Advertisement

Tumorbiologie und molekulargenetische Aspekte

  • M. Sarbia
  • W. Müller
Part of the Onkologie aktuell book series (ONKAKTUELL)

Zusammenfassung

Wegweisend für das pathogenetische Verständnis der Karzinogenese im Gastrointestinaltrakt war das 1990 von Fearon und Vogelstein publizierte Modell der genetischen Veränderungen, die zur Entstehung des Kolonkarzinoms führen. Dieses wurde in den folgenden Jahren zum Vorbild bei der Aufklärung genetischer Veränderungen auch bei zahlreichen anderen Tumortypen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bektas N, Donner A, Wirtz C et al. (2000) Allelic loss involving the tumor suppressor genes APC and MCC and expression of the APC protein in the development of dysplasia and carcinoma in Barrett esophagus. Am J Clin Pathol 114:890–895PubMedCrossRefGoogle Scholar
  2. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF Jr (1991) Rising incidence of adenocarcinoma of the esophagus and gastric cardia. J Am Med Assoc 265:1287–1289CrossRefGoogle Scholar
  3. Cordon-Cardo C (1995) Review-Mutation of cell cycle regulators. Am J Pathol 147:545–560PubMedGoogle Scholar
  4. Fitzgerald RC, Triadafilopoulos G (1998) Recent developments in the molecular characterization of Barrett’s esophagus. Dig Dis 16: 63–80PubMedCrossRefGoogle Scholar
  5. Gabbert HE, Müller W, Schneiders A et al. (1996) Prognostic value of E-cadherin expression in 413 gastric carcinomas. Int J Cancer 69: 184–189PubMedCrossRefGoogle Scholar
  6. Geddert H, Zeriouh M, Wolter M, Heise JW, Gabbert HE, Sarbia M (2001) C-erb B-2 gene amplification and protein overexpression in Barrett’s carcinoma and its precursor lesions. J Pathol 118/1:60–66Google Scholar
  7. Grabsch H, Takeno S, Noguchi T, Hommel G, Gabbert HE, Müller W (2001) Different pattern of β-catenin expression in gastric carcinomas-relationship with clinicopathological parameters and prognostic outcome. Histopathology 39/2:141–149CrossRefGoogle Scholar
  8. Hamilton SR, Aaltonen LA (eds) (2000) Pathology and genetics-tumours of the digestive system. IARC Press, LyonGoogle Scholar
  9. Kawakami K, Brabender J, Lord RV et al. (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 22:1805–1811CrossRefGoogle Scholar
  10. Lam AK (2000) Molecular biology of esophageal squamous cell carcinoma. Crit Rev Oncol Hematol 33:71–90PubMedCrossRefGoogle Scholar
  11. Lewin KJ, Appelman HD (eds) (1996) Atlas of tumor pathology:Tumors of the esophagus and stomach. Armed Forces Institute of Pathology, Washington, D. C.Google Scholar
  12. Menin C, Santacattarina M, Zambon A et al. (2000) Anomalous transcripts and allelic deletions of the FHIT gene in human esophageal cancer. Cancer Genet Cytogenet 119:56–61PubMedCrossRefGoogle Scholar
  13. Montesano R, Hollstein M, Hainaut P (1996) Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer 69:225–235PubMedCrossRefGoogle Scholar
  14. Müller W, Noguchi T, Wirtz HC, Hommel G, Gabbert HE (1999) Expression of cell-cycle regulatory proteins cyclin D1, cyclin E and their inhibitor p21 WAF1/CIP1 in gastric cancer. J Pathol 189:186–193PubMedCrossRefGoogle Scholar
  15. Noguchi T, Müller W, Wirtz HC, Willers R, Gabbert HE (1999) FHIT gene in gastric cancer:association with tumor progression and prognosis. J Pathol 188:378–381PubMedCrossRefGoogle Scholar
  16. Ruol A, Parenti A, Zaninotto G et al. (2000) Intestinal metaplasia is the probable common precursor of adenocarcinoma in Barrett esophagus and adenocarcinoma of the gastric cardia. Cancer 88: 2520–2528PubMedCrossRefGoogle Scholar
  17. Sarbia M, Arjumand J, Wolter M, Reifenberger G, Heep H, Gabbert HE (2001) Frequent c-myc amplification in high-grade dysplasia and adenocarcinoma in Barrett’s esophagus. Am J Pathol 115(6): 835–840CrossRefGoogle Scholar
  18. Sarbia M, Loberg C, Wolter M et al. (1999) Expression of Bcl-2 and amplification of c-myc are frequent in basaloid squamous cell carcinomas of the esophagus. Am J Pathol 155:1027–1032PubMedCrossRefGoogle Scholar
  19. Shim YH, Kang GH, Ro JY (2000) Correlation of p1 6 hypermethylation with p1 6 protein loss in sporadic gastric carcinomas. Lab Invest 80: 689–695PubMedCrossRefGoogle Scholar
  20. Tahara E (1995) Genetic alterations in human gastrointestinal cancers. Cancer 75:1410–1417PubMedCrossRefGoogle Scholar
  21. Taniere P, Martel-Planche G, Maurici D et al. (2001) Molecular and clinical differences between adenocarcinomas of the esophagus and of the gastric cardia. Am J Pathol 158:33–40PubMedCrossRefGoogle Scholar
  22. van Dekken H, Geelen E, Dinjens WNM et al. (1999) Comparative genomic hybridization of cancer of the gastresophageal junction: deletion of 14q31-32. 1 discriminates between esophageal (Barrett’s) and gastric cardia adenocarcinomas. Cancer Res 59:748–752PubMedGoogle Scholar
  23. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310PubMedCrossRefGoogle Scholar
  24. vonBrevern M, Hollstein M, Risk JM et al. (1998) Loss of heterozygosity in sporadic oesophageal tumors in the tylosis oesophageal cancer (TOC) gene region of chromosome 17q. Oncogene 17:2101–2105CrossRefGoogle Scholar
  25. Yokozaki H, Yasui W, Tahara E (2001) Genetic and epigenetic changes in stomach cancer. Int Rev Cytol 204:49–95PubMedCrossRefGoogle Scholar
  26. Zhuang Z, Vortmeyer AO, Mark EJ et al. (1996) Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res 56: 1961–1964PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Sarbia
    • 1
  • W. Müller
    • 1
  1. 1.Institut für PathologieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations