Advertisement

P Systems with Symport/Antiport Rules. A Survey

  • Carlos Martín-Vide
  • Gheorghe Păun
Part of the Natural Computing Series book series (NCS)

Summary

After briefly presenting the basic ideas and types of results of membrane computing, we introduce a widely investigated class of P systems, with a direct biological motivation, the symport/antiport P systems. We recall the generative variants (including the case when the result of a computation is obtained by means of the trace of a specified object in its movement through membranes), as well as the automata-like variants. The central results about the computing power of these systems are recalled, and in this context several open problems are mentioned.

Keywords

Membrane Structure Turing Machine Mathematical Linguistics Initial Mode Elementary Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., et al: Molecular Biology of the Cell, 3rd ed. (Garland, New York, 1994)Google Scholar
  2. 2.
    Ardelean, I.I.: The relevance of biomembranes for P systems. Fundamenta Informaticae, 49(1–3), 35–43 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Calude, C.S., Dinneen, M.J., Păun, Gh. (eds.): Pre-Proceedings of Workshop on Multiset Processing, Curtea de Arge,s, Romania. CDMTCS Technical Report 140, University of Auckland, 2000Google Scholar
  4. 4.
    Calude, C.S., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing. Mathematical, Computer Science, and Molecular Computing Points of View, Lecture Notes in Computer Science, vol. 2235 (Springer, Berlin, Heidelberg, New York, 2001)Google Scholar
  5. 5.
    Cavaliere, M.: Evolution-communication P systems. In: [26], 134-145Google Scholar
  6. 6.
    Ciobanu, G., Dumitriu, D., Huzum, D., Moruz, G., Tanasă, B.: Client-server P systems in modeling molecular interaction. In: [26], 203-218Google Scholar
  7. 7.
    Csuhaj-Varju, E., Vaszil, G.: P automata. In: [26], 219-233Google Scholar
  8. 8.
    Freund, R., Martín-Vide, C., Obtulowicz, A., Păun, Gh.: On three classes of automata-like P systems. Submitted, 2003Google Scholar
  9. 9.
    Freund, R., Martín-Vide, C., Obtulowicz, A., Păun, Gh.: Initial automata-like P systems. Submitted, 2003Google Scholar
  10. 10.
    Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the EATCS, 78, 231–236 (October 2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Freund, R., Păun, A.: Membrane systems with symport/antiport: universality results In: [26], 270-287Google Scholar
  12. 12.
    Frisco, P., Hoogeboom, H.J.: Simulating counter automata by P systems with symport/antiport. In: [26], 288-301Google Scholar
  13. 13.
    Ionescu, M., Martín-Vide, C., Păun, A., Păun, Gh.: Membrane systems with symport/antiport: (Unexpected) universality results. Proc. 8th Int. Meeting on DNA Based Computers (ed. by Hagiya, M., Obuchi, A.), Sapporo, Japan, 2002, 151–160Google Scholar
  14. 14.
    Ionescu, M., Martín-Vide, C., Păun, Gh.: P systems with symport/antiport rules: The traces of objects. Grammars, 5, 65–79 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Madhu, M., Krithivasan, K.: On a class of P automata. Submitted, 2002Google Scholar
  16. 16.
    Martín-Vide, C., Păun, A., Păun, Gh.: On the power of P systems with symport rules. Journal of Universal Computer Science, 8(2), 317–331 (2002)MathSciNetGoogle Scholar
  17. 17.
    Martín-Vide, C., Păun, A., Păun, Gh., Rozenberg, G.: Membrane systems with coupled transport: Universality and normal forms. Fundamenta Informaticae, 49(1-3), 1–15 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Minsky, M.: Computation: Finite and Infinite Machines (Prentice Hall, Englewood Cliffs, NJ, 1967)zbMATHGoogle Scholar
  19. 19.
    Nishida, T.Y.: Simulations of photosynthesis by a K-subset transforming system with membranes. Fundamenta Informaticae, 49(1-3), 249–259 (2002)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Papadimitriou, Ch.P.: Computational Complexity (Addison-Wesley, Reading, MA, 1994)zbMATHGoogle Scholar
  21. 21.
    Păun, A., Păun, Gh.: The power of communication: P systems with symport/ antiport. New Generation Computing, 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Păun, A., Păun, Gh., Rodríguez-Patón, A.: Further remarks on P systems with symport rules. Annals of Al.I. Cuza University, Ia,si, Mathematics-Informatics Series, 10, 3–18 (2001)zbMATHGoogle Scholar
  23. 23.
    Păun, A., Păun, Gh., Rozenberg, G.: Computing by communication in networks of membranes. International Journal of Foundations of Computer Science, 13(6), 779–798 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Păun, Gh.: Computing with Membranes: An Introduction (Springer, Berlin, Heidelberg, New York, 2002)Google Scholar
  26. 26.
    Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing, Lecture Notes in Computer Science vol. 2597 (Springer, Berlin, Heidelberg, New York, 2003)Google Scholar
  27. 27.
    Pérez-Jiménez, M., Romero-Jiménez, A., Sancho-Caparrini, F.: Teoría de la Complejidad en Modelos de Computatión Celular con Membranas (Editorial Kronos, Sevilla, 2002)Google Scholar
  28. 28.
    Suzuki, Y., Fujiwara, Y., Tanaka, H., Takabayashi, J.: Artificial life applications of a class of P systems: Abstract rewriting systems on multisets. In: [4], 299-346Google Scholar
  29. 29.
    Suzuki, Y., Takabayashi, J., Tanaka, H.: Investigation of an ecological system by using an abstract rewriting system on multisets. In: Recent Topics in Mathematical and Computational Linguistics (ed. by Martín-Vide, C., Păun, Gh.) (The Publishing House of the Romanian Academy, Bucharest, 2000), 300–309Google Scholar
  30. 30.
    Suzuki, Y., Tanaka, H.: Artificial life and P systems. In: [3], 265-285Google Scholar
  31. 31.
    Zandron, C.: A Model for Molecular Computing: Membrane Systems. PhD Thesis, Universitá degli Studi di Milano, 2001Google Scholar
  32. 32.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Unconventional Models of Computation (ed. by Antoniou, I., Calude, C.S., Dinneen, M.J.) (Springer, Berlin, Heidelberg, New York, 2000), 289–301Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Carlos Martín-Vide
    • 2
  • Gheorghe Păun
    • 2
    • 1
  1. 1.Institute of Mathematics of the Romanian AcademyBucureşti
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain

Personalised recommendations