Skip to main content

Mounting at the Nanoscale by Addressing Nanostructured Biological Templates — Another Packaging Strategy for Nanoscaled Electronics?

  • Conference paper
MicroNano Integration

Part of the book series: VDI-Buch ((VDI-BUCH))

Abstract

The typical dimensions of components attractive for micro-and opto-electronic applications are continuously shrinking Obviously, not all components (e.g. band-gap structures like quantum dots or nanotubes) can be produced with lithographic IC compatible technologies just in place of use. Different self-assembly procedures supported also by external force fields have been proposed to handle individual small entities at the microscale. ‘lb evaluate basic self-assembly techniques for “untouchable” microparts, we have chosen purple membrane (PM) sheets as model components. Their basic protein unit bacteriorhodopsin can be anchored by chemical linkers and thus the membrane sheets (∼ 1 μm diameter, 5 nm thick) can be specifically attached to any desired surface. A genetic variant (D36C) of the protein can be linked directly through the introduced thiolfunction to gold surfaces. The 2-dimensional crystalline PM sheets may be of interest for optoelectronic sensing but also as a biomimetic nano-templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reichl, H.: The e-Grain system - using fine electronic particles. Fraunhofer magazine. Research, technology and innovation 2002 (1) 14–15 (http://www.faunhofer.de/english/publications/df/df2002/magazinel-2002-14.pdf/english/publications/df/df2002/magazinel-2002-14.pdf

    Google Scholar 

  2. Tans, S.J.; Verschueren, A.R.M.; Dekker, C.: Room-temperature transistor based on single carbon nanotube. Nature 1998 393 49–52;

    Article  Google Scholar 

  3. Yang, S.M.; Miguez, H.; Ozin, G.A.: Opal circuits of light - planarized microphotonic crystal chips. Adv. Funct. Mater. 2002 12 425–431;

    Article  Google Scholar 

  4. Choi, W.B.; Cheong, B.-H.; Kim, J.J.; Chu, J.; Bae, E.: Selective growth of carbon nanotubes for nanoscale transistors. Adv. Funct. Mater. 2003 13 80–84;

    Article  Google Scholar 

  5. Krupke, R.; Hennrich, F.; v. Löhneysen, H.; Kappes, M.M.: Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes Science 2003 301 344–347;

    Google Scholar 

  6. Hsieh, S.; Meltzer, S.; Wang, C.R.Ch; Requicha, A.A.G.; Thompson, M.E.; Koel, B.E.: Imaging and manipulation of gold nanorods with atomic force microscope. J.Phys.Chem.B 2002 106 231–234;

    Article  Google Scholar 

  7. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials Nature 1996 382 607–609;

    Article  Google Scholar 

  8. Esener, S.C.; Hartmann, D.; Heller, M.J.; Cable, J.M.: DNA assisted micro-assembly: a heterogeneous integration technology for optoelectronics. Proc. SPIE CR70 1998 113–140;

    Google Scholar 

  9. Heller, M.J.; Edman, C.; Esener, S.: Electric Field Assisted Self-Assembly of DNA Structures: A Potential Nanofabrication Technology. The Sixth Foresight Conference on Molecular Nanotechnology. November 12–15, 1998;

    Google Scholar 

  10. Boncheva, M.; Gracias, D.H.; Jacobs, H.; Whitesides, G.M.: Biomimetic self-assembly of a functional asymmetrical electronic device. PNAS USA 2002 99 4937–4940;

    Article  Google Scholar 

  11. Whitesides, G.M.; Grzybowski, B.: Self-assembly at all scales. Science 2002 295 2418–2421;

    Article  Google Scholar 

  12. Whitesides, G.M.; Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic and macroscopic components. PNAS USA 2002 99 4769–4774;

    Article  Google Scholar 

  13. Gracias, D.H.; Tien, J.; Breen, T.L.; Hsu, C.; Whitesides, G.M.: Forming electrical networks in three-dimensions by self-assembly. Science 2000 289 1170–1172;

    Article  Google Scholar 

  14. Jacobs, H.O.; Tao, A.R.; Schwartz, A.; Gracias, D.H.; Whitesides, G.M.: Fabrication of a cylindrical display by patterned assembly. Science 2002 296 323–325;

    Article  Google Scholar 

  15. Lee, S.W.; McNally, H. A.; Guo, D.; Pingle, M.; Bergstrom, D. E.; Bashir, R.: Electric-Field-Mediated Assembly of Silicon Islands Coated with Charged Molecules. Langmuir 2002 18 3383–3386;

    Article  Google Scholar 

  16. O’Riordan, A.; Redmond, G.; Dean, T.; Pez, M.: Field-configured self-assembly: manufacturing at the mesoscale. Materials Science and Engineering 2003 C 23 3–6

    Article  Google Scholar 

  17. Xia, Y.; Whitesides, G.M.: Soft Lithography. Angew. Chem. Int. Ed. 1998 37 550–575;

    Article  Google Scholar 

  18. Oesterhelt, D. and Stoeckenius, W: Rhodopsin-like protein from the purple membrane of Halobacterium halobium Nature New Biol. 1971 233 149–152;

    Google Scholar 

  19. Oesterhelt, D.; Bräuchle, C.; Hampp, N.: Bacteriorhodopsin: a biological material for information processing. Q. Rev. Biophys.1991 24 425–478;

    Article  Google Scholar 

  20. Khodonov, A.A.; Demina, O.V.; Khitrina, L.V.; Kaulen, A.D.; Silfsten, P.; Parkkinen, S.; Parkkinen, J.; Jaaskelainen, T.: Modified bacteriorhodopsins as a basis for new optical devices. Sensors and Actuators B 1997 38–39 38–39;

    Article  Google Scholar 

  21. Choi, H.-G.; Jung, W.-L.; Min, J.; Lee, W.H.; Choi, J.-W.: Color image detection by biomolecular photoreceptor using bacteriorhodopsin-based complex LB films. Biosensors & Biolelctronics 2001 16 925–935;

    Article  Google Scholar 

  22. Chen, D.-I.; Lu, Y. j.; Sui, S.-f.; Xu, B.; Hu, K.-s.: Oriented Assembly of Purple Membrane on Solid Support, Mediated by Molecular Recognition J. Phys. Chem.B. 2003 107 3598–3605

    Article  Google Scholar 

  23. Govindjee, R.; Imasheva, E.S.; Misra, S.; Balashov, S.P.; Ebrey, T.G.; Chen, N.; Menick, D.R.; Crouch, R.K.: Mutation of a surface residue, lysine-129, reverses the order of proton release and uptake in bacteriorhodopsin; guanidine hydrochloride restores it. Biophys. J. 1997 72 886–898;

    Article  Google Scholar 

  24. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M., Henderson, R.: Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 1996 259 393–421;

    Article  Google Scholar 

  25. Martz, E.: Protein Explorer: Easy Yet Powerful Macromolecular Visualization. Tt’ends in Biochemical Sciences, 2002 27 107–109.http://proteinexplorer.org

    Article  Google Scholar 

  26. Wang, J.; Kenseth, J.R.; Jones, V.W.; Green, J.-B.D.; McDermott, M.T.; Porter, M.D.: SFM-tip-assisted hydrolysis of a dithiobis(succinimido undecanoate) monolayer chemisorbed on a Au(111) surface. J. Am. Chem. Soc. 1997 119 12796–12799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiedler, S., Zwanzig, M., Fischer, T., Hampp, N. (2004). Mounting at the Nanoscale by Addressing Nanostructured Biological Templates — Another Packaging Strategy for Nanoscaled Electronics?. In: Knobloch, H., Kaminorz, Y. (eds) MicroNano Integration. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18727-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18727-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62265-6

  • Online ISBN: 978-3-642-18727-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics