Russo, J., Gusterson, B.A., Rogers, A.E., Russo, I.H., Wellings, S.R. and Van Zwieten, M.J. Comparative study of human and rat mammary tumorigenesis. Lab. Invest. 62:1–32, 1991.
Google Scholar
McGregor, D.H., Land, C.E., Choi, K., Tokuoka, S., Liu, P.I., Wakabayashi, I., Beebe, G.W. Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagasaki 1950-1989. J. Natl. Cancer Inst. 59:799–811, 1977.
PubMed
CAS
Google Scholar
Wellings, S.R. Development of human breast cancer. Adv. Cancer Res. 31:287–299, 1980.
PubMed
CAS
CrossRef
Google Scholar
Wellings, S.R., Jensen, H.M. and Marcum, R.G. An atlas of subgross pathology of 16 human breasts with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 55:231–275, 1975.
PubMed
CAS
Google Scholar
Russo, J., Rivera, R. and Russo, I.H. Influence of age and parity on the development of the human breast. Breast Cancer Res. Treat. 23:211–218, 1992.
PubMed
CAS
CrossRef
Google Scholar
Russo, J., Romero, A.L. and Russo, I.H. Architectural pattern of the normal and cancerous breast under the influence of parity. J. Cancer Epidemiol. Biomarkers & Prevention 3:219–224, 1994.
CAS
Google Scholar
Russo, J., Reina, D., Frederick, J. and Russo, I.H. Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res. 48:2837–2857, 1988.
PubMed
CAS
Google Scholar
Russo, J., Calaf, G, Russo, I.H. 1A critical approach to the malignant transformation of human breast epithelial cells. CRC Critical Rev. Oncogen. 4:403–417, 1993
CAS
Google Scholar
Russo, J. and Russo, I.H. Development of Human Mammary Gland. In: The Mammary Gland Development, Regulation, and Function. (M.C. Neville and C.W. Daniel, eds Plenum Pub. Corp. 1987, pp. 67–93.
Google Scholar
Russo, J., Lynch, H., and Russo, I.H. Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast Journal 7(5):278–291, 2001.
PubMed
CAS
CrossRef
Google Scholar
Russo, J., Russo, I.H. Toward a physiological approach to breast cancer prevention. Cancer Epidemiol, Biomarkers & Prevention 3:353–364, 1994.
CAS
Google Scholar
Barnabas, N., Moraes, R., Calaf, G., Estrada, S., Russo, J. Role of p53 in MCF-10F cell immortalization and chemically-induced neoplastic transformation. Int. J. Oncol. 7:1289–1296, 1995.
PubMed
CAS
Google Scholar
Rajan, J.V., Marquis, S.T., Gardner, H.P., Chodosh, L.A. Developmental expression of BRCA2 co-localizes with BRCA1 and is associated with proliferation and differentiation in multiple tissues. Developmental Biology 184:385–401, 1997.
PubMed
CAS
CrossRef
Google Scholar
Colditz, G.A., Rosner, B.A., Speizer, E. Risk factors for breast cancer according to family history of breast cancer. J. Natl. Cancer Inst. 1996; 88:365–371.
PubMed
CAS
CrossRef
Google Scholar
Russo, I.H., Russo, J. Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst. 1978 61:1439–1449.
PubMed
CAS
Google Scholar
Hu, Y.F., Russo, I.H., Zalipsky, U., Lynch, H.T., Russo, J. Environmental chemical carcinogens induce transformation of breast epithelial cells from women with familial history of breast cancer. In vitro Cell Dev. Biol. 33:495–498, 1997.
CAS
CrossRef
Google Scholar
Lambe, M, Hsieh, C.C., Trichopoulos, D, Ekbom A, Pavia M, Adami HO. Transient increase in the risk of breast cancer after giving birth. N. England J. Med. 331:5–9, 1994.
CAS
CrossRef
Google Scholar
Eyden, B., Watson, R.J., Harris, M., Howell, A. Intralobular stromal fibroblasts in the resting human mammary gland: ultrastructural properties and intercellular relationship. J. Sub-microsc Cytol. 18:397–408, 1986.
CAS
Google Scholar
Ozzello, L. Epithelial-stromal junction of normal and dysplastic mammary glands. Cancer 25:586–600, 1970.
PubMed
CAS
CrossRef
Google Scholar
Sakakura, T., Sakagami, Y., Nishizuka, Y. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. 72:201–210, 1979.
PubMed
CAS
CrossRef
Google Scholar
Henson, D.E., Tarone, R.E. On the possible role of involution in the natural history of breast cancer. Cancer 71:2154–2156, 1994.
CrossRef
Google Scholar
Marquis, S.T., Rajan, J.V., Wynshaw-Boris, A., et al. The developmental pattern of BRCA1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 11:17–26, 1995.
PubMed
CAS
CrossRef
Google Scholar
Pankow, J.E., Vachon, CM., Kuni, C.C., King, R.A., Anett, D.K., Grabrick, D.M., Rich, S.S., Anderson, V.E., Sellers, T.A. Genetic analysis of mammographic breast density in adult women: Evidence of a gene effect. J. Natl. Cancer Inst. 89:549–556, 1997.
PubMed
CAS
CrossRef
Google Scholar
Wilkinson, E., Clopton, C., Gordonson, J., Green, R., Hill, A., Pike, M.C. Mammographic parenchymal pattern and the risk of breast cancer. J. Natl. Cancer Inst. 59:1397–1400, 1977.
PubMed
CAS
Google Scholar
Wolfe, J.N., Albert, S., Belle, S., Salane, M. Familial influences on breast parenchymal patterns. Cancer 46:2433–2437, 1980.
PubMed
CAS
CrossRef
Google Scholar
Saftlas, A.F., Wolfe, J.N., Hoover, R.N., Brinton, L.A., et al. Mammographie parenchymal patterns as indicators of breast cancer risk. Am. J. Epidemiol. 129:518–526,1089.
Google Scholar
Oza, A.M., Boyd, N.F. Mammographie parenchymal patterns: a marker of breast cancer risk. Epidemiol. Rev. 15:196–208, 1993.
PubMed
CAS
Google Scholar
Russo, J., Hu, Y-F. Silva, I.D.C.G., and Russo, I.H. Cancer risk related to mammary gland structure and development. Microscopy Research and Technique 52:204–223, 2001.
PubMed
CAS
CrossRef
Google Scholar
Propper, A. Role du mesenchyme dans la differenciation de la glande mammaire chez l'embryon de lapin. Bull. Soc. Zool.Fr. 97:505–512, 1972.
Google Scholar
Sakakura, T., Nishizuka, Y, Dawe, C. Mesenchyme-dependent morphogenesis and epithelium specific cytodifferentiation in mouse mammary gland. Science 194:1439–1441, 1976.
PubMed
CAS
CrossRef
Google Scholar
Cunha, G.R., Young, P., Hamamoto, S., Guzman, R., Nandi, S. Developmental response of adult mammary epithelial cells to various fetal and neonatal mesenchymes. Epithelial Cell Biol. 1:105–118, 1992.
PubMed
CAS
Google Scholar
Kratochwil, K., Schwartz, P. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue of testosterone. Proc. Natl. Acad. Sci. USA 73:4041–4044, 1976.
PubMed
CAS
CrossRef
Google Scholar
Faulkin, J.L., DeOme, K.B. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J. Natl. Cancer Inst. 24:953–969, 1960.
PubMed
Google Scholar
Sun, C., Lenair, G., Lynch, H., Narod, S. In situ Breast Cancer and BRCA1. Lancet 348:408, 1996.
PubMed
CAS
CrossRef
Google Scholar
Jernstrom, H., Johannsson, 0., Borg, A., Olsson, H. Do BRCA1 mutations affect the ability to breast-feed? significantly shorter length of breast-feeding among BRCA1 mutation carriers compared with their unaffected relatives. Breast 7:320–324, 1998.
CrossRef
Google Scholar
Xu X, Wagner KU, Larson D, et al. Conditional mutation of BRCA1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 1999; 22:37–43 and tumour formation. Nat. Genet. 22:37-43, 1999.
PubMed
CAS
CrossRef
Google Scholar
Russo, I.H. and Russo, J. Mammary gland neoplasia in longterm rodent studies. Environ. Health Perspect. 104:938–967, 1996.
PubMed
CAS
CrossRef
Google Scholar
Russo, J., Calaf, G., Sohi, N., Tahin, Q., Zhang, P.L., Alvarado, M.E., Estrada, S., and Russo, I.H. Critical steps in breast carcinogenesis. Ann. NY Acad. Sci. 698:1–20, 1993.
PubMed
CAS
CrossRef
Google Scholar
Russo, J., Barnabas, N., Higgy, N., Salicioni, A.M., Wu, Y.L., Russo, I.H. Molecular basis of human breast epithelial cell transformation. In: Calvo F, Crepin M, Magdalenat H (eds,) Breast Cancer, Advances in Biology and Therapeutics, John Libbey Eurotext, 1996, pp. 33–43.
Google Scholar
Soule, H.D., Maloney, T.M., Wolman, S.R., Peterson, W.D., Brenz, R., McGrath, C.M., Russo, J., Pauley, R.J., Jones, R.E, and Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line MCF 10. Cancer Res. 50:6075–6086, 1991.
Google Scholar
Tait, L., Soule, H.D., and Russo, J. Ultrastructural and immunocytochemical characterization of an immortalized human breast epithelial cell line, MCF10. Cancer Res. 50:6087–6094, 1991.
Google Scholar
Silva,.D.C.G., Hu, Y.F., Russo, I.H., Ao, X., Salicioni, A.M., Yang, X. and Russo, J. S100P Ca +2-binding protein overex-pression is associated with immortalization and neoplastic transformation of human breast epithelial cells in vitro and tumor progression in vivo. International Journal of Oncology 16:231–240, 2000.
Google Scholar
Higgy, N.A., Salicioni, A.M., Russo, I.H., Zhang, P.I. and Russo, J. Differential expression of human ferritin H chain gene in immortal human breast epithelial MCF-10F cells Molecular Carcinogenesis 20:332–339, 1997.
CAS
Google Scholar
Boyd, D., Vecoli, C., Belcher, D.M., Jain, S.K., Drysdale, J.W. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J. Biol. Chem. 260:11755–11761, 1985.
PubMed
CAS
Google Scholar
Costanzo, F., Santoro, C., Colantuoni, V. et al. Cloning and sequencing of a full length cDNA coding for a human apoferritin H chain: evidence for a multigene family. The EMBO J. 3:23–27, 1984.
CAS
Google Scholar
Anison, P. Current concepts in iron metabolism. Clin. Haematol. 11:241–257, 1982.
Google Scholar
Weinberg, E.D. Iron and neoplasia. Biol. Trace Elem. Res. 3:55–80, 1981.
CAS
CrossRef
Google Scholar
Richard, P., Ehrenberg, A. Ribonucleotide reductase: a radical enzyme. Science 221:514–519, 1983.
CrossRef
Google Scholar
Fan, H., Villegas, C., Wright, J.A. A link between ferritin gene expression and ribo-nucleotide reductase R2 protein, as demonstrated by retroviral vector mediated stable expression of R2 cDNA. FEBS Letters 382:145–148, 1996.
PubMed
CAS
CrossRef
Google Scholar
Keown, P., Descaps-Latscha, B. In vitro suppression of cell mediated immunity by ferro-proteins and ferric salts. Cellular Immunology 80:257–266, 1983.
PubMed
CAS
CrossRef
Google Scholar
Rosen, H.R., Moroz, C., Reiner, A., et al. Placental isoferritin associated p43 antigen correlates with features of high differentiation in breast cancer. Br. Cancer Res. & Treatment 24:17–26, 1992.
CAS
CrossRef
Google Scholar
Rosen, H.R., Flex, D., Stierer, M., Moroz, C. Monoclonal antibody CM-H-9 detects placental isoferritin in the serum of patients with visceral metastases of breast cancer. Cancer Lett. 59:145–151, 1991.
PubMed
CAS
CrossRef
Google Scholar
Kwak, E.L., Larochelle, D.A., Blaumont, C., Torti, S.V., Torti, F.M. Role of NF-KB in the regulation of ferritin H by tumor necrosis factor-α. J. Biol. Chem. 270:15285–15293, 1995.
PubMed
CAS
CrossRef
Google Scholar
Calaf, G., and Russo, J. Transformation of breast epithelial cells by chemical carcinogens. Carcinogenesis 14:483–492, 1993.
PubMed
CAS
CrossRef
Google Scholar
Becker, T., Gerke, V., Kube, E., and Weber, K. S100P: a novel calcium-binding protein from human placenta. cDNA cloning, recombinant protein expression and calcium-binding properties. Eur. J. Biochem. 207:541–547, 1992.
PubMed
CAS
CrossRef
Google Scholar
Emoto, Y, Kobayashi, R., Akatsuba, H., and Hidaka, H. Purification and characterization of a new member of the S100 protein family from human placenta. Biochem. Biophys. Res. Comm. 182:1246–1253, 1992.
PubMed
CAS
CrossRef
Google Scholar
Moore, B.E. A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun. 19:739–744, 1965.
PubMed
CAS
CrossRef
Google Scholar
Sherbet, G.V., and Lakshmi, M.S. A100A4 (MTS1 calcium binding protein in cancer growth, invasion and metastasis. Anti Cancer Res. 18:2415–2422, 1998.
CAS
Google Scholar
Schafer, B.W., and Heizmann, C.W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. TIBS 21:134–140, 1996.
PubMed
CAS
Google Scholar
McGrath, C.M., and Soule, H.D. Calcium regulation of normal human mammary epithelial cell growth in culture. In vitro Cell Dev. Biol. 20:652–662, 1984.
CAS
Google Scholar
Soule, H.D., and McGrath, C.M. A simplified method for passage and long-term growth of human mammary epithelial cells. In vitro 22:6–12, 1985.
Google Scholar
Ochieng, J., Tahin, Q.S., Booth, C.C., and Russo, J. Buffering of intracellular calcium in response to increase levels in mortal, immortal and transformed human breast epithelial cells. J. Cell. Biochem. 46:250–254, 1993.
CrossRef
Google Scholar
Hennings, H., Michael, D., Cheng, G, Steinert, P., Holbrook, K., Yuspa, S.H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254, 1980.
PubMed
CAS
CrossRef
Google Scholar
Cristofalo VJ, Wallace JM, Rosma BA: In Sato SH, Ross R (eds): “Hormones and Cell Culture: Book B.” Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1979, pp 875–887.
Google Scholar
Carafoli, E. Intracellular calcium homeostasis. Annu. Rev. Biochem. 56:395–433, 1987.
PubMed
CAS
CrossRef
Google Scholar
Babu, S.Y., Sack, J.S., Greenbough, T.J., Bagg, C.E., Means, A.R., Cook, WJ. Three-dimensional structure of calmodulin. Nature 315:37–40, 1985.
PubMed
CAS
CrossRef
Google Scholar
Schatzmann, H.J. ATP-dependent Ca2+-extrusion from human red cells. Experientia 22:364–365, 1966.
PubMed
CAS
CrossRef
Google Scholar
Varecka, L., Carafoli, E. Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J. Biol. Chem. 257:7414–7421, 1982.
PubMed
CAS
Google Scholar
Reuter, H., Seitz, N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. 195:451–470, 1968.
PubMed
CAS
Google Scholar
Berridge, M.J., Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321, 1984.
PubMed
CAS
CrossRef
Google Scholar
Hennings, H., Kruzewski, EH., Yuspa, S.H., Tucker, R.W. Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes. Carcinogenesis 10:777–780, 1989.
PubMed
CAS
CrossRef
Google Scholar
Meldolesi, J., Pozzan, T. Pathways of Ca2+ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp. Cell Res. 171:271–283, 1987.
PubMed
CAS
CrossRef
Google Scholar
Patel, K.V., Schrey, M.Y. Activation of inositol phospholipid signaling and Ca2+ efflux in human breast cancer cells by bombesin. Cancer Res. 50:235–239, 1990.
PubMed
CAS
Google Scholar
Kerr, J.F.R., Wyllie, A.H., Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257, 1972.
PubMed
CAS
CrossRef
Google Scholar
Kyprianou, N., English, H.F., Davidson, N.E., Isaacs, J.T. Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res. 51:162–166, 1991.
PubMed
CAS
Google Scholar
Huang, Y, Bove, B., Wu, Y.L., Russo, I.H., Yang, X., Zekri, A., and Russo, J. Microsatellite instability during immortalization and transformation of human breast epithelial cells in vitro. Molecular Carcinogenesis 24:118–127, 1999
PubMed
CAS
CrossRef
Google Scholar
Wu, Y, Barnabas, N.; Russo, I.H., Yang, X. and Russo, J. Microsatellite Instability and Loss of heterozygosity in chromosomes 9 and 16 in human breast epithelial cells transformed by chemical carcinogens. Carcinogenesis 18:1069–1074, 1997
PubMed
CAS
CrossRef
Google Scholar
Russo, I.H., Tahin, Q., Huang, Y and Russo, J. Cellular and molecular changes induced by the chemical carcinogen benzo(a)pyrene in human breast epithelial cells in association with smoking and breast cancer. J. of Women’s Cancer 3:29–36, 2001.
Google Scholar
Russo, J., Hu, Y.F., Yang, X., Huang, Y., Silva I., Bove, B., Higgy, N., Russo, I.H. Breast cancer multistage progression. Frontiers in Bio Science 3:944–960, 1998.
Google Scholar
Harris, J.R., Hellmam, S. Natural history of breast cancer. In: Harris, J.R., Lippman, M.E., Morrow, M., Hellman, S. (eds), Diseases of the Breast, pp. 375–391. Philadelphia: Lippincott-Raven, 1996.
Google Scholar
Lakhani, S.R. The transition from hyperplasia to invasive carcinoma of the breast. J. Pathol. 187:272–278, 1999.
PubMed
CAS
CrossRef
Google Scholar
Werner, M., Mattis, A., Aubele, M., Cummings, M., Zitzelsberger, HH., Hhutzler, P., Höfler, H. 20q13.2 amplification in intraductal hyperplasia adjacent to in situ and invasive ductal carcinoma of the breast. Virchows Arch. 435:469–472, 1999.
PubMed
CAS
CrossRef
Google Scholar
Eiriksdottir, G., Sigurdsson, A., Jonasson, J.G., Agnarsson, B.A., Sigurdsson, H., Gudmundsson, J., Bergthorsson, J.T., Barkardottir, R.B., Egilsson, V., Ingvarsson, S. Loss of heterozygosity on chromosome 9 in human breast cancer: association with clinical variables and genetic changes at other chromosome regions. Int. J. Cancer 64:378–382, 1995.
PubMed
CAS
CrossRef
Google Scholar
Kuukasjärvi, T., Karhu, R., Tanner, M., Kähkönen, M., Schäffer, A., Nupponen, N., Pennanen, S., Kallioniemi, A., Kallioniemi, O-R, Isola, J. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57:1597–1604, 1997.
PubMed
Google Scholar
Fujii, H., Marsh, C., Cairns, P., Sidransky, D., Gabrielson, E. Genetic divergence in the clonal evolution of breast cancer. Cancer Res. 56:1493–1497, 1996.
PubMed
CAS
Google Scholar
Weber, J.L., May, P.E. Abundant class of human DNA polymorphisms, which can be using the polymerase chain reaction. Am J Hum Genet 44:388–96, 1989.
PubMed
CAS
Google Scholar
Boyer, J.C., Umar, A., Risinger, J.L., et al. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 55:6063–6070, 1995.
PubMed
CAS
Google Scholar
Lonov, Y, Peinado, M.A., Malkhosyan, S., Shibata, D., Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–61, 1993
CrossRef
Google Scholar
Yee, C.J., Roodi, N., Verrier, C.S., Parl, F.F. Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res. 54:1641–1644, 1994.
PubMed
CAS
Google Scholar
Wooster, R., Cleton-Jansen, A.-M., Collins, N., Mangion, J., Cornelis, R.S., Cooper, C.S., Gusterson, B.A., Ponder, B.A.J., von Deimling, A., Wiestler, O.D., Cornelisse, C.J., Devilee, P., Stratton, M.R. Instability of short tandem repeats (microsatellite) in human cancers. Nature Genetics 6:152–156, 1994.
PubMed
CAS
CrossRef
Google Scholar
Sibata, D. Extraction of DNA from paraffin-embedded tissue for analysis by polymerase chain reaction: new tricks from an old friend. Human Pathology 25:461–563, 1994.
Google Scholar
Honma, M., Ohara, Y, Murayama, H., Sako, K. and Iwasaki, Y. Effects of fixation and varying target length on the sensitivity of polymerase chain reaction for detection of human T-cell leukemia virus type I proviral DNA in formalin-fixed tissue sections. Journal of Clinical Microbiology 31:1799–1803, 1993.
PubMed
CAS
Google Scholar
Going, J.J. and Lamb, R.R Practical histological microdissection for PCR analysis. Journal of Pathology 179:121–124, 1996.
PubMed
CAS
CrossRef
Google Scholar
Walsh, P.S., Varlaro, J., and Reynolds, R. A rapid chemiluminescent method for quantitation of human DNA. Nucleic Acids Research 20:5061–5065, 1992.
PubMed
CAS
CrossRef
Google Scholar
Whetsell, L., Maw, G.K, Nadon, N., Ringer, D. and Schafer, RV. Polymerase chain reaction microanalysis of tumors from stained histological slides. Oncogene 7:2355–2361, 1992.
PubMed
CAS
Google Scholar
Emmert-Buck, M.R., R.R Bonner, P.D. Smith, R.R Chuaqui, Z. Zhuang, S.R. Goldstein, R.A. Weiss and L.A. Liotta. Laser capture microdissection. Science 274:998–1001, 1996.
PubMed
CAS
CrossRef
Google Scholar
Bonner, R.F., M.R. Emmert-Buck, K. Cole, T. Pohida, R.F. Chuaqui, S.R. Goldstein and L.A. Liotta. Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483, 1997.
PubMed
CAS
CrossRef
Google Scholar
Simone, N.L., R.F. Bonner, J.W. Gillespie, M.R. Emmert-Buck and L.A. Liotta. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends in Genetics 14:272–276, 1998.
PubMed
CAS
CrossRef
Google Scholar
Mies, C. Molecular biological analysis of paraffin-embedded tissues. Human Pathology 25:555–560, 1994.
PubMed
CAS
CrossRef
Google Scholar
Singer, V.L., I.J. Jones, S.T. Yue, R.P. Haugland. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantification. Analytical Biochemistry 249: 228–238, 1997.
PubMed
CAS
CrossRef
Google Scholar
Radford, D.M., Fair, K.L., Phillips, N.J., Ritter, J.H., Steinbrueck, T., Holt, M.S, Donis-Keller, H. Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16p,17p and 17q. Cancer Research 55:3399–3405, 1995.
PubMed
CAS
Google Scholar
Aldaz, C.M., Chen, T., Sahin, A., Cunningham, J. Bondy, M. Comparative allelotype of in situ and invasive human breast cancer: high frequency of microsatellite instability in lobular breast carcinomas. Cancer Res. 55:3976–81, 1995.
PubMed
CAS
Google Scholar
Czerniak, B., Chatuverdi, V., Li, L., Hodges, S., Johnston, D., Ro, J., Luthra, R., Logothetis, C., Von Eschenbach, A.C., Grossman, H.B., Benedict, W.R, Batsakis, J.G. Superimposed histologic and genetic mapping of chromosome 9 in progression of human urinary bladder neoplasia: implications for a genetic model of multistep carcinogenesis and early detection of urinary bladder cancer. Oncogene 18:1185–1196, 1999.
PubMed
CAS
CrossRef
Google Scholar
Campbell, I.G., Beynon, G., Davis, M., Englefield, P. LOH and mutation analysis of CDKN2 in primary human ovarian cancers. Int. J. Cancer 63:222–225, 1995.
PubMed
CAS
CrossRef
Google Scholar
Nakanishi, H., Wang, X-L., Imai F.L., Kato J., Shiiba M., Myia, T., Imai, Y., Tanzawa, H. Localization of a novel tumor suppressor gene loci on chromosome 9p21-22 in oral cancer. Anti Cancer Res. 19:29–34, 1999.
CAS
Google Scholar
Murphy, D.S., Hoare S.R, Going, J.J., Mallon, E.A., George W.D., Kaye, S.B. et al. Characterization of extensive genetic alterations in ductal carcinoma in situ by fluorescence in situ hybridization and molecular analysis. J. Natl. Cancer Inst. 87:1694–1704, 1995.
PubMed
CAS
CrossRef
Google Scholar
Berns, E.J., Klijn, J.M., Smid, M., Van Staveren, I., Gruis, N.A., Foekens, J.A. Infrequent CDKN2 (MTSl/p16 gene alterations in human primary breast cancer. Br. J. Cancer 72:964–967, 1995.
PubMed
CAS
CrossRef
Google Scholar
Quesnel, B., Fenaux, P., Philippe, N., Fournier, J., Bonneterre, J., Preudhomme, C., Peyrat, J.P. Analysis of p16 gene deletion and point mutation in breast carcinoma. Br. J. Cancer 72:351–353, 1995.
PubMed
CAS
CrossRef
Google Scholar
Xu, L., Sgroi, D., Christopher, J.S., Beauchamp, R.L., Pinney, D.M., Keel, S., Ueki, K., Rutter, J.L., Buckler, A.J., Louis, D.N., Gusella, J.R, Ramesh, V. Mutational analysis of CDKN2 (MTS1/p16INK4 in human breast carcinomas. Cancer Res. 54:5262–5264, 1994.
PubMed
CAS
Google Scholar
Brenner, A.J., Aldaz, M. Chromosome 9p allelic loss and p16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells. Cancer Res. 55:2892–2895, 1995.
PubMed
CAS
Google Scholar
An, H-X., Niederacher, D., Picard, F., van Roeyen, C., Bender, H.G., Beckmann, M.W. Frequent allele loss on 9p21-22 defines a smallest common region in the vicinity of the CDKN2 gene in sporadic breast cancer. Genes Chrom. Cancer 17:14–20, 1996.
PubMed
CAS
CrossRef
Google Scholar
Minobe, K., Onda, M., Iida, A., Kasumi, F., Sakamoto, G., Nakamura, Y., Emi, M. Allelic loss in chromosome 9q is associated with lymph node metastasis of primary breast cancer. Jpn. J. Cancer Res. 89:916–922, 1998.
PubMed
CAS
CrossRef
Google Scholar
Cairns, P., Polascik, T.J., Eby, Y., Tokino, K., Califano, J., Merlo, A., Mao, L., Heath, J., Jenkins, R., Westra, W, Rutter, J., Buckler, A., Gabrielson, E., Tockman, M., Cho, K.R., Hedrick, L., Bova, G.S., Isaacs, W., Koc, W., Schwab, D., Sidransky, D. Frequency of homozygous deletion at p16/CDKN2 in primary human tumors. Nat. Genet 11:210–212, 1995.
PubMed
CAS
CrossRef
Google Scholar
Dutrilaux, B., Gerbault-Senreau, M., Zafrani, B. Characterization of chromosomal abnormalities in human breast cancer. Cancer Genet Cytogenet, 49:203–217, 1990.
CrossRef
Google Scholar
Emmert-Buck, M.R., Bonner, R.R, Smith, P.D., Chuaqui, R.R, Zhuang, Z., Goldstein, S.R., Weiss, R.A., Liotta, L.A. Laser capture microdissection. Science 274:998–1001, 1996.
PubMed
CAS
CrossRef
Google Scholar
Bonner, R.F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., Liotta, L.A. Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483, 1997.
PubMed
CAS
CrossRef
Google Scholar
Simone, N.L., Bonner, R.F., Gillespie, J.W., Emmert-Buck, M.R., Liotta, L.A. Laser capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14:272–276, 1998.
PubMed
CAS
CrossRef
Google Scholar
Wu, Y., Barnabas, N., Russo, I.H., Yang, X., Russo, J. Microsatellite instability and loss of heterozygosity in chromosomes 9 and 16 in human breast epithelial cells transformed by chemical carcinogens. Carcinogenesis 18:1069–1074, 1997.
PubMed
CAS
CrossRef
Google Scholar
Muzeau, F., Flejou, J.R, Thomas, G., Hamelin, R. Loss of heterozygosity on chromosome 9 and p16 (MTS1, CDKN2 gene mutations in esophageal cancers. Int. J. Cancer 72:27–30, 1997.
PubMed
CAS
CrossRef
Google Scholar
Morita, R., Fujimoto, A., Hatta, N., Takehara, K., Takata, M. Comparison of genetic profiles between primary melanomas and their metastases reveals genetic alterations and clonal evolution during progression. J Invest Dermat. 111:919–924, 1998.
CAS
CrossRef
Google Scholar
Deng, G., Lu, Y., Zlotikov, G., Thor, A.D., Smith, H.S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059, 1996.
PubMed
CAS
CrossRef
Google Scholar
Nowell, P.C. The clonal origin of human tumors. Science 194:23–28, 1976.
PubMed
CAS
CrossRef
Google Scholar
Fialkow, P.J. Clonal origin of human tumors. Biochem Biophys Acta 458:283–321, 1976.
PubMed
CAS
Google Scholar
Noguchi, S., Motomura, K., Inaji, H., Imaoka, S., Koyamma, H. Clonal analysis of human breast cancer by means of the polymerase chain reaction. Cancer Res. 52:6594–6597, 1992.
PubMed
CAS
Google Scholar
Teixeira, M.R., Pandis, N., Bardi, G., Andersen, J.A., Mitelman, F., Heim, S. Clonal heterogeneity in breast cancer: karyotypic comparisons of multiple intra and extra-tumorous samples from 3 patients. Int. J. Cancer 63:63–68, 1995.
PubMed
CAS
CrossRef
Google Scholar
Teixeira, M.R. Pandis, N., Bardi, G., Andersen, J.A., Heim, S. Karyotypic comparisons of multiple tumors and macroscopically normal surrounding tissue samples from patients with breast cancer. Cancer Res. 56:855–859, 1996.
PubMed
CAS
Google Scholar
Pandis, N., Jin, Y., Gorunova, L., Petersson, C., Bardi, G., Idvall, I., Johansson, B., Ingvar, C., Mandahl, N., Mitelman, F., Heim, S. Chromosome analysis of 97 primary breast carcinomas: identification of eight karyotypic subgroups. Genes Chrom. Cancer, 12:173–185, 1995.
PubMed
CAS
CrossRef
Google Scholar
Böni, R., Matt, D., Voetmeyer, A., Burg, G., Zhuang, Z. Chromosomal allele loss in primary melanoma is heterogeneous and correlates with proliferation. J. Invest. Dermat. 110:215–217, 1998.
CrossRef
Google Scholar
Ornstein, D.K., Englert, C., Gillespie, J.W., Paweletz, C.P., Linehan, W.M., Emmert-Buck, M.R., Petricoin III, E.F. Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium. Clin. Cancer Res. 6:353–356, 2000.
PubMed
CAS
Google Scholar
Milchgrub, S., Wistuba, I.I., Kim, B.K., Rutherford, C., Urban, J., Cruz Jr, P.D., Gazdar, A.F. Molecular identification of metastatic cancer to the skin using laser capture microdissection. Cancer, 88:749–754, 2000.
PubMed
CAS
CrossRef
Google Scholar
Aubele, M., Mattis, A., Zitzelsberger, H., Walch, A., Kremer, M., Hutzler, P., Höfler, H., Werner, M. Intratumoral heterogeneity in breast carcinoma revealed by laser microdissection and comparative genomic hybridization. Cancer Genet Cytogenet, 110:94–102, 1999.
PubMed
CAS
CrossRef
Google Scholar
Zhuang, Z., Merino, M.J., Chuaqui, R., Liotta, L.A., Emmert-Buck, M.R. Identical allelic loss on chromosome 11q13 in microdissected in situ and invasive breast cancer. Cancer Res. 55:467–471, 1995.
PubMed
CAS
Google Scholar
Radford, D.M., Phillips, N.J., Fair, K.L., Ritter, J.H., Holt, M., Donis-Keller, H. Allelic loss and the progression of breast cancer. Cancer Res. 55:5180–5183, 1995.
PubMed
CAS
Google Scholar