Skip to main content

Strategien der Virusvermehrung

  • Chapter
  • 399 Accesses

Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Da Viren und subvirale Pathogene grundsätzlich bei ihrer Vermehrung auf (s. Kap. 9 bis 16) aufgeführt und ausführlicher erklärt.die Stoffwechselfunktionen lebender Wirtszellen angewiesen sind, haben sie im Laufe der Koevolution mit ihren Wirten die unterschiedlichsten Strategien entwickelt, um den Abwehrmechanismen der Wirte zu entgehen und die eigene Vermehrung zu erreichen. Dies gilt grundsätzlich für alle Viren, egal welche Wirte sie befallen. Bei Pflanzenviren sind zusätzliche pflanzenspezifische Komponenten hinzugekommen, die den besonderen Eigenschaften ihrer Wirte gerecht werden, wie die Behinderung der Infektion und Ausbreitung im Wirt durch Zellwände und schützende Abschlussgewebe sowie die Unbeweglichkeit der Pflanzen. In diesem Kapitel sollen, dem Fortgang einer Virusinfektion folgend, die einzelnen Schritte einer Virusinfektion beschrieben werden. Die speziellen Aspekte der Biologie der einzelnen Taxa der Viren werden im nachfolgenden Beispielteil (s. Kap. 9 bis 16) aufgeführt und ausführlicher erklärt.

This is a preview of subscription content, access via your institution.

Buying options

eBook
USD   19.95
Price excludes VAT (USA)
  • ISBN: 978-3-642-18740-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   39.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Acs G, Klett H, Schonberg M, Christman J, Levin DH, Silverstein SC (1971) Mechanism of reovirus double-stranded ribonucleic acid synthesis in vivo and in vitro. J Virol 8: 684–689

    PubMed  CAS  Google Scholar 

  • Adam G, Gaedigk K (1986) Inhibition of potato yellow dwarf virus infection in vector cell monolayers by lysosomotropric substances. J Gen Virol 67: 2763–2773

    CrossRef  Google Scholar 

  • Adam G, Kegler H (1994) Tomato spotted wilt virus and related tospoviruses. Arch Phytopathol Pflanzenschutz 28: 483–504

    CrossRef  Google Scholar 

  • Adolph KW, Butler PJG (1977) Studies on the assembly of a spherical plant virus: III. Reassembly of infectious virus under mild conditions. J Mol Biol 109: 345–357

    PubMed  CrossRef  CAS  Google Scholar 

  • Anzola JV, Xu Z, Asamizu T, Nuss DL (1987) Segment-specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs. Proc Natl Acad Sci USA 84: 8301–8305

    PubMed  CrossRef  CAS  Google Scholar 

  • Beier H, Grimm M (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29: 4767–4782

    PubMed  CrossRef  CAS  Google Scholar 

  • Belsham GJ, Lomonossoff GP (1991) The mechanism of translation of cowpea mosaic virus middle component RNA: no evidence for internal initiation from experiments in an animal cell transient expression system. J Gen Virol 72: 3109–3113

    PubMed  CrossRef  CAS  Google Scholar 

  • Best RJ (1936) The effect of light and temperature on the development of primary lesions of the virus of tomato spotted wilt and tobacco mosaic. Austral J Exp Bot 14: 223–239

    CrossRef  Google Scholar 

  • Birch R, Franks T (1991) Development and optimisation of microprojectile systems for plant genetic transformation. Austral J Plant Physiol 18: 453–469

    CrossRef  CAS  Google Scholar 

  • Bol JF (1999) Alfalfamosaic virus and ilarviruses: involvement of coat protein in steps of the replication cycle. J Gen Virol 80: 1089–1102

    PubMed  CAS  Google Scholar 

  • Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlein M (2002) Intramolecular complementing mutations in tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 76: 3974–3980

    PubMed  CrossRef  CAS  Google Scholar 

  • Brisco MJ, Hull R, Wilson TMA (1986) Swelling of isometric and of bacilliform plant virus nucleocapsids is required for virus-specific protein synthesis in vitro. Virology 148: 210–217

    PubMed  CrossRef  CAS  Google Scholar 

  • Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47: 159–251

    PubMed  CrossRef  CAS  Google Scholar 

  • Buck KW (1999) Geminiviruses. In: Granoff A, Webster RG (eds) Encyclopedia of virology. Academic Press, San Diego, pp 597–606

    CrossRef  Google Scholar 

  • Butler PJG, Klug A (1971) Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nature 229: 47–50

    CrossRef  CAS  Google Scholar 

  • Butler PJG (1984) The current picture of the structure and assembly of tobacco mosaic virus. J Gen Virol 65: 253–279

    PubMed  CrossRef  CAS  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60: 637–647

    PubMed  CrossRef  CAS  Google Scholar 

  • Citovsky V (1999) Tobacco mosaic virus: a pioneer of cell-to-cell movement. Philos Trans R Soc Lond B 354: 637-643

    Google Scholar 

  • Dawson WO (1978) Time course of actinomycine D inhibition of tobacco mosaic virus multiplication relative to the rate of spread of the infection. Intervirology 9: 304–309

    PubMed  CrossRef  CAS  Google Scholar 

  • Demler SA, de Zoeten GA, Adam G, Harris KF (1996) Pea enation mosaic enamovirus: Properties and aphid transmission. In: Harrison BD, Murant AF (eds) The Viruses: The plant viruses. Polyhedral virions and bipartite RNA genomes. Plenum Press, New York London, pp 303–344

    Google Scholar 

  • Deom CM, Lapidot M, Beachy RN (1992) Plant virus movement proteins. Cell 69: 221–224

    PubMed  CrossRef  CAS  Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4: 1405–1412

    PubMed  Google Scholar 

  • Dreher TW (1999) Functions of the 3'-untranslated regions of positive strand RNA viral genomes. Annu Rev Phytopathol 37: 151–174

    PubMed  CrossRef  CAS  Google Scholar 

  • Dugdale B, Beethan PR, Becker DK, Harding RM, Dale JL (1998) Promotor activity associated with the intergenic region of banana bunchy top virus DNA-1 to-6 in transgenic tobacco and banana cells. J Gen Virol 79: 2301–2311

    PubMed  CAS  Google Scholar 

  • Duijsings D, Kormelink R, Goldbach R (2001) In vivo analysis of the TSWV capsnatching mechanism: single base complementarity and primer length requirements. EMBO J 20: 2545–2552

    PubMed  CrossRef  CAS  Google Scholar 

  • Estabrook EM, Suyenaga K, Tsai JH, Falk BW (1996) Maize stripe tenuivirus RNA2 transcripts in plant and insect hosts and analysis of pvc2, a protein similar to the phlebovirus virion membrane glycoproteins. Virus Genes 12: 239–247

    PubMed  CrossRef  CAS  Google Scholar 

  • Farabaugh PJ (1996) Programmed translational frameshifting. Annu Rev Genetics 30: 507–528

    CrossRef  CAS  Google Scholar 

  • Fraenkel-Conrat H, Williams RC (1955) Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci USA 41: 690–698

    PubMed  CrossRef  CAS  Google Scholar 

  • Franz AWE, van der Wilk F, Verbeek M, Dullemans AM, van den Heuvel JFJM (1999) Faba bean necrotic yellows virus (genus Nanovirus) requires a helper factor for its aphid transmission. Virology 262: 210–219

    PubMed  CrossRef  CAS  Google Scholar 

  • Fuentes AL, Hamilton RI (1993) Failure of long-distance movement of southern bean mosaic virus in a resistant host is correlated with lack of normal virion formation. J Gen Virol 74: 1903–1910

    PubMed  CrossRef  CAS  Google Scholar 

  • Fütterer J, Hohn T (1991) Translation of a polycistronic mRNA in the presence of the cauliflower mosaic virus transactivator protein. EMBO J 10: 3887–3896

    PubMed  Google Scholar 

  • Fütterer J, Hohn T (1992) Role of an upstream open reading frame in the translation of polycistronic mRNAs in plant cells. Nucleic Acids Res 20: 3851–3857

    PubMed  CrossRef  Google Scholar 

  • Fütterer J, Potrykus I, Brau MPV, Dasgupta I, Hull R, Hohn T (1994) Splicing in a pararetrovirus. Virology 198: 663–670

    PubMed  CrossRef  Google Scholar 

  • German TL, Ullman DE, Moyer JW (1992) Tospoviruses: diagnosis, molecular biology, phylogeny and vector relationships. Annu Rev Phytopathol 30: 315–348

    PubMed  CrossRef  CAS  Google Scholar 

  • Gutierrez C (1999) Geminivirus DNA replication. Cell Mol Life Sci 56: 313–329

    PubMed  CrossRef  CAS  Google Scholar 

  • Gutierrez C (2000) Geminiviruses and the plant cell cycle. Plant Mol Biol 43: 763–772

    PubMed  CrossRef  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18: 71–106

    CrossRef  CAS  Google Scholar 

  • Hausmann S, Garcin D, Delenda C, Kolakofsky D (1999) The versatility of paramyxovirus RNA polymerase stuttering. J Virol 73: 5568–5576

    PubMed  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: Pathways for protein and ribonucleoprotein signaling. Plant Cell Suppl 2002: 303–325

    Google Scholar 

  • Heinze C, Letschert B, Hristova D, Yankulova M, Willingmann P, Karadjova O, Atanassov A, Adam G (2001) Variability of the N-protein and the intergenic region of the S RNA of tomato spotted wilt tospovirus (TSWV). New Microbiologica 24: 175–187

    PubMed  CAS  Google Scholar 

  • Hemmings-Mieszczak M, Hohn T (1999) A stable hairpin preceded by a short open reading frame promotes nonlinear ribosome migration on a synthetic mRNA leader. RNA 5: 1149–1157

    PubMed  CrossRef  CAS  Google Scholar 

  • Hemmings-Mieszczak MW, Steger G, Hohn T (1998) Regulation of CaMV translation is mediated by a stable hairpin in the leader. RNA 4: 101–111

    PubMed  CAS  Google Scholar 

  • Herzog E, Guilley H, Fritsch C (1995) Translation of the second gene of peanut clump virus RNA 2 occurs by leaky scanning in vitro. Virology 208: 215–225

    PubMed  CrossRef  CAS  Google Scholar 

  • Hohn T, Fütterer J (1997) The proteins and functions of plant pararetroviruses: known and unknowns. Critic Rev Plant Sci 16: 133–161

    CrossRef  CAS  Google Scholar 

  • Holmes FO (1929) Local lesions in tobacco mosaic. Botan Gazette 87: 39–55

    CrossRef  Google Scholar 

  • Inoue-Nagata AK, Kormelink R, Sgro JY, Nagata T, Kitajima EW, Goldbach R, Peters D (1998) Molecular characterization of tomato spotted wilt virus defective interfering RNAs and detection of truncated L proteins. Virology 248: 342–356

    PubMed  CrossRef  CAS  Google Scholar 

  • Jackson AO, Goodin M, Moreno I, Johnson J, Lawrence DM (1999) Rhabdoviruses (Rhabdoviridae: plant rhabdoviruses). In: Granoff A, Webster RG (eds) Encyclopedia of virology. Academic Press, San Diego, pp 1531–1541

    CrossRef  Google Scholar 

  • Kellman JW (2001) Identification of plant virus movement-host protein interactions. Zeitschr Naturforschg 56: 669–679

    Google Scholar 

  • Kormelink R, Storms M, van Lent J, Peters D, Goldbach RW (1994) Expression and subcellular location of the NSm protein of tomato spotted wilt virus (TSWV), a putativ viral movement protein. Virology 200: 56–65

    PubMed  CrossRef  CAS  Google Scholar 

  • van Lent J, Storms M, van der Meer F, Wellink J, Goldbach RW (1991) Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol 72: 2615–2623

    PubMed  CrossRef  Google Scholar 

  • Lucas WJ, Yoo B-C, Kragler F (2001) RNA as long distance information macromolecule in plants. Nat Rev Mol Cell Biol 2: 849–857

    PubMed  CrossRef  CAS  Google Scholar 

  • Matthews REF (1953) Factors affecting the production of local lesions by plant viruses. I. Effect of time of day of inoculation. Ann Appl Biol 40: 377–383

    CrossRef  Google Scholar 

  • Matthews REF (1991) Plant virology, 3rd ed. Academic Press, London

    Google Scholar 

  • Melcher U (2000) The “30k” superfamily of viral movement proteins. J Gen Virol 81: 257–266

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Guerineau F, Accotto GP (1990) Processing of complementary sense RNAs of digitaria streak virus in its host and in transgenic tobacco. Nucleic Acids Res 18: 7259–7265

    PubMed  CrossRef  CAS  Google Scholar 

  • Mundry KW, Watkins PAC, Ashfield T, Plaskitt KA, Eisele-Walter S, Wilson TMA (1991) Complete uncoating of the 5' leader sequence of tobacco mosaic virus RNA occurs rapidly and is required to initiate cotranslational disassembly in vitro. J Gen Virol 72: 769–777

    PubMed  CrossRef  CAS  Google Scholar 

  • Nguyen M, Ramirez B-C, Goldbach R, Haenni A-L (1997) Characterization of the in vitro activity of the RNA-dependent RNA polymerase associated with the ribonucleoproteins of Rice Hoja Blanca Tenuivirus. J Virol 71: 2621–2627

    PubMed  CAS  Google Scholar 

  • Nishiguchi M, Motoyoshi F, Oshima N (1978) Behaviour of a temperature-sensitive strain of tobacco mosaic virus in tomato leaves and protoplasts. J Gen Virol 39: 53–61

    CrossRef  Google Scholar 

  • Nishiguchi M, Kikuchi S, Kihu Y, Ohno T, Meshi T, Okada Y (1985) Molecular basis of plant viral virulence: the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Res 13: 5585–5590

    PubMed  CrossRef  CAS  Google Scholar 

  • Novik RP (1998) Contrasting lifestyles of rolling-circle phages and plasmids. Trends Biochem Sci 23: 434–438

    CrossRef  Google Scholar 

  • Nuss D, Peterson AJ (1981) Resolution and genome assignment of mRNA transcripts synthesized in vitro by wound tumor virus. Virology 114: 399–404

    PubMed  CrossRef  CAS  Google Scholar 

  • Perham RN, Wilson TMA (1976) The polarity of stripping of coat protein subunits from the RNA of tobacco mosaic virus under alkaline conditions. FEBS Lett 62: 11–15

    PubMed  CrossRef  CAS  Google Scholar 

  • Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23: 847–858

    PubMed  CrossRef  CAS  Google Scholar 

  • Prins M, Storms MMH, Kormelink R, de Haan P, Goldbach RW (1997) Transgenic tobacco plants expressing the putative movement protein of tomato spotted wilt tospovirus exhibit aberrations in growth and appearance. Transgenic Research 6: 245–251

    CrossRef  CAS  Google Scholar 

  • Raine J, Weintraub. M, Schroeder BK (1975) Flexous rods and vesicles in leaf and petiole phloem of little cherry diseased Prunus spp. Phytopathology 65: 1181–1186

    CrossRef  Google Scholar 

  • Rao ALN, Dreher TW, Marsh LE, Hall TC (1989) Telomeric function of the tRNA-like structure of brome mosaic virus RNA. Proc Natl Acad Sci USA 86: 5335–5339

    PubMed  CrossRef  CAS  Google Scholar 

  • Rohde W, Gramstat A, Schmitz J, Tacke E, Prüfer D (1994) Plant viruses as model systems for the study of non-canonical translation mechanisms in higher plants. J Gen Virol 75: 2141–2149

    PubMed  CrossRef  CAS  Google Scholar 

  • Rothnie HM, Chapdelaine Y, Hohn T (1994) Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 44: 1–67

    PubMed  CrossRef  CAS  Google Scholar 

  • Savithri HS, Erickson JW (1983) The self-assembly of the cowpea strain of southern bean mosaic virus: formation of T=1 and T=3 nucleoprotein particles. Virology 126: 328–335

    PubMed  CrossRef  CAS  Google Scholar 

  • Shaw JG (1999) Tobacco mosaic virus and the study of early events in virus infection. Phil Trans R Soc Lond B 354: 603–611

    CrossRef  CAS  Google Scholar 

  • Sit TL, Leclerc D, AbouHaidar MG (1994) The minimal 5' sequence for in vitro initiation of papaya mosaic potexvirus assembly. Virology 199: 238–242

    PubMed  CrossRef  CAS  Google Scholar 

  • Skulachev MV, Ivanov PA, Karpova OV (1999) Internal initiation of translation directed by the 5'-untranslated region of the tobamovirus subgenomic RNA I (2). Virology 263: 139–154

    PubMed  CrossRef  CAS  Google Scholar 

  • Tacke E, Prüfer D, Salamini F, Rhode W (1990) Characterization of a potato leafroll luteovirus subgenomic RNA: differential expression by internal translation initiation and UAG suppression. J Gen Virol 71: 2265–2272

    PubMed  CrossRef  CAS  Google Scholar 

  • Teycheney P-Y, Aaziz R, Dinant S, Salanki K, Tourneur C, Balazs E, Jacquemond M, Tepfer M. (2000) Synthesis of (-)-strand RNA from the 3' untranslated region of plant viral genomes expressed in transgenic plants upon infection with related viruses. J Gen Virol 81: 1121–1126

    PubMed  CAS  Google Scholar 

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with Tobacco Mosaic Virus. Virology 160: 363–371

    PubMed  CrossRef  CAS  Google Scholar 

  • Verchot J, Driskel BA, Zhu Y, Hunger RM, Littlefield LJ (2001) Evidence that soilborne wheat mosaic virus moves long distance through the xylem in wheat. Protoplasma 218: 57–66

    PubMed  CrossRef  CAS  Google Scholar 

  • Wagner JDO, Jackson AO (1997) Characterization of the components and activity of sonchus yellow net rhabdovirus polymerase. J Virol 71: 2371–2382

    PubMed  CAS  Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91: 1433–1437

    PubMed  CrossRef  CAS  Google Scholar 

  • Waigmann E, Cohen Y, McLean G, Zambryski P (1998) Plasmodesmata: gateways for information transfer. Symp Soc Exp Biol 51: 43–49

    PubMed  CAS  Google Scholar 

  • Walker HL, Pirone TP (1972) Number of TMV particles required to infect locally or systemically susceptible tobacco cultivars. J Gen Virol 17: 241–243

    CrossRef  Google Scholar 

  • Wilson TMA (1984a) Cotranslational disassembly increases the efficiency of expression of TMV RNA in wheat germ cell-free extracts. Virology 138: 353–356

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilson TMA (1984b) Cotranslational disassembly of Tobacco Mosaic Virus in vitro. Virology 137: 255–265

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilson TMA (1985) Nucleocapsid disassembly and early gene expression by positive-strand RNA viruses. J Gen Virol 66: 1201–1207

    PubMed  CrossRef  CAS  Google Scholar 

  • Wu X, Shaw JG (1996) Bidirectional uncoating of the genomic RNA of a helical virus. Proc Natl Acad Sci USA 93: 2981–2984

    PubMed  CrossRef  CAS  Google Scholar 

  • Wu X, Shaw JG (1998) Evidence that assembly of a potyvirus begins near the 5' terminus of the viral RNA. J Gen Virol 79: 1525–1529

    PubMed  CAS  Google Scholar 

  • Wu X, Xu Z, Shaw JG (1994) Uncoating of tobacco mosaic virus RNA in protoplasts. Virology 200: 256–262

    PubMed  CrossRef  CAS  Google Scholar 

  • Xiong Z, Kim KH, Giesmann-Cookmeyer D, Lommel SA (1993) The role of red clover necrotic mottle virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192: 27–32

    PubMed  CrossRef  CAS  Google Scholar 

  • Yarwood CE (1973) Quick drying versus washing in virus inoculations. Phytopathology 63: 72–76

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drews, G., Adam, G., Heinze, C. (2004). Strategien der Virusvermehrung. In: Molekulare Pflanzenvirologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18740-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18740-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00661-9

  • Online ISBN: 978-3-642-18740-7

  • eBook Packages: Springer Book Archive