Skip to main content

Kontrast und Signal-zu-Rausch-Verhältnis

  • Chapter
  • 243 Accesses

Zusammenfassung

Die Information in einem MR-Bild wird durch Variation eines einzigen Parameters über der Fläche, dem Grauwert, dargestellt. Dieser ist proportional zum Signalpegel am jeweiligen Ort, wird Kontrast genannt und ist das Ergebnis von drei Eigenschaften des Gewebes: der Protonendichte ρ, der Spin-Gitter-Relaxationszeit T 1 und der Spin-Spin-Relaxationszeit T 2. Deshalb ist es wichtig, wie dieser Kontrast bei einer bestimmten Sequenz die Gewebeeigenschaft charakterisiert, um ein diagnostisch auswertbares Bild zu erhalten. Das ist das Hauptanliegen von Abschn. 6.2. Abschnitt 6.3 beinhaltet einen Überblick über die physikalischen Grundlagen der Relaxation. Dieser Überblick erhebt zwar keinen Anspruch auf Vollständigkeit (hierfür steht eine exzellente Literaturauswahl zur Verfügung [1, 4.2]), aber ist notwendig, um zwei Techniken zu erklären, die einen Einfluss auf die Größe der Relaxationszeitkonstanten ausüben. Es sind zum einen der Magnetisierungsübertragungskontrast (magnetization transfer, Abschn. 6.3.3) und zum anderen Kontrastmittel (Abschn. 6.3.4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Relaxation Effects in Nuclear Magnetic Resonance Absorption, Bloembergen, Pound, Purcel, Phys. Rev. 73, p. 679, 1948

    Article  ADS  Google Scholar 

  2. Magnetic Resonance Imaging, D. Stark, W.G. Bradley (editors), Mosby Year Bock, St. Louis, 1992

    Google Scholar 

  3. Simultaneous Measurement of Regional Blood Volume and Capillary Water Permeability with Intravascular MR Contrast Agents, C. Schwarzbauer, S.P. Morissey, R. Deichmann, H. Adolf, U. Noth, K.V. Toyka, A. Haase, Proc. ISMRM, New York 1996, p. 1577

    Google Scholar 

  4. Design and Implementation of Magnetization Transfer Sequences for Clinical Use, J.V. Hajnal, C.J. Bandom, A. Oatridge, L.R. Young, G.M. Bydder J. of Computer Assisted Tomography 16, pp. 7–18, 1992

    Article  Google Scholar 

  5. Turbo-Mix T 1 Measurements and MTC exchange Rate Kfor Calculations, R.W. de Boer, A. Eleveld, SMRM Abstracts, 1993, p. 175

    Google Scholar 

  6. Quantitative 1H Magnetization Transfer Imaging in Vivo, J. Eng, T.L. Ceckler, R.S. Balaban, Magn. Res. in Med. 17, pp. 304–314, 1991

    Article  Google Scholar 

  7. Magnetization Transfer Contrast with Periodic Pulsed Saturation, H.N. Young, A.M. Aisen, Radiology 183, pp. 209–214, 1992

    Google Scholar 

  8. Magnetization Transfer Contrast, R.W. de Boer, Medica Mundi 40/2, pp. 64–83, 1992

    Google Scholar 

  9. Improved Time of Flight Angiography of the Brain with Magnetization Transfer Contrast, R.E. Edelman, S.S. Ahn, D. Chien, Wei Li, A. Goldman, M. Mantello, J. Kramer, J. Kleefield, Radiology 184, pp. 395–399, 1992

    Google Scholar 

  10. MR enhancement of Brain Lesions, Increased Contrast Dose Compared with Magnetization Transfer, M. Knauth, M. Forsting, M. Hartmann, S. Heiland, T. Bolder, K. Sartor, AJNR 17, pp. 1853–1859, 1996

    Google Scholar 

  11. Magnetization Transfer Contrast in Multiple Scleroeis, R.I. Grossman, Ann. Nearology 36, Suppl: pp. 97–99, 1994

    Article  Google Scholar 

  12. Use of Magnetization Transfer for Improved Contrast on Gradient Echo MR Images of the Cervical Spine, D.A. Finelli, G.C. Hurst, B.A. Karaman, J.E. Simon, J.L. Duerk, E.M. Bellon, Radiology 193, pp. 165–171, 1994

    Google Scholar 

  13. Analysis of Water-Macromolecule Proton Magnetization Transfer in Articular Cartilage, D.K. Kim, T.L. Ceckler, V.C. Hascall, A. Calabro, R.S. Balaban, Magn. Res. in Med. 29(2), pp. 211–216, 1993

    Article  Google Scholar 

  14. Magnetic Resonance Imaging, D. Stark, W.G. Bradley (editors), Mosby Year Bock, St. Louis, 1992, Chapter 14

    Google Scholar 

  15. Basic Physics at MR. Contrast Agents and Maximization of Image Contrast, R.E. Hendrick, E.M. Haacke, J. Magn. Res. Im. 3, pp. 137–148, 1993

    Article  Google Scholar 

  16. The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, D.I. Hoult, R.E. Richards, J. Magn. Res. 24, p. 71, 1976

    Google Scholar 

  17. Resolution and Signal-to-Noise Relationships in NMR Imaging in the Human Body, J.M. Libove, J.R. Singer, J. Phys. E: Scientific Instruments 13, pp. 38–44, 1980

    Article  ADS  Google Scholar 

  18. Magnetic Resonance Imaging, Effects of Magnetic Field Strength, J. Hoenninger, B. McCasten, J. Watts, L. Kaufmann, Radiology 151, pp. 127–133, 1984

    Google Scholar 

  19. Improvement of SNR at low Fieldstrength using Mutually Decoupled Coils for Simultaneous NMR Imaging, C. Leussler, D. Holz, SMRM Abstracts, 1991, p. 724

    Google Scholar 

  20. Multifrequency Selective RF pulses for Multislice MR Imaging, S. Muller, Magn. Res. in Med. 6, pp. 364–371, 1988, and 10, pp. 145–155, 1989

    Article  Google Scholar 

  21. T l-Calculations, Combining Ratios and Least Squares, J.J.E. in den Kleef, J.J.M. Cuppen, Magn. Res. in Med. 5, pp. 513–524, 1987

    Article  Google Scholar 

  22. Protocols and Test Objects for the assessment of MRI Equipment, R.A. Lerski, D.W. McRobbie, J.D. Certaines, Magn. Res. Im. 6, pp. 195–199, 1988

    Article  Google Scholar 

  23. Age-Related Changes in Proton T 1 values of Normal Human Brain, R.G. Steen; S.A. Gronerneyer, J.S. Taylor, J. of Magn. Res. Im. 5, pp. 43–48, 1995

    Article  Google Scholar 

  24. Use of Fluid Attenuated Inversion Recovery (FLAIR) Pulse Sequences in MRI of the Brain, J.V. Hajnal, D.J. Bryant, L. Kosuboski, I.M. Pattany, B. de Ceane, P.D. Lewis, J.M. Pennock, A. Oatridge, L.R. Young, G.M. Bydder, J. Computer Aided Tomography 16, pp. 841–844, 1992

    Article  Google Scholar 

  25. MR Imaging of the Breast; Fast Imaging Sequences with and without the use of Gd-DPTA, W.A. Kaiser, E. Zeitler, Radiology 170, pp. 681–686, 1989

    Google Scholar 

  26. Pharmacokinetic Analysis of Gd-DTPA Enhancement in Dynamic; Three-Dimensional MRI of Breast Lesions, J.A. den Boer, R.K.K.M. Maenderop, J. Smink, G. Dornseiffen, P.W.A.A. Koch, J.H. Mulder, C.H. Slump, E.D.P. Volker, R.A.I. de Vos, J. of Magn. Res. Im. 7, pp. 702–715, 1997

    Article  Google Scholar 

  27. Magnetization Transfer Contrast (MTC) and Tissue Water Proton Relaxation in Vivo, S.D. Wolf, R.S. Balaban, Magn. Res. in Med. 10, pp. 135–144, 1989

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vlaardingerbroek, M.T., den Boer, J.A. (2004). Kontrast und Signal-zu-Rausch-Verhältnis. In: Magnetresonanzbildgebung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18697-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18697-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62252-6

  • Online ISBN: 978-3-642-18697-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics