesterase inhibitors in the treatment of Alzheimer’s disease? A number needed to treat analysis. Int J Geriatr Psychiatry 15:203–207

    Article  PubMed  CAS  Google Scholar 

  • Lopez I, Honrubia V, Baloh RW (1997) Aging and the human vestibular nucleus. J Vestib Res 7:77–85

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Roytt M, Collan Y et al(1999) Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399

    Article  PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 10:185–207

    Article  PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B (1985) Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer type and Down’s syndrome in middle age. J Neurol Sci 69:139–159

    Article  PubMed  CAS  Google Scholar 

  • Mann DM, Eaves NR, Marcyniuk B et al(1986) Quantitative changes in cerebral cortical microvasculature in ageing and dementia. Neurobiol Aging 7:321–330

    Article  PubMed  CAS  Google Scholar 

  • Marchai G, Rioux P, Petit-Taboue MC et al(1992) Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49:1013–1020

    Article  Google Scholar 

  • Marcyniuk B, Mann DM, Yates PO (1989) The topography of nerve cell loss from the locus coeruleus in elderly persons. Neurobiol Aging 10:5–9

    Article  PubMed  CAS  Google Scholar 

  • Martin AJ, Friston KJ, Colebatch JG et al(1991) Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 11:684–689

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM (1996) How to count synapses unbiasedly and efficiently at the ultrastructural level: proposal for a standard sampling and counting protocol. J Neurocytol 25:793–804

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG, Suzuki J et al(1984) Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurology 34:741–745

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P, MacGarvey U, Kaufman AE et al(1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616

    Article  PubMed  CAS  Google Scholar 

  • Meier-Ruge W (1990) Senile dementia — a disease of exhaustion of functional brain reserve capacity. Excerp Med Curr Clin Pract Series 59:371–375

    Google Scholar 

  • Meier-Ruge W, Bertoni-Freddari C (1996) The significance of glucose turnover in the brain in the pathogenetic mechanisms of Alzheimer’s disease. Rev Neurosci 7:1–19

    Article  PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Bertoni-Freddari C (1999) Mitochondrial genome lesions in the pathogenesis of sporadic Alzheimer’s disease. Gerontology 45:289–297

    Article  PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Schulz U (1980) Kapilläre Veränderungen des Gehirns beim alternden Menschen und ihre pathophysiologische Bedeutung. Bull Schweiz Akad Med Wiss 36:161–175

    PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Hunziker O, Iwangoff P (1980) Senile dementia: a threshold phenomenon of normal aging? A contribution to the functional reserve hypothesis of the brain. Ann NY Acad Sci 621:104–118

    Article  Google Scholar 

  • Meier-Ruge W, Hunziker O, Schulz U et al(1980) Stereological changes in the capillary network and nerve cells of the aging human brain. Mech Ageing Dev 14:233–243

    Article  PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Bertoni-Freddari C, Iwangoff P (1994) Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer’s disease. Gerontology 40:246–252

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Hinerfeld D, Esposito L et al(1997) Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res 25:974–982

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Schneider JA, Coskun PE et al(1999) Mitochondrial DNA rearrangements in aging human brain and in situ PCR of mtDNA. Neurobiol Aging 20:565–571

    Article  PubMed  CAS  Google Scholar 

  • Michikawa Y, Mazzucchelli F, Bresolin N et al (1999) Aging dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    Article  PubMed  CAS  Google Scholar 

  • Mielke R, Heiss WD (1998) Positron emission tomography for diagnosis of Alzheimer’s disease and vascular dementia. J Neural Transm Suppl 53:237–250

    Article  PubMed  CAS  Google Scholar 

  • Mielke R, Herholz K, Grond M et al(1992) Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 13:93–98

    Article  PubMed  CAS  Google Scholar 

  • Miller AK, Alston RL, Mountjoy CQ et al(1984) Automated differential cell counting on a sector of the normal human hippocampus: the influence of age. Neuropathol Appl Neurobiol 10:123–141

    Article  PubMed  CAS  Google Scholar 

  • Miquel J (1991) An integrated theory of aging as the result of mitochondrial-DNA mutation in differentiated cells. Arch Gerontol Geriatr 12:99–117

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Moeller JR, Ishikawa T, Dhawan V et al(1996) The metabolic topography of normal aging. J Cereb Blood Flow Metab 16:385–398

    Article  PubMed  CAS  Google Scholar 

  • Monte de la SM, Luong T, Neely TR et al(2000) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Lab Invest 80:1323–1335

    Article  PubMed  Google Scholar 

  • Morys J, Diezewiatkowski J, Switka A et al(1994) Morphometric parameters of some hypothalamic nuclei: age-related changes. Folia Morphol (Warsz) 53:221–229

    CAS  Google Scholar 

  • Mühlmann M (1910) Das Altern und der physiologische Tod. Fischer, Jena

    Google Scholar 

  • Nagy Z, Esiri MM, LeGris M et al(1999) Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol (Berl) 97:346–354

    Article  CAS  Google Scholar 

  • Nass S, Nass MM (1963) Ultramitochondrial fibers with DNA characteristics. J Cell Biol 19:593–629

    Article  PubMed  CAS  Google Scholar 

  • Ohm TG, Busch C, Bohl J (1997) Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiol Aging 18:393–399

    Article  PubMed  CAS  Google Scholar 

  • Ojaimi J, Masters CL, Opeskin K et al(1999) Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev 111:39–47

    Article  PubMed  CAS  Google Scholar 

  • Olson MI, Shaw CM (1969) Presenile dementia and Alzheimer’s disease in mongolism. Brain 92:147–156

    Article  PubMed  CAS  Google Scholar 

  • Otani S, Ben-Ari Y (1993) Biochemical correlates of longterm potentiation in hippocampal synapses. Int Rev Neurobiol 35:1–41

    Article  PubMed  CAS  Google Scholar 

  • Pantano P, Baron JC, Lebrun-Grandie P et al(1984) Regional cerebral blood flow and oxygen consumption in human aging. Stroke 15:635–641

    Article  PubMed  CAS  Google Scholar 

  • Perry EK (1980) The cholinergic system in old age and Alzheimer’s disease. Age Ageing 9:1–8

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Johnson M, Kerwin JM et al(1992) Convergent cholinergic activities in aging and Alzheimer’s disease. Neurobiol Aging 13:393–400

    Article  PubMed  CAS  Google Scholar 

  • Potter H (1991) Review and hypothesis: Alzheimer disease and Down syndrome — chromosome 21 non-disjunction may underlie both disorders. Am J Hum Genet 48:1192–1200

    PubMed  CAS  Google Scholar 

  • Rance NE, Uswandi SV, McMullen NT (1993) Neuronal hypertrophy in the hypothalamus of older men. Neurobiol Aging 14:337–342

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Janetzky B (1979) Mitochondrial dysfunction — a pathogenetic factor in Parkinson’s disease. J Neurol 247(Suppl 2):1163–1168

    Google Scholar 

  • Reivich M, Kuhl D, Wolf A et al(1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  PubMed  CAS  Google Scholar 

  • Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Nat Acad Sci USA 85:6465–6467

    Article  PubMed  CAS  Google Scholar 

  • Roberts GW, Gentleman SM, Lynch A et al(1991) Beta-A4 amyloid protein deposition in brain after head trauma. Lancet 338:1422–1423

    Article  PubMed  CAS  Google Scholar 

  • Roessle R, Roulet F (1932) Mass und Zahl in der Pathologic. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Salehi A, Swaab DF (1999) Diminished neuronal metabolic activity in Alzheimer’s disease. J Neural Transm 106:955–986

    Article  PubMed  CAS  Google Scholar 

  • Salehi A, Ravid R, Gonatas NK et al(1995) Decreased activity of hippocampal neurons in Alzheimer’s disease is not related to the presence of neurofibrillary tangles. J Neuropathol Exp Neurol 54:704–709

    Article  PubMed  CAS  Google Scholar 

  • Sandoz P, Meier-Ruge W (1977) Age-related loss of nerve cells from the human inferior olive and unchanged volume of its gray matter. JRCS Med Sci 5:376

    Google Scholar 

  • Sastre J, Pallardo FV, Garcia de la Asuncion J et al(2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, Price DA (1993) Synapse loss in the temporal lobe in Alzheimer’s disease. Ann Neurol 33:190–200

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, Sparks DL, Price DA (1996) Quantitative assessment of synaptic density in the outer molecular layer of the hippocampal dentate gyrus in Alzheimer’s disease. Dementia 7:226–232

    PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W et al(1999) Immunization with amyloid-α attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  PubMed  CAS  Google Scholar 

  • Schneider LS, Finch CE (1997) Can estrogens prevent neurodegeneration? Drugs Aging 11:87–95

    Article  PubMed  CAS  Google Scholar 

  • Schulz U, Hunziker O (1980) Comparative studies of neuronal perikaryon size and shape in the aging cerebral cortex. J Gerontol 35:483–491

    Article  PubMed  CAS  Google Scholar 

  • Schulz U, Abdel’AI S, Hunziker O et al (1980) Quantitativemorphological changes of capillaries and neurons in the aging human putamen. Microsc Acta (Suppl 4):135–139

    Google Scholar 

  • Schulz-Dazzi U (1986) Quantitative analysis of capillary and neuron images under normal conditions and in dementia. Biull Eksp Biol Med 101:102–105

    Article  PubMed  CAS  Google Scholar 

  • Simic G, Kostovic I, Winblad B et al(1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Bowen DM, Davison AN (1981) [14C]acetylcholine synthesis and [14C] carbon dioxide production from [U-14C]glucose by tissue prisms from human neocortex. Biochem J 196:867–876

    PubMed  CAS  Google Scholar 

  • Sinex FM, Myers RH (1982) Alzheimer’s disease, Down’s syndrome, and aging: the genetic approach. Ann NY Acad Sci 396:3–13

    Article  PubMed  CAS  Google Scholar 

  • Sjobeck M, Dahlen S, Englund E (1999) Neuronal loss in the brain stem and cerebellum — part of the normal aging process? A morphometric study of the vermis cerebelli and inferior olivary nucleus. J Gerontol A Biol Sci Med Sci 54:B363–B368

    Article  PubMed  CAS  Google Scholar 

  • Solmi R, Pallotti T, Rugolo M (1994) Lack of major mitochondrial bioenergetic changes in cultured skin fibroblasts from aged individuals. Biochem Mol Biol Int 33:477–484

    PubMed  CAS  Google Scholar 

  • Soong NW, Hinton DR, Cortopassi G et al(1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–373

    Article  PubMed  CAS  Google Scholar 

  • Su JH Cummings BJ, Cotman CW (1996) Plaque biogenesis in brain aging and Alzheimer’s disease. I. Progressive changes in phosphorylation states of paired helical filaments and neurofilaments. Brain Res 739:79–87

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF, Lucassen PJ, Salehi A et al(1998) Reduced neuronal activity and reactivation in Alzheimer’s disease. Prog Brain Res 117:343–377

    Article  PubMed  CAS  Google Scholar 

  • Sylvia AL, Rosenthal M (1979) Effect of age on oxidative metabolism in vivo. Brain Res 165:235–248

    Article  PubMed  CAS  Google Scholar 

  • Szenborn M (1993) Neuropathological study on the nucleus basalis of Meynert in mature and old age. Patol Pol 44:211–216

    PubMed  CAS  Google Scholar 

  • Tamada Y, Tanaka M, Munekawa K et al(1998) Neuron-glia interaction in the suprachiasmatic nucleus: a double labeling light and electron microscopic immunocytochemical study in the rat. Brain Res Bull 45:281–287

    Article  PubMed  CAS  Google Scholar 

  • Tanzi RE, Gusella JF, Watkins PC et al(1987) Amyloid α protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884

    Article  PubMed  CAS  Google Scholar 

  • Tauchi H, Sato T (1985) Cellular change in senescence: possible factors influencing the process of cellular aging. In: Bergener M, Ermini M, Stahelin HB (eds) Thresholds in aging. Academic Press, London, pp 91–113

    Google Scholar 

  • Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539

    Article  PubMed  CAS  Google Scholar 

  • Tolnay M, Probst A (2001) Frontotemporal lobar degeneration. Gerontology 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Torre de la JC (1992) Cerebral hypoperfusion, capillary degeneration, and development of Alzheimer disease. Alzheimer Dis Assoc Disord 14(Suppl 1):72–81

    Google Scholar 

  • Trillo L, Gonzalo LM (1992) Ageing of the human entorhinal cortex and subicular complex. Histol Histopathol 7:17–22

    PubMed  CAS  Google Scholar 

  • Troncoso JC, Martin LJ, Dal Forno G et al(1996) Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiol Aging 17:365–371

    Article  PubMed  CAS  Google Scholar 

  • Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 637–639

    Google Scholar 

  • Tucek S (1985) Regulation of acetylcholine synthesis in the brain. J Neurochem 44:11–21

    Article  PubMed  CAS  Google Scholar 

  • Verzar F (1968) Intrinsic and extrinsic factors of molecular ageing. Exp Gerontol 3:69–75

    Article  PubMed  CAS  Google Scholar 

  • Vise WM, Liss L, Yashon D et al(1975) Astrocytic processes: a route between vessels and neurons following bloodbrain barrier injured. J Neuropathol Exp Neurol 34:324–334

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Shoffner JM, Trounce I et al(1995) Mitochondrial DNA mutations in human degenerative diseases and aging. Biochim Biophys Acta 1271:141–151

    Article  PubMed  Google Scholar 

  • West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW et al(1981) Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    Article  PubMed  CAS  Google Scholar 

  • Wiederhold KH, Bielser W, Schulz U et al(1976) Three-dimensional reconstruction of brain capillaries from frozen serial sections. Microvasc Res 11:175–180

    Article  PubMed  CAS  Google Scholar 

  • Winkler DT, Jucker M (2001) Schon gegen Alzheimer geimpft? Mechanismen zerebraler Amyloidosen. Schweiz Med Forum 1:745–749

    Google Scholar 

  • Wolff JR, Bär T (1976) Development and adult variations of the pericapillary glial sheath in the cortex of rat. In: Cervos-Navarro J et al (eds) The cerebral vessel wall. Raven Press, New York, pp 7–13

    Google Scholar 

  • Xu H, Gouras GK, Greenfield JP et al(1998) Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nature Med 4:447–451

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Kanno I, Uemura K et al(1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17:1220–1228

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meier-Ruge, W.A., Bertoni-Freddari, C., Fattoretti, P. (2004). Strukturelle, zelluläre und subzelluläre Veränderungen des Gehirns bei physiologischem Altern und der senilen Demenz vom Alzheimer-Typ. In: Ganten, D., Ruckpaul, K., Ruiz-Torres, A. (eds) Molekularmedizinische Grundlagen von altersspezifischen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18741-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18741-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62272-4

  • Online ISBN: 978-3-642-18741-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics