Skip to main content

Endocrine Control of Breast Development

  • Chapter
Molecular Basis of Breast Cancer

Abstract

The breast is a hormone-responsive organ par excellence. Its development is influenced by a myriad of hormones and growth factors whose stimulus selectively elicits a response consisting of cell proliferation, cell differentiation, or cell death (apoptosis) [111]. In either case, the response of the mammary gland to these complex influences results in developmental changes that permanently modify both the architecture and the biological characteristics of the gland [3, 4]. Among the varied hormonal influences affecting the breast, estrogens are considered to play a major role in promoting the proliferation of both the normal and the neoplastic breast epithelium [25, 11]. Estrogens act locally on the mammary gland stimulating DNA synthesis and promoting bud formation, an effect that has traditionally been considered to be receptor-mediated, Although this is the most widely accepted mechanism of action of this steroid hormone [1014], at least two additional mechanisms, an autocrine/paracrine loop [15, 16] and/or a negative feedback [17] are also considered to of importance in these hormonal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russo, I.H., Russo, J. Mammary gland neoplasia in longterm rodent studies. Env. Health Perspectives. 104:938–967, 1996.

    CAS  Google Scholar 

  2. Russo, J., Russo, I.H. Role of hormones in human breast development-the menopausal breast. In: Progress in the Management of Menopause. London: Parthenon Publishing; 1997. P. 1–10.

    Google Scholar 

  3. Russo, I.H., Russo, J. Role of hormones in cancer initiation and progression. J. Mam. Gland. Biol. Neoplasia 3:49–61, 1998.

    CAS  Google Scholar 

  4. Russo, J., Russo, I.H. Role of differentiation in the pathogenesis and prevention of breast cancer. Endocr. Related Cancer 4:7–21, 1997.

    CAS  Google Scholar 

  5. Calaf, G., Alvarado, M.E., Bonney, G.E., Amfoh, K.K., Russo, J. Influence of lobular development on breast epithelial cell proliferation and steroid hormone receptor content. Int. J. Oncol. 7:1285–1288, 1995.

    Google Scholar 

  6. Lippman, M.E., Dickinson, R.B., Gelmann, E.P., Rosen N, Knabbe, C., Bates S, et al. Growth regulation of human breast carcinoma occurs through regulated growth factor secretion. J. Cell Biochem. 35:1–16, 1987.

    PubMed  CAS  Google Scholar 

  7. Meyer, J.S. Cell proliferation in normal human breast ducts fibroadenomas and other duct hyperplasias measured by nuclear labeling with tritiated thymidine. Hum. Path. 8:67–81, 1977.

    PubMed  CAS  Google Scholar 

  8. Masters, J.R.W., Drife, J.O., Scarisbrick, J.J. Cyclic variations of DNA synthesis in human breast epithelium. J. Natl. Cancer Inst. 58:1263–65, 1977.

    PubMed  CAS  Google Scholar 

  9. Ferguson, D.J.P., Anderson, T.J. Morphologic evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br. J. Cancer 44:177–181, 1981.

    PubMed  CAS  Google Scholar 

  10. Anderson, T.J., Ferguson, D.J.P., Raab, GM. Cell turnover in the “resting” human breast: influence of parity, contraceptive pill, age and laterality. Br. J. Cancer 46:376–82, 1982.

    PubMed  CAS  Google Scholar 

  11. Russo, J., Russo, I.H. Estrogens and Cell Proliferation in the Human Breast. J. Cardiovascular. Pharmacol. 28:19–23, 1996.

    Google Scholar 

  12. Kumar, V., Stack, G.S., Berry, M., Jin, J.R., Chambon, P. Functional domains of the human estrogen receptor. Cell 51:941–951, 1987.

    PubMed  CAS  Google Scholar 

  13. King, R.J.B. Effects of steroid hormones and related compounds on gene transcription. Clin. Endocrinol. 36:1–14, 1992.

    Google Scholar 

  14. Huseby, R.A., Maloney T.M., McGrath, C.M. Evidence for a direct growth-stimulating effect of estradiol on human MCF-7 cells in vitro. Cancer Res. 144:2654–2659, 1987.

    Google Scholar 

  15. Huff, K.K., Knabbe, C., Lindsey, R., Kaufman, D., Bronzert, D., Lippman, M.E., Dickson, R.B. Multihormonal regulation of insulin-like growth factor 1-related protein in MCF-7 human breast cancer cells. Mol. Endocrinol. 2:200–208, 1988.

    PubMed  CAS  Google Scholar 

  16. Dickson, R.B., Huff, K.K., Spencer, E.M., Lippman, M.E. Induction of epidermal growth factor related polypeptides by 17β-estradiol in MCF-7 human breast cancer cells. Endocrinology 118:138–142, 1986.

    PubMed  CAS  Google Scholar 

  17. Soto, A.M., Sonnenschein, C. Cell proliferation of estrogensensitive cells: the case for negative control. Endocr. Rev.48:52–58, 1987.

    Google Scholar 

  18. Tsai, M.J., O’Malley, B.W. Molecular mechanisms of steroid/thyroid receptor super-family members. Annu. Rev. Biochem. 63:451–486, 1994.

    PubMed  CAS  Google Scholar 

  19. Song,X-D., McPherson, R.A., Adam, L., Bao, Y., Shupnik, M., Kumar, R., and Santen, R.J. Linkage of rapid estrogen action to MAPK activation by ER-alpha-SHC association and SHC pathway activation. Mol Endo. 16:116–127, 2002.

    CAS  Google Scholar 

  20. Kuiper, G.G.J.M., Enmark, E, Pelto-Huikko, M, Nilsson S, Gustaffson, JA. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93:5925–5930, 1996.

    PubMed  CAS  Google Scholar 

  21. Tremblay, G.B., Tremblay, A., Copeland, N.G., Gilbert, DJ., Jenkins. N.A., Labrie, F., Giguere, V. Cloning, chromosomal localization, functional analysis of the murine estrogen receptor β. Mol. Endocrinol. 11:353–65, 1997.

    PubMed  CAS  Google Scholar 

  22. Mosselman, S., Polma, J., Dijkema, R. ER β: identification and characterization of a novel human estrogen receptor. FEBS Lett. 392:49–53, 1996.

    PubMed  CAS  Google Scholar 

  23. Leake, R. 100 years of the endocrine battle against breast cancer. Lancet, 347:1780–1781, 1996.

    PubMed  CAS  Google Scholar 

  24. Clarke, R., Skaar, T.C., Bouker, K.B., Davis, N., Lee, Y.R., Welch, J.N., and Leonessa, F., Molecular and pharmacological aspects of anti-estrogen resistance. J. Steroid Biochem. Mol. Biol. 76:71–84, 2001.

    PubMed  CAS  Google Scholar 

  25. Dorssers, L.C., vanderFlier, S., Brickman, A., van Agthover, T., Veldscholte, J., Berns, E.M., Klijn, J.G., Beex, L.V. and Foekens, J.A. Tamoxifen resistance in breast cancer: elucidating mechanisms. Drugs 61:1721–1733, 2001.

    PubMed  CAS  Google Scholar 

  26. Shaw, J.A., Udokang, K., Mosquera, J.-M., Chauhan, H., Jones, J.L., Walker, R.A. Oestrogen receptors alpha and beta differ in normal human breast and breast carcinomas. J. Pathol. 198:450–457, 2002.

    PubMed  CAS  Google Scholar 

  27. Wade, C.B., Dorsa, D.M. Estrogen activation of cyclic adenosine 5′-monophosphate response element-mediated transcription requires the extracellularly regulated kinase/mitogen-activated protein kinase pathway. Endocrinol. 144:832–838, 2003.

    CAS  Google Scholar 

  28. Coleman, K.M., Dutertre, M., El-Gharbawy, A., Rowan, B.G., Weigel, N.L., Smith, C.L. Mechanistic differences in the activation of estrogen receptor alpha (ERalpha)-and ERbeta-dependent gene expression by cAMP signaling pathway (s). J. Biol. Chem. 278:12834–12845, 2003.

    PubMed  CAS  Google Scholar 

  29. Katzenellenbogen, B.S. Dynamics of steroid hormone receptor action. Annu. Rev. Physiol. 42:17–35, 1980.

    PubMed  CAS  Google Scholar 

  30. Topper, J., Freedman, C. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1060, 1980.

    PubMed  CAS  Google Scholar 

  31. Dickson, R.B., Lippman, M.E. Cellular and molecular biology. In: Lippman, M.E, Dickson, R.B., editors. Breast cancer. Boston: Kluwer Academic Publishers, pp 119–165, 1988.

    Google Scholar 

  32. Jordan, C. Tamoxifen: the herald of a new era of preventive therapeutics. J. Natl. Cancer Inst. 89:747–749, 1997.

    PubMed  CAS  Google Scholar 

  33. Kuiper, G.G.J.M., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., Gustafsson, J.A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors a and β. Endocrinology 138:863–870, 1997.

    PubMed  CAS  Google Scholar 

  34. Cowley, S.M., Hoare, S., Mosselman, S., Parker, M.G. Estrogen receptors a and β form heterodimers on DNA. J. Biol. Chem. 272:19858–19862, 1997.

    PubMed  CAS  Google Scholar 

  35. Kuiper, G.G.J.M., Gustafsson, J.A. The novel estrogen receptor-β subtype: potential role in the cell-and promotor-specific actions of estrogens and anti-estrogens. FEBS Lett. 410:87–90, 1997.

    PubMed  CAS  Google Scholar 

  36. Pace, P., Taylor, J., Suntharalingam, S., Coombes, R.C., Ali, S. Human estrogen receptor β binds DNA in a manner similar to and dimerizes with estrogen receptor a. J. Biol. Chem. 272:25832–25838, 1997.

    PubMed  CAS  Google Scholar 

  37. Ogawa, S., Inoue, S., Watanabe, T., Hiroi, H., Orimo, A. Hosoi T., Ouchi, Y., Muramatsu, M. The complete primary structure of human estrogen receptor β (hERβ) and its hetero-dimerization with ER a in vivo and in vitro. Biochem. Biophys. Res. Commun. 243:122–126, 1998.

    PubMed  CAS  Google Scholar 

  38. Paech, K., Webb, P., Kuiper, G.G.J.M., Nilsson, S., Gustafsson, J.A., Kushner, P.J., Scanlan, T.S. Differential ligand activation of estrogen receptors ERα and ERβ at API sites. Science 277:1508–1510, 1997.

    PubMed  CAS  Google Scholar 

  39. Longacre, T.A., Bartow, S.A. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am. J. Surg. Pathol. 10:382–393, 1986.

    PubMed  CAS  Google Scholar 

  40. Going, J.J., Anderson, T.J., Battersby, S. Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am. J. Pathol. 130:193–204, 1988.

    PubMed  CAS  Google Scholar 

  41. Potten, C.S., Watson, R.J., Williams, G.T. The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br. J. Cancer 58:163–170, 1988.

    PubMed  CAS  Google Scholar 

  42. Clark, R.B., Howell, A., Potter, C.S., Anderson, E. Dissociation between steroid receptors expression and cell proliferation in the human breast. Cancer Res. 57:4987–4991, 1997.

    Google Scholar 

  43. Laidlaw, I.J., Clark, R.B., Howell, A., Owen, A.W.M.C., Potten, C.S., Anderson, E. Estrogen and progesterone stimulate proliferation of normal human breast tissue implanted in athymic nude mice. Endocrinology 136:164–171, 1995.

    PubMed  CAS  Google Scholar 

  44. Clarke, R.B., Howell, A., Anderson, E. Estrogen sensitivity of normal human breast tissue in vivo and implanted into athymic nude mice: analysis of the relationship between estrogen-induced proliferation and progesterone receptor expression. Breast Cancer Res. Treat. 45:121–183, 1997.

    PubMed  CAS  Google Scholar 

  45. Goodman, H.M., editor. Basic medical endocrinology. New York: Raven Press, 1994: pp 288–290.

    Google Scholar 

  46. Russo, J., Rivera, R., Russo, I.H. Influence of age and parity on the development of the human breast. Breast Cancer Res. Treat. 23:211–218, 1992.

    PubMed  CAS  Google Scholar 

  47. Russo, J., Russo, I.H. Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 40:2677–2687, 1980.

    PubMed  CAS  Google Scholar 

  48. Russo, J., Russo, I.H. Biology of disease. Biological and molecular bases of mammary carcinogenesis. Lab. Invest. 57:112–137, 1987.

    PubMed  CAS  Google Scholar 

  49. Russo, J., Ao, X., Grill, C., and Russo, I.H. Pattern of distribution for estrogen receptor a and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res. and Treat. 53:217–227, 1999.

    CAS  Google Scholar 

  50. Haslam, S. Role of sex steroid hormones in normal mammary gland function. In: Neville M. C., Daniel C.W. (eds) The Mammary Gland: Development, Regulation and Function. Plenum Press, New York, 1987, pp 499–533.

    Google Scholar 

  51. Clarke, R., Dickson, R.B., Lipton, M.E. Hormonal aspects of breast cancer. Growth factors, drugs and stromal interactions. Crit. Rev. Oncol. Hematol. 12:1–23, 1992.

    PubMed  CAS  Google Scholar 

  52. Knabbe, C., Lipton, M.E., Wakefield, L.M., Flanders, K.C., Kasid, A., Derynck, R., et al. Evidence that transforming growth factor β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428, 1987.

    PubMed  CAS  Google Scholar 

  53. Dickson, R., Lipton, M. Control of human breast cancer by estrogen, growth factors and oncogenes. In: Lipman, M.E., Dickson, R.B., editors. Estrogen receptors in human breast cancer. New York: Raven Press, 1975.

    Google Scholar 

  54. Russo, J., Calaf, G., Russo, I.H. A critical approach to the malignant transformation of human breast epithelial cells. CRC Crit. Rev. Oncog. 4:403–417, 1993.

    CAS  Google Scholar 

  55. Russo, J., Reina, D., Frederick, J., Russo, I.H. Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res. 48:2837–2857, 1988.

    PubMed  CAS  Google Scholar 

  56. Russo, J., Gusterson, B.A., Rogers, A., Russo, I.H., Wellings, S.R., van Zwieten, M.J. Biology of the Disease. Comparative study of human and rat mammary tumorigenesis. Lab. Invest. 62:244–278, 1990.

    PubMed  CAS  Google Scholar 

  57. Habel, L. A., Stamford, J.L. Hormone receptors and breast cancer. Epidemiol. Rev. 15:209–219, 1993.

    PubMed  CAS  Google Scholar 

  58. Harlan, L.C., Coates, R.J., Block, G. Estrogen receptor status and dieting intakes in breast cancer patients. Epidemiology 4:25–31, 1993.

    PubMed  CAS  Google Scholar 

  59. Moolgavkar, S.H., Day, N.E., Stevens, R.G. Two-stage model for carcinogenesis: epidemiology of breast cancer in females. J. Natl. Cancer Inst. 65:559–569, 1980.

    PubMed  CAS  Google Scholar 

  60. Kodama, P., Green, G.L., Salmon, S,S.E. Relation of estrogen receptor expression to clonal growth and antiestrogen effects on human breast cancer cells. Cancer Res. 45:2720–2724, 1985.

    PubMed  CAS  Google Scholar 

  61. Kuiper, G.G.J.M., Enmark, E., Pelto-Huikko, M., Nilsson, S., Gustaffson, J-A: Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93:5925–5930, 1996.

    PubMed  CAS  Google Scholar 

  62. Byers, M., Kuiper, G.G.J.M., Gustaffson, J-A., Park-Sarge, O.K. Estrogen receptor-β mRNA expression in rat ovary: down-regulation by gonadotropins. Mol. Endocrinol. 11:172–182, 1997.

    PubMed  CAS  Google Scholar 

  63. Vladusic, E.A., Hornby, A.E., Guerra-Vladusic, F.K., Lupu, R. Expression of estrogen receptor-β messenger RNA variant in human breast cancer. Cancer Res. 58:210–214, 1998.

    PubMed  CAS  Google Scholar 

  64. Foster, J.S., Wimalasena, J. Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells. Mol. Endocrinol. 10:488–498, 1996.

    PubMed  CAS  Google Scholar 

  65. Wang, W., Smith, R., Burghardt, R., Safe, SH. 17β estradiol-mediated growth inhibition of MDA-MB 468 cells stably transfected with the estrogen receptor: cell cycle effects. Mol. Cell Endocrinol. 133:49–62, 1997.

    PubMed  CAS  Google Scholar 

  66. Levenson, A.S., Jordan, V.C. Transfection of human estrogen receptor (ER) cDNA into ER negative mammalian cell lines. J. Steroid Biochem. Mol. Biol. 51:229–239, 1994.

    PubMed  CAS  Google Scholar 

  67. Weisz, A., Bresciani, F. Estrogen regulation of proto-oncogenes coding for nuclear proteins. Crit. Rev. Oncogen. 4:361–388, 1993.

    CAS  Google Scholar 

  68. Zajchowski, D.A., Sager, K., Webster, L. Estrogen inhibits the growth of estrogen receptor negative, but not estrogen receptor positive, human mammary epithelial cells expressing a recombinant estrogen receptor. Cancer Res. 53:5004–5011, 1993.

    PubMed  CAS  Google Scholar 

  69. Pilat, M.J., Christman, J.K., Brooks, S.C. Characterization of the estrogen receptor transfected MCF-10A breast cell line 139B6. Breast Cancer Res. Treat. 37:253–266, 1996.

    PubMed  CAS  Google Scholar 

  70. Calaf, G., Tahin, Q., Alvarado, M.E., Estrada, S., Cox, T., Russo, J. Hormone receptors and cathepsin D levels in human breast epithelial cells transformed by chemical carcinogens. Breast Cancer Res. Treat. 29:169–177, 1993.

    Google Scholar 

  71. Aronica, S.M., Kraus, W.L., Katzenellenbogen, B.S. Estrogen action via the cAMP signaling pathway. Stimulation of adenylate cyclase and cAMP regulated gene transcription. Proc. Natl. Acad. Sci. USA 91:8517–8521, 1994.

    PubMed  CAS  Google Scholar 

  72. Pappos, T.C., Gametahu, B., Watson, C.S. Membrane estrogen receptors identified by multiple antibody labeling and impeded-ligand binding. FASEB J. 9:404–410, 1994.

    Google Scholar 

  73. Alvarado, M.V., Russo, J., Russo, I.H. Immunolocalization of inhibin in the mammary gland of rats treated with hCG. J. Histochem. Cytochem. 41:29–34, 1993.

    PubMed  CAS  Google Scholar 

  74. Russo, I.H., and Russo, J. Role of hormones in mammary cancer initiation and progression. J. Mammary Gland Biol. Neoplasia. 3:49–61, 1998.

    PubMed  CAS  Google Scholar 

  75. Segaloff, D.L., Ascoli, M. The lutropin/choriogonadotropin receptor-4 years later. Endocr. Rev. 4:324–347, 1993.

    Google Scholar 

  76. Minegishi, T., Nakamura, K., Takakura, Y., Miyamoto, K., Hasegawa, Y., Ibuki, Y., Igarashi, M. Cloning and sequencing of human LH/hCG receptor cDNA. Biochem. Biophys. Res. Commun. 172:1049–1054, 1990.

    PubMed  CAS  Google Scholar 

  77. Frazier, A.L., Robbins, L.S., Stork, P.J., Sprengel, R., Segaloff, D.L., Cone, R.D. Isolation of TSH and LH/CG receptor cD-NAs from human thyroid: regulation by tissue specific splicing. Mol. Endocrinol. 4:1264–1276, 1990.

    PubMed  CAS  Google Scholar 

  78. Sokka, T., Hamalainen, T., Huhtaniemi, L. Functional LH receptor appears in the neonatal rat ovary after changes in the alternative splicing pattern of the LH receptor mRNA. Endocrinology 130:1738–1740, 1992.

    PubMed  CAS  Google Scholar 

  79. Reinholz, M.M., Zschunke, M.A., Roche, P.C. Loss of alternately spliced messenger RNA of the luteinizing hormone receptor and stability of the follicle-stimulating hormone receptor messenger RNA in granulosa cell tumors of the human ovary. Gynecol. Oncol. 79: 264–271, 2000.

    PubMed  CAS  Google Scholar 

  80. Srivastava, P., Russo, J., Russo, I.H. Chorionic gonadotropin inhibits rat mammary carcinogenesis through activation of programmed cell death. Carcinogenesis, 18:1799–1808, 1997.

    PubMed  CAS  Google Scholar 

  81. Russo, I.H. and Russo, J. Role of hCG and inhibin in breast cancer. Int. J. of Oncology 4:297–306, 1994.

    CAS  Google Scholar 

  82. Russo, I.H. and Russo, J. Hormonal approach to breast cancer prevention. J. Cell Biochem. Suppl. 34:1–6, 2000.

    PubMed  CAS  Google Scholar 

  83. Russo, J. and Russo, I.H. Human Chorionic Gonadotropin in Breast Cancer Prevention. In: Endocrine Oncology, (S.P. Ethier, editor), Humana Press Inc., Totowa, NJ, ppl21–136, 2000.

    Google Scholar 

  84. Russo, I.H., Koszalka, M., Russo, J. Effect of human chorionic gonadotropin on mammary gland differentiation and carcinogenesis. Carcinogenesis 11:1849–1855, 1990.

    PubMed  CAS  Google Scholar 

  85. Alvarado, M.V., Alvarado, N.E., Russo, J., Russo, I.H. Human chorionic gonadotropin inhibits proliferation and induces expression of inhibin in human breast epithelial cells in vitro. In Vitro Cell Dev. Biol. Anim. 30:4–8, 1994.

    Google Scholar 

  86. Lojun, S., Bao, S., Lei, Z.M., Rao, C.V. Presence of functional luteinizing hormone/ chorionic gonadotropin (hCG) receptors in human breast cell lines: implications supporting the premise that hCG protects women against breast cancer. Biol. Reprod. 57:1202–1210, 1997.

    PubMed  CAS  Google Scholar 

  87. Russo, J., Janssens, J.P., Russo, I.H. Recombinant human chorionic gonadotropin (r-hCG) significantly reduces primary tumor cell proliferation in patients with breast cancer. Breast Cancer Res. and Treat. 64:161a, 2000.

    Google Scholar 

  88. Soule, H.D., Maloney, T.M., Wolman, S.R., Peterson, N.D., Brenz, R., McGrath C.M., Russo, J., Pauley, R.J., Jones, R.F., and Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Research, 50:6075–6086, 1990.

    PubMed  CAS  Google Scholar 

  89. Tait, L.R., Soule, H.D., and Russo, J. Ultrastructural and immunocytochemical characterization of an immortalized human breast epithelial cell line, MCF-10. Cancer Research, 50:6087–6094, 1990.

    PubMed  CAS  Google Scholar 

  90. Jian, X., Russo, I.H., Russo, J. Alternately spliced luteinizing hormone/human chorionic gonadotropin receptor mRNA in human breast epithelial cells. Int. J. Oncol. 20: 735–738, 2002.

    Google Scholar 

  91. Zeng, H., Phang, T., Song, Y.S., Ji, I., Ji, T.H. The role of the hinge region of the luteinizing hormone receptor in hormone interaction and signal generation. J. Biol. Chem. 276: 3451–3458, 2001.

    PubMed  CAS  Google Scholar 

  92. Song, Y.S., Ji, I., Beauchamp, J,. Isaacs, N.W., Ji, T.H. Hormone interactions to Leu-rich repeats in the gonadotropin receptors. II. Analysis of Leu-rich repeat 4 of human luteinizing hormone/ chorionic gonadotropin receptor. J. Biol. Chem.. 276:3436–3442, 2001.

    PubMed  CAS  Google Scholar 

  93. Kuroda, H., Mandai, M., Konishi, I., Tsuruta, Y., Kusakari, T., Kariya, M., Fujii, S. Human ovarian surface epithelial (OSE) cells express LH/hCG receptors, and hCG inhibits apoptosis of OSE cells via up-regulation of insulin-like growth factor-1. International Journal of Cancer 91:309–315, 2001.

    CAS  Google Scholar 

  94. Hai, M.V., De Roux, N., Ghinea, N., Beau, I., Loosfelt, H., Vannier, B., Meduri, G., Misrahi, M., Milgrom, E. Gonadotropin receptors. Annales d Endocrinologie. 60:89–92, 1999.

    PubMed  CAS  Google Scholar 

  95. Venencie, P.A.Y., Meduri, G., Pissard, S., Jolivet, A., Loosfelt, H., Milgrom, E., Misrahi, M. Luteinizing hormone/human chorionic Gonadotrophin receptors in various epidermal structures. British Journal of Dermatology. 141:438–446, 1999.

    PubMed  CAS  Google Scholar 

  96. Latronico, A.C. Naturally occurring mutations of the luteinizing hormone receptor gene affecting reproduction. Seminars in Reproductive Medicine. 18:17–20, 2000.

    PubMed  CAS  Google Scholar 

  97. Munshi, U.M., Peegel, H., Menon, K.M. Palmitoylation of the luteinizing hormone/human chorionic gonadotropin receptor regulates receptor interaction with the arrestin-mediated internalization pathway. European Journal of Biochemistry. 268:1631–1639, 2001.

    PubMed  CAS  Google Scholar 

  98. Lei, Z.M., Mishra, S., Zou, W., Xu, B., Foltz, M., Li, X., Rao, C.V. Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Molecular Endocrinology. 15:184–200, 2001.

    PubMed  CAS  Google Scholar 

  99. Yano, K., Kohn, L.A.D., Saji, M., Okuno, A., Cutler, G.B., Jr. Phe576 plays an important role in the secondary structure and intracellular signaling of the human luteinizing hormone/chorionic gonadotropin receptor. J. Clin. Endocrinol. Metab. 82:2586–2591, 1997.

    PubMed  CAS  Google Scholar 

  100. Licht, P., Cao, H., Zuo, J., Lei, Z.M., Rao, V, Merz, W.E., Day, T.G.Jr. Lack of self-regulation of human chorionic gonadotropin biosynthesis in human choriocarcinoma cells. J. Clin. Endocrinol. Metab. 78:1188–1194, 1994.

    Google Scholar 

  101. Ying, S-Y. Inhibins, activins and follistatins. J. Steroid Biochem. 33:705–713, 1989.

    PubMed  CAS  Google Scholar 

  102. Meunier, H., Rivier, C., Evans, R.M. and Vale, W. Gonadal and extragonadal expression of inhibin α, βA and βB subunits in various tissues predicts diverse functions. Proc. Natl. Acad. Sci. USA. 85:247–251, 1988.

    PubMed  CAS  Google Scholar 

  103. Roberts, V, Meunier, H., Sawchenko, P.E., Vale, W. Differential production and regulation of inhibin subunits in rat testicular cell types. Endocrinology 125:2350–2359, 1989.

    PubMed  CAS  Google Scholar 

  104. Veeramachaneni, D.N.R., Schanbacher, B.D., Amann, R.P. Immuno-localization and concentrations of inhibin A in the ovine testis and excurrent duct system. Biol. Reprod. 41:499–503, 1989.

    PubMed  CAS  Google Scholar 

  105. Petraglia, E, Vaughan, J., Vale, W. Inhibin and activin modulate the release of gonadotropin-releasing hormone, human chorionic gonadotropin and progesterone from cultured human placental cells. Proc. Natl. Acad. Sci. USA 85:5114–5117, 1989.

    Google Scholar 

  106. Roberts, V.J., Sawchenko, P.E., Vale, W. Expression of inhibin/activin subunit messenger ribonucleic acids during rat embryogenesis. Endocrinol. 128:3122–3129, 1991.

    CAS  Google Scholar 

  107. McLachlan, R.I., Matsumoto, A.M., Burger, H.G., DeKretser, D.M., Bremmer, W.J. Relative roles of follicle stimulating hormones in the control of inhibin secretion in normal men. J. Clin. Inv. 82:880–884, 1988.

    CAS  Google Scholar 

  108. Woodruff, T.K., Mayo, K.E. Regulation of inhibin synthesis in the rat ovary. Annu. Rev. Physiol. 52:807–821, 1990.

    PubMed  CAS  Google Scholar 

  109. Hunzicker-Dunn, M., Birnbauer, L. The involvement of adenylyl cyclase and cyclic AMP-dependent protein kinases in luteinizing hormone actions. In: Luteinizing Hormone Action and Receptors. Ascoli M. (ed.) Florida, CRC Press, pp57–134, 1990.

    Google Scholar 

  110. Matzuk, M., Milton, J., Su, J., Hsuch, W., Bradley, A. ct-inhibin is a tumor suppressor gene with gonadal specificity in mice. Nature 360:313–319, 1992.

    PubMed  CAS  Google Scholar 

  111. Sutherland, R.L., Green, M.D., Hall, R.E., Reddell, R.R. and Taylor I.W. Tamoxifen induces accumulation of MCF-7 human mammary carcinoma cells in the G0/G1 phase of the cell cycle. Eur. J. Cancer Clin. Oncol. 19:615–621, 1983.

    PubMed  CAS  Google Scholar 

  112. Taylor, I.W., Hodson, P.J, Green, M.D. and Sutherland, R.L. Effects of tamoxifen on cell cycle progression of synchronous MCF-7 human mammary carcinoma cells. Cancer Res. 43:4007–4010, 1983.

    PubMed  CAS  Google Scholar 

  113. Ziecick, A.J., Stanchev, P.D., Tilton, J.E. Evidence for the presence of luteinizing hormone/human chorionic gonadotropin-binding sites in the porcine uterus. Endocrinology 119:1159–1163, 1986.

    Google Scholar 

  114. Frazier, A.L., Robbins, L.S., Stork, P.J., Sprengel, R., Segaloff, D.L., Cone, R.D. Isolation of TSH and LH/CG receptor cDNAs from human thyroid: Regulation by tissue specific splicing. Mol. Endocrinol. 4:1264–1276, 1990.

    PubMed  CAS  Google Scholar 

  115. Goustin, A.S., Leof, E.B., Shipley, G.D., and Moses, H.L. Growth factors and cancer. Cancer Res. 46:1015–1029, 1986.

    PubMed  CAS  Google Scholar 

  116. Heldin, C-H., and Westermark, B. Growth factors: mechanism of action and relation to oncogenes. Cell 37:9–20, 1984.

    PubMed  CAS  Google Scholar 

  117. Bishop, J.M. The molecular genetics of cancer. Science 235:305–311, 1977.

    Google Scholar 

  118. Ullrich, A. and Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212, 1990.

    PubMed  CAS  Google Scholar 

  119. Peres, R., Betsholtz, C., Westermark, B. and Heldin, C-H. Frequent expression of growth factors for mesenchymal cells in human mammary carcinoma cell lines. Cancer Res. 47:3425–3429, 1987.

    PubMed  CAS  Google Scholar 

  120. Halper, J. and Moses, H.L. Purification and characterization of a novel transforming growth factor. Cancer Res. 47:4552–4559, 1987.

    PubMed  CAS  Google Scholar 

  121. Bronzert, D.A., Pantazis, P., Antoniades, H.N., Kasid, A., Davidson, N., Dickson, R.B. and Lippman, M.E. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc. Natl. Acad. Sci. USA. 84:5763–5767, 1987.

    PubMed  CAS  Google Scholar 

  122. Dickson, R.B. and Lippman, M.E. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocrine Rev. 8:29–43, 1987.

    CAS  Google Scholar 

  123. Huang, D-P., Schwartz, C.E., Chiu, J-E, and Cook, J.R. Dexamethasone inhibition of rat hepatoma growth and a fetoprotein synthesis. Cancer Res. 44:2976–2980, 1984.

    PubMed  CAS  Google Scholar 

  124. Mira-y-Lopez, R., Reich, E., Stolfi, R.L., Martin, D.S. and Ossowski, L. Coordinate inhibition of plasminogen activator and tumor growth by hydrocortisone in mouse mammary carcinoma. Cancer Res. 45:2270–2276, 1985.

    PubMed  CAS  Google Scholar 

  125. Cook, P.W., Swanson, K.T., Edwards, C.P. and Firestone, G.L. Glucocorticoid receptor-dependent inhibition of cellular proliferation in dexa-methasone-resistant and hypersensitive rat hepatoma cell variants. Mol. Cell Biol. 8:1449–1459, 1988.

    PubMed  CAS  Google Scholar 

  126. Smith, R.G., Syms, A.J., Nag, A., Lerner, S. and Noms, J.S. Mechanism of the glucocorticoid regulation of growth of the androgen-sensitive prostate-derived R3327H-G8-A1 tumor cell line. J. Biol. Chem. 260:12454–12463, 1985.

    PubMed  CAS  Google Scholar 

  127. Syms, A.J., Norris, J.S. and Smith, R.G. Autocrine regulation of growth: I. Glucocorticoid inhibition is overcome by exogenous platelet derived growth factor. Bio chem. Biophys. Res. Commun. 122:68–74, 1984.

    CAS  Google Scholar 

  128. Miller., W.H., Dmitrovsky, E. Retinoid acid audits rearranged receptor in the treatment of acute promyelocytic leukemia. In: Important Advances in Oncology. DeVita V, Hellman S and Rosenberg SA (eds). JB Lippincott Co, Philadelphia, pp81–90

    Google Scholar 

  129. Iwai, S.A., Kosaka, N.M., Nishinu, Y., Sumi, T., Sakuda, M., Nishimune, Y. Changes in Hoxl.6, cqun and Oct-3 gene expressions are associated with teratocarcinoma F9 cell differentiation in three different ways of induction. Exptl. Cell Res. 205:39–43, 1993.

    CAS  Google Scholar 

  130. DeCosse, J.J., Gossens, C.L. and Kuzma, J.F. Breast cancer: induction of differentiation by embryonic tissues. Science 181:1057–1058, 1973.

    PubMed  CAS  Google Scholar 

  131. Evan. G.L., Littlewood, T.D. The role of c-myc in cell growth. Current Opin. Genet. Develop. 3:44–49, 1993.

    CAS  Google Scholar 

  132. Illmensee, K. and Mintz, B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl. Acad. Sci. USA. 73:549–553, 1976.

    PubMed  CAS  Google Scholar 

  133. Ki Hong, W., Wittes, R.E., Hadju, S.T., Cvitkovic, E., Whitmore, W. and Golbey, R.B. The evaluation of mature teratoma from malignant testicular tumors. Cancer 40:2987–2992, 1977.

    Google Scholar 

  134. Contractor, S.E, Davies, H.. Effect of human chorionic somatomammotrophin and human chorionic gonadotropin on phytohaemagglutinin-induced lymphocyte transformation. Nature 243:284–286, 1973.

    CAS  Google Scholar 

  135. Heintz, N.H., Dailey, L., Held, P. and Heintz, N. Eukaryotic replication origins as promoters of bi-directional DNA synthesis. Trends in Genetics 8:376–381, 1992.

    PubMed  CAS  Google Scholar 

  136. Draetta, G. Cell cycle control in eukaryotes. Trends Biochem. Sci. 15:378, 1990.

    PubMed  CAS  Google Scholar 

  137. Ransone, L.J. and Verman, I.M. Nuclear proto-oncogenes fos and jun. Annu. Rev. Cell Biol. 6:539, 1990.

    PubMed  CAS  Google Scholar 

  138. Curran, T. and Morgan, J.I. Memories of Fos. Bio Essays7:255–258, 1987.

    CAS  Google Scholar 

  139. Lau, L.F. and Nathans, D. Expression of a set of growth-related immediate early genes in Balb/c 3T3 cells. Coordinate regulation with c-fos and c-myc. Proc. Natl. Acad. Sci. USA. 84:1182–1186, 1987.

    CAS  Google Scholar 

  140. Curran, T. and Franza, B.R. Fos and Jun: the AP-I connection. Cell 55:395–397, 1988.

    PubMed  CAS  Google Scholar 

  141. Czerwiec, F.S., Meimer, M.H., Puitt, D. Transiently elevated levels of c-fos and c-myc oncogene messenger ribonucleic acids in cultured murine Leydig tumor cells after addition of human chorionic gonadotropin. Mol. Endocrinol. 3:105–109.1989.

    PubMed  CAS  Google Scholar 

  142. Wyllie, A.H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556, 1980.

    PubMed  CAS  Google Scholar 

  143. Wyllie, A.H., Kerr, J.F.R., Currie, A.R. Cell death. The significance of apoptosis. Int. Rev. Cytol. 68:251–306, 1980.

    PubMed  CAS  Google Scholar 

  144. Cohen, J.J. and Duke, R.C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol. 132:38–42, 1984.

    PubMed  CAS  Google Scholar 

  145. O’Connor, P.M., Wassermann, K., Sarang, M., Magrath, I., Bohr, V.A., Kohn, K.W. Relationship between DNA crosslinks, cell cycle, and apoptosis in Burkitt’s Lymphoma cell lines differing in sensitivity to nitrogen mustard. Cancer Res. 51:6550–6557, 1991.

    PubMed  Google Scholar 

  146. Kerr, J.F.R., Harmon, B.V. Definition and incidence of apoptosis: a historical perspective. In: Apoptosis: The Molecular Basis of Cell Death. L.D. Tomei and F.O. Cope (eds.) Plainview: Cold Spring Harbor Press, pp5–29, 1991.

    Google Scholar 

  147. Gerschenson. L.E., Rotell, R.J. Apoptosis and cell proliferation are terms of the growth equation. In: Apoptosis: The Molecular Basis of Cell Death. L.D. Tomeik and F.O. Cope (eds.) Cold Spring Harbor Laboratory Press, ppl39–155, 1991.

    Google Scholar 

  148. Buttyam, R,. Olsson, C.A., Pintar, J., Chang, C. Bandyk, M., Ng, P-Y. and Sawczuk, I.S. Induction of the TRPM-2 gene in cells undergoing programmed death. Mol. Cell Biol. 9:3473–3481, 1989.

    Google Scholar 

  149. Yonish-Rouach, E.. Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. Wild-type pS3 induces apoptosis of myeloid leukaemic cell that is inhibited by interleukin-6. Nature 353:345–347, 1991.

    Google Scholar 

  150. Shaw, P., Bovey, R., Tardy, S., Sahli, R., Sordat, B. and Costa, J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA. 89:4495–4499, 1992.

    PubMed  CAS  Google Scholar 

  151. Alneri, E.S., Femades, T.F., Haldar, S., Croce, C.M., Litwack, G. Involvement of be 1-2 in glucorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res. 52:491–495, 1992.

    Google Scholar 

  152. Sentman, C.L., Shutter, J.R., Hockenberry, D., Kanagawa, O. and Korsmeyer, S.J.hcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879–888, 1991.

    PubMed  CAS  Google Scholar 

  153. Sun, P.D., and Davies, D.R. The cystine-knot growth factor super-family. Annu. Rev. Biophys. Biomol. Struct. 24:269–291, 1995.

    PubMed  CAS  Google Scholar 

  154. Russo, J., Lareef, M.H., Russo, I.H., and Jiang, X. Modulation of Hox gene expression in human breast epithelial cells by human chorionic gonadotropin, Proc. Am. Assoc. Cancer Res. 42:2649a, 2001.

    Google Scholar 

  155. Acampora, D., D’Esposito, M., Faiella, A., Pannese, M., Migliaccio, E., Morelli, E, Stornaiuolo, A., Nigro, V., Simeone, A., Boncinelli, E. The human HOX gene family. Nucleic Acids Res. 17:10385–10402, 1989.

    PubMed  CAS  Google Scholar 

  156. Apiou, E, Flagiello, D., Cillo, C., Malfoy, B., Poupon, M.F., Dutrillaux, B. Fine mapping of human HOX gene clusters. Cytogenet. Cell Genet. 73:114–115, 1996.

    CAS  Google Scholar 

  157. De Vita, G., Barba, P., Odartchenko, N., Givel, J.C., Freschi, G., Bucciarelli, G., Magli, M.C., Boncinelli, E., Cillo, C. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur. J. Cancer 29A: 887–893, 1993.

    PubMed  Google Scholar 

  158. Cillo, C., Barba, P., Freschi, G., Bucciarelli, G., Magli, M.C., Boncinelli, E. HOX gene expression in normal and neoplastic human kidney. Int. J. Cancer 51:892–897, 1992.

    PubMed  CAS  Google Scholar 

  159. Aberdam, D., Negreanu, V., Sachs, L., Blatt, C. The oncogenic potential of an activated Hox-2.4 homeobox gene in mouse fibroblasts. Mol. Cell Biol. 11:554–557, 1991.

    PubMed  CAS  Google Scholar 

  160. Song, K., Wang, Y., Sassoon, D. Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360:477–481, 1992.

    PubMed  CAS  Google Scholar 

  161. Maulbecker, CC, Gruss, P. The oncogenic potential of deregulated homeobox genes. Cell Growth Differ. 4:431–441, 1993.

    PubMed  CAS  Google Scholar 

  162. Cillo, C., Faiella, A., Cantile, M., Boncinelli, E. Homeobox genes and cancer. Exp. Cell Res. 248:1–9, 1999.

    PubMed  CAS  Google Scholar 

  163. Chariot, A., Castronovo, V.Detection of HOXA1 expression in human breast cancer. Biochem. Biophys. Res. Commun. 222:292–297, 1996.

    PubMed  CAS  Google Scholar 

  164. Russo, I.H., Koszalka, M., Russo, J. Effect of human chorionic gonadotropin on mammary gland differentiation and carcinogenesis. Carcinogenesis 11:1849–1855, 1990.

    PubMed  CAS  Google Scholar 

  165. Russo, I.H., Russo, J. Hormonal approach to breast cancer prevention. J. Cell Biochem. 34:1–6, 2000.

    CAS  Google Scholar 

  166. Alvarado, M.V., Alvarado, N.E., Russo, J., Russo, I.H. Human chorionic gonadotropin inhibits proliferation and induces expression of inhibin in human breast epithelial cells in vitro. In Vitro Cell Dev. Biol. Anim., 30A:4–8, 1994.

    PubMed  CAS  Google Scholar 

  167. Srivastava, P., Russo, J., Mgbonyebi, O.P., Russo, I.H. Growth inhibition and activation of apoptotic gene expression by human chorionic gonadotropin in human breast epithelial cells. Anticancer Res, 18:4003–4010, 1998.

    PubMed  CAS  Google Scholar 

  168. Manna, S.K., Mukhopadhyay, A., Aggarwal, B.B. Human chorionic gonadotropin suppresses activation of nuclear transcription factor-kappa B and activator protein-1 induced by tumor necrosis factor. J. Biol. Chem. 275:13307–13314, 2000.

    PubMed  CAS  Google Scholar 

  169. Flagiello, D, Gibaud, A, Dutrillaux, B, Poupon, M.F., Malfoy, B. Distinct patterns of all-trans retinoic acid dependent expression of HOXB and HOXC homeogenes in human embryonal and small-cell lung carcinoma cell lines. FEBS Lett. 415:263–267, 1997.

    PubMed  CAS  Google Scholar 

  170. Alami, Y, Castronovo, V, Belotti, D, Flagiello, D, Clausse, N. HOXC5 and HOXC8 expression are selectively turned on in human cervical cancer cells compared to normal keratinocytes. Biochem. Biophys. Res. Commun. 257:738–745, 1999.

    PubMed  CAS  Google Scholar 

  171. Wolgemuth, DJ., Viviano, C.M., Gizang-Ginsberg, E., Frohman, M.A., Joyner, A.L., Martin, G.R. Differential expression of the mouse homeobox-containing gene Hox-1.4 during male germ cell differentiation and embryonic development. Proc. Natl. Acad. Sci. USA 84:5813–5817, 1987.

    PubMed  CAS  Google Scholar 

  172. James, R., Kazenwadel, J. Homeobox gene expression in the intestinal epithelium of adult mice. J. Biol. Chem. 266:3246–3251, 1991.

    PubMed  CAS  Google Scholar 

  173. Srebrow, A., Friedman, Y., Ravanpay, A., Daniel, C.W., Bissell M.J. Expression of Hoxa-1 and Hoxb-7 is regulated by extracellular matrix-dependent signals in mammary epithelial cells. J. Cell Biochem. 71:310–312, 1998.

    CAS  Google Scholar 

  174. Care, A., Silvani, A., Meccia, E., Mattia, G., Peschle, C., Colombo M.P.. Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence. Oncogene; 16:3285–3289, 1998.

    PubMed  CAS  Google Scholar 

  175. Chariot, A., Moreau, L., Senterre, G., Sobel, M.E., Castronovo, V. Retinoic acid induces three newly cloned HOXA1 transcripts in MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun. 215:713–720, 1995.

    PubMed  CAS  Google Scholar 

  176. Kloen, P., Visker, M.H., Olijve, W, van Zoelen, E.J., Boersma, C.J. Cell-type-specific modulation of Hox gene expression by members of the TGF-beta super-family: a comparison between human osteosarcoma and neuroblastoma cell lines. Biochem. Biophys. Res. Commun. 233:365–369, 1997

    PubMed  CAS  Google Scholar 

  177. Srivastava, P., Russo, J., and Russo, I.H. Inhibition of rat mammary tumorigenesis by human chorionic gonadotropin is associated with increased expression of inhibin. Molecular Carcinogenesis, 26:1–10, 1999.

    Google Scholar 

  178. Chariot, A., Gielen, J., Merville, M.R, Bours, V. The homeodomain-containing proteins: an update on their interacting partners. Biochem. Pharmacol. 58:1851–1857, 1999.

    PubMed  CAS  Google Scholar 

  179. Gupta, S., Seth, A., Davis, R.J. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc. Natl. Acad. Sci. USA 90:3216–3220, 1993.

    PubMed  CAS  Google Scholar 

  180. Gilles, A.M., Presecan, E., Vonica, A., Lascu, I. Nucleoside diphosphate kinase from human erythrocytes. Structural characterization of the two polypeptide chains responsible for heterogeneity of the hexameric enzyme. J. Biol. Chem. 266:8784–8789, 1991.

    PubMed  CAS  Google Scholar 

  181. Postel, E.I.I., Ilerberich, S.J., Flint, S.J., Ferrone, C.A. Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphilate kinase, a candidate suppressor of tumor metastasis. Science 261:478–480, 1993.

    PubMed  CAS  Google Scholar 

  182. Nobes, C.D., Lauritzen, I., Mattei, M.G., Paris, S., Hall, A., Chardin, P. A new member of the Rho family, Rndl, promotes disassembly of actin filament structures, and loss of cell adhesion. J. Cell Biol. 141:187–197, 1998.

    PubMed  CAS  Google Scholar 

  183. Foster, R., Hu, K.Q., Lu, Y., Nolan, K.M., Thissen, J., Settleman, J. Identification of a novel human Rho protein with unusual properties: GTPasc deficiency and in vivo farnesylation. Mol. Cell Biol. 16:2689–2699, 1996.

    PubMed  CAS  Google Scholar 

  184. Wang, C.Y., Petryniak, B., Thompson, C.B., Kaelin, W.G., Leiden, J.M. Regulation of the Ets-related transcription factor Elf-1 by binding to the retinoblastoma protein. Science 260:1330–1335, 1993.

    PubMed  CAS  Google Scholar 

  185. Thompson, C.B., Wang, C.Y., Ho, I.C., Bohjanen, P.R., Petryniak, B., June, C.H., Miesfeldt, S., Zhang, L., Nabel, G.J., Karpinski, B., et al. cis-acting sequences required for inducible interleukin-2 enhancer function bind a novel Ets-related protein, Elf-1. Mol. Cell Biol. 12:1043–1053, 1992.

    PubMed  CAS  Google Scholar 

  186. Hoshino, S., Miyazawa, H., Enomoto, T., Hanaoka, F., Kikuchi, Y., Kikuchhhhi, A., Ui M. 1989 A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 8:3807–3814, 1989.

    PubMed  CAS  Google Scholar 

  187. Glover, J.N., Harrison, S.C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373:257–261, 1995.

    PubMed  CAS  Google Scholar 

  188. Junius, F.K., O’Donoghue, S.I., Nilges, M., Weiss, A.S., King, G.F. High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. Biol. Chem. 271:13663–13667, 1996.

    CAS  Google Scholar 

  189. Hattori, K., Angel, P., Le Beau, M.M., Karin, M. Structure and chromosomal localization of the functional intronless human JUN proto-oncogene. Proc. Natl. Acad. Sci. USA 85:9148–9152, 1988.

    PubMed  CAS  Google Scholar 

  190. Bohmann, D., Bos, T.J., Admon, A., Nishimura, T., Vogt, P.K., Tjian R. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238:1386–1392, 1987.

    PubMed  CAS  Google Scholar 

  191. Slavin, D., Sapin, V., Lopez-Diaz, F., Jacquemin, P., Koritschoner, N., Dastugue, B., Davidson, L, Chatton, B., Bocco, J. The Kruppel-like core promoter binding protein gene is primarily expressed in placenta during mouse development. Biol. Reprod. 61:1586–1591, 1999.

    PubMed  CAS  Google Scholar 

  192. Koritschoner, N.P., Pocco, J.L., Panzetta-Dutari, G.M., Dumur, C.I., Flury, A, Patrito, L.C. A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J. Biol. Chem. 272:9573–9580, 1997.

    PubMed  CAS  Google Scholar 

  193. Qian, Z, Wilusz, J. GRSF-1: a poly(A)+ mRNA binding protein which interacts with a conserved G-rich element. Nucleic Acids Res. 22:2334–2343, 1994.

    PubMed  CAS  Google Scholar 

  194. Karin, M., Delhase, M. JNK or IKK, AP-1 or NF-kappaB, which are the targets for MEK kinase 1 action? Proc. Natl. Acad. Sci. USA, 95:9067–9069, 1998.

    PubMed  CAS  Google Scholar 

  195. Lie, J.J., Rhim, J.S., Schlegel, R., Vousden, K.H., Colburn, N.H. Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaβ transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene 16:2711–2721, 1998.

    Google Scholar 

  196. Johnson, A.C., Murphy, B.A., Matelis, C.M., Rubinstein., Y., Piebenga, E.C., Akers, L.M., Neta, G., Vinson, C., Birrer, M. Activator protein-1 mediates induced but not basal epidermal growth factor receptor gene expression. Mol. Med. 6:17–27, 2000.

    Google Scholar 

  197. Gee, J.M., Barroso, A.F., Ellis, I.O., Robertson J.F., Nicholson, R.I. Biological and clinical associations of c-jun activation in human breast cancer. Int. J. Cancer. 89:177–186, 2000.

    PubMed  CAS  Google Scholar 

  198. Yang, H.S., Jansen, A.P,. Nair, R., Shibahara, K., Verma, A.K., Cmarik, J.L., Colburn, N.H. A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaβ or ODC transactivation. Oncogene 20:669–676, 2001.

    PubMed  CAS  Google Scholar 

  199. Friedmann, Y., Daniel, CA., Strickland, P., Daniel, C.W. Hox genes in normal and neoplastic mouse mammary gland. Cancer Res. 54:5981–5985, 1994.

    PubMed  CAS  Google Scholar 

  200. Chariot, A., Castronovo, V. Detection of HOXA1 expression in human breast cancer. Biochem. Biophys. Res. Commun. 222:292–297, 1996.

    PubMed  CAS  Google Scholar 

  201. Russo, J. and Russo, I.H. Human Chorionic Gonadotropin in Breast Cancer Prevention In: Endocrine Oncology. Ethier SP, (ed.) Humana Press Inc., Totowa, NJ., pp 121–136, 2000.

    Google Scholar 

  202. Russo, I.H., Srivastava, P., Mgbonyebi, O.P. and Russo, J. Activation of programmed cell death by human-chorionic gonadotropin in breast cancer therapy. Acta Haematol. 98:16, 1997.

    Google Scholar 

  203. Srivastava, P., Russo, J. and Russo, I.H. Chorionic gonadotropin inhibits rat mammary carcinogenesis through activation of programmed cell death. Carcinogenesis 18:1799–1808, 1998.

    Google Scholar 

  204. Grunstein, M. Histone acetylation and chromatin structure and transcription. Nature 389:349–352, 1997.

    PubMed  CAS  Google Scholar 

  205. Kornberg, R.D. and Lorch, Y. Twenty-five years of the nucleosome particle of the eukaryote chromosome. Cell 98:285–294, 1999.

    PubMed  CAS  Google Scholar 

  206. Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet Dev. 9:40–48, 1999.

    PubMed  CAS  Google Scholar 

  207. Allfrey, V.G. Post synthetic modifications of histone: a mechanism for the control of chromosome structure by the modulation of histones — DNA interactions. In: Chromatin and Chromosome structure. Li, T., Eckhardt, R.C.A. (eds.) Academic Press, New York, pp167–191, 1977.

    Google Scholar 

  208. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389:251–260, 1997.

    PubMed  CAS  Google Scholar 

  209. Davie, J.R. Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Genet. Dev. 8:173–178, 1997.

    Google Scholar 

  210. Sachs, L.M. and Shi, Y.B. Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proceedings of the National Academy of Sciences of the United States of America 97:13138–13143, 2000.

    PubMed  CAS  Google Scholar 

  211. Parrizas, M., Maestro, M., Boj, S., Paniagua, A., Casamitjana, R., Gomis, R., Rivera, F. and Ferrer, J. Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific Molecular & Cellular Biology 21:3234–3243, 2001.

    CAS  Google Scholar 

  212. Ogryzko, V.V., Kotani, T., Zhang, X., Schiltz, R.L., Howard, T., Yang, X.J., Howard, B.H., Qin, J. and Nakatani, Y, Histonelike TAFs within the PCAF histone acetylase complex. Comment in: Cell 94(1):1–4, 1998 Cell 94:35-44, 1998.

    Google Scholar 

  213. Deckert, J. and Struhl, K. Histone acetylation at promoters is differentially affected by specific activators and repressors. Molecular & Cellular Biology 21:2726–2735, 2001.

    CAS  Google Scholar 

  214. Bhadra, U., Pal-Bhadra, M. and Birchler., J.A. Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila. Genetics 155:753–763, 2000.

    PubMed  CAS  Google Scholar 

  215. Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J. and Nakatani, Y. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473, 2000.

    PubMed  CAS  Google Scholar 

  216. Zhang, Q., Vo, N. and Goodman, R.H. Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB. Molecular & Cellular Biology 20:4970–4978, 2000.

    CAS  Google Scholar 

  217. Herrera, J.E., Schiltz, R.L., and Bustin, M. The accessibility of histone H3 tails in chromatin modulates their acetylation by P300/CBP-associated factor. Journal of Biological Chemistry 275:12994–12999, 2000.

    PubMed  CAS  Google Scholar 

  218. Garrison, P.M., Rogers, J.M., Brackney, W.R. and Denison, M.S. Effects of histone deacetylase inhibitors on the Ah receptor gene promoter. Archives of Biochemistry & Biophysics. 374:161–171, 2000.

    CAS  Google Scholar 

  219. McMahon, S.B., Wood, M.A. and Cole, M.D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Molec. & Cellular Biolog. 20:556–562, 2000.

    CAS  Google Scholar 

  220. Masumi, A., Wang, I.M., Lefebvre, B., Yang, X.J., Nakatani, Y. and Ozato, K. The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness. Molecular & Cellular Biology 19:1810–1820, 1999.

    CAS  Google Scholar 

  221. Vassilev, A., Yamauchi, J., Kotani, T., Prives, C., Avantaggiati, M.L., Qin, J. and Nakatani, Y. The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Molecular Cell 2:869–875, 1998.

    PubMed  CAS  Google Scholar 

  222. Randhawa, G.S., Bell, D.W., Testa, J.R., Feinberg, A.P. Identification and mapping of human histone acetylation modifier gene homologues. Genomics 51:262–269, 1998.

    PubMed  CAS  Google Scholar 

  223. Chen, H., Lin, R.J., Xie, W, Wilpitz, D. and Evans, R.M. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686, 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russo, J., Russo, I.H. (2004). Endocrine Control of Breast Development. In: Molecular Basis of Breast Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18736-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18736-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62270-0

  • Online ISBN: 978-3-642-18736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics