Advertisement

Formal Modelling of C. elegans Development. A Scenario-Based Approach

  • Na’aman Kam
  • David Harel
  • Hillel Kugler
  • Rami Marelly
  • Amir Pnueli
  • Jane Albert Hubbard
  • Michael J. Stern
Part of the Natural Computing Series book series (NCS)

Summary

We present preliminary results of a new approach to the formal modelling of biological phenomena. The approach stems from the conceptual compatibility of the methods and logic of data collection and analysis in the field of developmental genetics with the languages, methods, and tools of scenario-based reactive system design. In particular, we use the recently developed methodology consisting of the language of live sequence charts with the play-in/play-out process, to model the well-characterized process of cell fate acquisition during C. elegans vulval development.

Keywords

Graphical User Interface Anchor Cell Internal Object Default Assumption Live Sequence Chart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://www.wisdom.weizmann.ac.il/mathusers/kam/CelegansModel/Demos.htm.Google Scholar
  2. 2.
    J. Bower and H. Bolouri (Eds.). Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge MA, 2001.Google Scholar
  3. 3.
    C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 282(5396):2012-8, 1998.Google Scholar
  4. 4.
    W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal Methods in System Design, 19(1):45–80, 2001.zbMATHCrossRefGoogle Scholar
  5. 5.
    A.G. Fraser, R.S. Kamath, P. Zipperlen, M. Martinez-Campos, M. Sohrmann, and J. Ahringer. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408(6810):325–30, 2000.CrossRefGoogle Scholar
  6. 6.
    P. Gonczy, C. Echeverri, K. Oegema, A. Coulson, S.J. Jones, R.R. Copley, J. Duperon, J. Oegema, M. Brehm, E. Cassin, E. Hannak, M. Kirkham, S. Pichler, K. Flohrs, A. Goessen, S. Leidel, A.M. Alleaume, C. Martin, N. Ozlu, P. Bork, and A.A. Hyman. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408(6810):331–6, 2000.CrossRefGoogle Scholar
  7. 7.
    D. Harel. A grand challenge for computing: Full reactive modeling of a multicellular animal. Position paper. UK Workshop on Grand Challenges in Computing Research, 2002.Google Scholar
  8. 8.
    D. Harel, S. Efroni, and I.R. Cohen. Reactive animation. In Proc. 1st Int. Symposium on Formal Methods for Components and Objects (FMCO 2002), Lecture Notes in Computer Science. Springer-Verlag, 2003.Google Scholar
  9. 9.
    D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral requirements. In Proc. 4th International Conference On Formal Methods in Computer-Aided Design (FMCAD’02), 378–98, 2002.Google Scholar
  10. 10.
    D. Harel and R. Marelly. Playing with time: On the specification and execution of time-enriched LSCs. In Proc. 10th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’02), 2002.Google Scholar
  11. 11.
    D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag, 2003.Google Scholar
  12. 12.
    D. Harel and R. Marelly. Specifying and executing behavioral requirements: the play-in/play-out approach. Software and Systems Modeling, 2(2):82–107, 2003.CrossRefGoogle Scholar
  13. 13.
    N. Kam, I.R. Cohen, and D. Harel. The immune system as a reactive system: Modeling T cell activation with statecharts. In Visual Languages and Formal Methods, Human-Centric Computing, IEEE, 15–22, 2001.Google Scholar
  14. 14.
    N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E.J.A. Hubbard, and M.J. Stern. Formal modeling of C. elegans development: A scenario based approach. In C. Priami (Ed.). 1st Workshop on Computational Methods in Systems Biology, Lecture Notes in Computer Science 2602, Springer-Verlag, 4–20, 2003.Google Scholar
  15. 15.
    I. Maeda, Y. Kohara, M. Yamamoto, and A. Sugimoto. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol., 11(3):171–6, 2001.CrossRefGoogle Scholar
  16. 17.
    F. Piano, A.J. Schetter, M. Mangone, L. Stein, and K.J. Kemphues. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol., 10(24):1619–22, 2000.CrossRefGoogle Scholar
  17. 18.
    D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess (Eds.). C. elegans II. Cold Spring Harbor Laboratory Press, Plainview NY, 1997.Google Scholar
  18. 19.
    P.W. Sternberg and H.R. Horvitz. Pattern formation during vulval development in C. elegans. Cell, 44(5):761–72, 1986.CrossRefGoogle Scholar
  19. 20.
    M. Wang and P.W. Sternberg. Pattern formation during C. elegans vulval induction. Curr.Top.Dev.Biol., 51:189–220,2001.CrossRefGoogle Scholar
  20. 21.
    A.S. Wilkins (Ed.). Modelling complex biological systems: a special issue. BioEssays, 24, Wiley Periodicals, 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Na’aman Kam
    • 1
  • David Harel
    • 1
  • Hillel Kugler
    • 1
  • Rami Marelly
    • 1
  • Amir Pnueli
    • 1
  • Jane Albert Hubbard
    • 2
  • Michael J. Stern
    • 3
  1. 1.Dept. of Computer Science and Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Dept. of BiologyNew York UniversityNew YorkUSA
  3. 3.Dept. of GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations