Skip to main content

Physiologie der Koronardurchblutung

  • Chapter
Herzkrankheiten
  • 245 Accesses

Zusammenfassung

In diesem Kapitel werden die Regulationsmechanismen beschrieben, die der Abstimmung des Koronargefäßtonus und der myokardialen Perfusion unter physiologischen und pathophysiologischen Bedingungen unterliegen. Änderungen des koronaren Blutstroms unter verschiedenen pathophysiologischen Bedingungen werden im Detail diskutiert, z. B. während akuter myokardialer Ischämie, bei ischämischem Preconditioning, unter Reperfusionsbedingungen, beim Stunning, bei Hibernation sowie bei verschiedenen diagnostischen und therapeutisch-pharmakologischen Koronarinterventionen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Albro PC, Gould KL, Westcott RJ et al. (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol 42:751–760

    Article  CAS  Google Scholar 

  • Amrani M, Yacoub MH (1996) Endothelial function in myocardial protection. Curr Op Cardiol 11:559–563

    Article  CAS  Google Scholar 

  • Aversano T, Ouyang P, Silverman H (1991) Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine coronary circulation. Circ Res 69:618–622

    Article  PubMed  CAS  Google Scholar 

  • Bassenge E (1996) Endothelial function in different organs. Prog Cardiovasc Dis 9:209–228

    Article  Google Scholar 

  • Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165

    PubMed  CAS  Google Scholar 

  • Bassenge E, Schwemmer M (2002) Integrated coronary physiology and pathophysiology. In: Lanzer P, Topol E (eds) Panvascular medicine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bassenge E, Busse R, Pohl U(1987) Abluminal release and asymmetrical response of the rabbit arterial wall to endothelium-derived relaxing factor. Circ Res 61:1168–1173

    Google Scholar 

  • Bassenge E, Fink B, Schwemmer M (1999) Oxidative stress, vascular dysfunction and heart failure. Heart Failure Rev 4:133–145

    Article  CAS  Google Scholar 

  • Bauersachs J, Bouloumie A, Mulsch A et al. (1998) Vasodilator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl cyclase expression, and in Superoxide anion production. Cardiovasc Res 37:772–779

    Article  PubMed  CAS  Google Scholar 

  • Baumgart D, Ehring T, Kowallik P et al. (1993) Impact of a-adrenergic coronary vasoconstriction of the transmural myocardial blood flow distribution during humoral and neuronal adrenergic activation. Circ Res 73:869–886

    Article  PubMed  CAS  Google Scholar 

  • Beech DJ, Zhang H, Nakao K, Bolton TB (1993) K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br J Pharmacol 110:573–582

    Article  PubMed  CAS  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    PubMed  CAS  Google Scholar 

  • Bolli R, Jeroudi MO, Patel BS et al. (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial „stunning“ is a manifestation of reperfusion injury. Circ Res 65: 607–622

    Article  PubMed  CAS  Google Scholar 

  • Bolli R, Patel BS, Jeroudi MO et al. (1990) Iron-mediated radical reactions upon reperfusion contribute to myocardial „stunning“. Am J Physiol 259:H1901–H1911

    PubMed  CAS  Google Scholar 

  • Bristow MR, Ginsburg R, Gilbert EM. Hershberger RE (1987) Heterogeneous regulatory changes in cell surface membrane receptors coupled to a positive inotropic response in the failing human heart. Basic Res Cardiol 82(Suppl 2):369–376

    PubMed  Google Scholar 

  • Bünger R, Gwirtz P (1998) Coronary vasculature and endothelium. In: Chang J, Olsen ER, Prasad K, Sumpio BE (eds) Textbook of angiology. Springer, Berlin Heidelberg New York, pp 55–84

    Google Scholar 

  • Busse R, Fleming I (2000) Endothelium-derived hyperpolarizing factor and its interaction with NO. In: Ignarro LJ (ed) Nitric oxide. Academic Press, San Diego, pp 569–583

    Chapter  Google Scholar 

  • Chilian WM, Eastham CL, Layne SM, Marcus ML (1988) Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 31:17–38

    Article  PubMed  CAS  Google Scholar 

  • Cohen MV, Liu GS, Downey JM (1991) Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 84:341–349

    Article  PubMed  CAS  Google Scholar 

  • Duncker DJ, Bache RJ (2000) Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 86:87–110

    Article  PubMed  CAS  Google Scholar 

  • Duncker DJ, Schulz R, Ferrari R et al. (1998) „Myocardial stunning“ remai-ning questions. Cardiovasc Res 38:549–558

    Article  PubMed  CAS  Google Scholar 

  • Dupuis J (2000) Endothelin receptor antagonists and their developing role in cardiovascular therapeutics. Can J Cardiol 16:903–910

    PubMed  CAS  Google Scholar 

  • Eglen RM, Hegde SS, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function (review). Pharmacol Rev 48:531–565

    PubMed  CAS  Google Scholar 

  • Endo M, Hirosawa K, Kaneko N et al. (1976) Prinzmetal’s variant angina. Coronary arteriogram and left ventriculogram during angina attack induced by methacholine. N Engl J Med 294:252–255

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Ceconi C, Curello S et al. (1996) Left ventricular dysfunction due to the new ischémie outcomes: stunning and hibernation. J Cardiovasc Pharmacol 28(Suppl 1):S18–S26

    PubMed  CAS  Google Scholar 

  • Fishbein MC (1990) Reperfusion Injury. Clin Cardiol 13:213–217

    Article  PubMed  CAS  Google Scholar 

  • Fleming I, Busse R (1999) NO: the primary EDRF. J Mol Cell Cardiol 311: 5–14

    Article  Google Scholar 

  • Fleming I, Busse R (2000) Activation of NOS by Ca2+-dependent and Ca2+-independent mechanisms. In: Ignarro U (ed) Nitric oxide. Academic Press, San Diego, pp 621–632

    Chapter  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  • Gould KL (1999) Coronary artery stenosis and reversing atherosclerosis. Collapsing stenoses. Arnold, London, pp 79–92

    Google Scholar 

  • Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    Article  PubMed  CAS  Google Scholar 

  • Gregorini L, Marco J, Palombo C et al. (1998) Postischemic left ventricular dysfunction is abolished by alpha-adrenergic blocking agents. J Am Coll Cardiol 31:992–1001

    Article  PubMed  CAS  Google Scholar 

  • Gregorini L, Marco J, Kozakova M et al. (1999a) Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 99:482–490

    Article  PubMed  CAS  Google Scholar 

  • Gregorini L, Marco J, Palombo C et al. (1999b) Coronary flow reserve changes induced by alpha-1 and alpha-2 adrenergic blockade (ab-stract). Circulation 100(Suppl 1):l376–377

    Article  Google Scholar 

  • Gross GJ (1998) Recombinant cardiac ATP-sensitive potassium channels and cardioprotection. Circulation 98:1479–1480

    Article  PubMed  CAS  Google Scholar 

  • Hearse DJ (1991) Stunning: a radical review. Cardiovasc Drug Ther 5:853–876

    Article  CAS  Google Scholar 

  • Heusch G (1990) a-adrenergic mechanisms in myocardial ischemia. Circulation 81:1–13

    Article  PubMed  CAS  Google Scholar 

  • Heusch G, Deussen A (1984) Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6:378–383

    Article  PubMed  CAS  Google Scholar 

  • Heusch G, Rose J, Skyschally A et al. (1996) Calcium responsiveness in regional myocardial short-term hibernation and stunning in the in situ porcine heart. iInotropic responses to postextrasystolic potenziation and intracoronary calcium. Circulation 93:1556–1566

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Ammendola A, Schlossman J (2000) Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 113:1671–1676

    PubMed  CAS  Google Scholar 

  • Holtz J, Giesler M, Bassenge E (1983) Two dilatory mechanisms of antianginal drugs on epicardial coronary arteries in vivo: indirect, flowdependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 72:98–106

    PubMed  CAS  Google Scholar 

  • Holtz J, Förstermann U, Pohl U et al. (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169

    PubMed  CAS  Google Scholar 

  • Holtz J, Busse R, Sommer O, Bassenge E (1987) Dilation of epicardial arteries in conscious dogs induced by angiotensin-converting enzyme inhibition with enalaprilat. J Cardiovasc Pharmacol 9:348–355

    Article  PubMed  CAS  Google Scholar 

  • Houston DS, Shepherd JT, Vanhoutte PM (1986) Aggregating human platelets causes direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. Role of serotonin, thromboxane A2, and adenine nucleotides. J Clin Invest 78:539–544

    Article  PubMed  CAS  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S et al. (2000) Direct evidence for increased hydroxyl radicals originating from Superoxide in the failing myocardium. Circ Res 86:152–157

    Article  PubMed  CAS  Google Scholar 

  • Ignarro U, Cirino G, Napoli C (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34: 879–886

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi Y, Duncker DJ, Zhang J, Bache RJ (1998) ATP-sensitive K+-channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82:346–359

    Article  PubMed  CAS  Google Scholar 

  • Kloner RA, Hale S (1994) Cardiovascular applications of fluorocarbons in regional ischemia/reperfusion. Artif Cells Blood Substit Immobil Biotechnol 22:1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Kronemann N, Nockher WA, Busse R, Schini-Kerth VB (1999) Growth-inhibitory effect of cyclic GMP-and cyclic AMP-dependent vasodilators on rat vascular smooth muscle cells: effect on cell cycle and cyclin expression. Br J Pharmacol 126:349–357

    Article  PubMed  CAS  Google Scholar 

  • Lablanche JM, Bauters C, Leroy F, Bertrand M (1991) Vasomotor activity and coronary insufficiency (in French) (review). Arch Mal Coeur Vaiss 84(SuppM):69–74

    PubMed  Google Scholar 

  • Lamontagne D, König A, Bassenge E, Busse R (1992) Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J Cardiovasc Pharmacol 20:652–657

    Article  PubMed  CAS  Google Scholar 

  • Laxson DD, Homans DC, Bache RJ (1993) Inhibition of adenosine-mediated coronary vasodilation exacerbates myocardial ischemia during exercise. Am J Physiol 265:H1471–H1477

    PubMed  CAS  Google Scholar 

  • Lincoff M, Carliff R, Topol EJ (2000) Platelet glycoprotein llb/llla receptor blockade in coronary artery disease. J Am Coll Cardiol 35: 1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Maczewski M, Beresewicz A (2000) The role of endothelin, protein kinase C and guinea-pig hearts. J Mol Cell Cardiol 32:297–310

    Article  PubMed  CAS  Google Scholar 

  • Marumo T, Schini-Kerth VB, Busse R (1999) Vascular endothelial growth factor activates nuclear factor-kappa B and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 48:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Marzilli M, Sambuceti G, Fedele S, L’Abbate A (2000) Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina. J Am Coll Cardiol 35:327–334

    Article  PubMed  CAS  Google Scholar 

  • Maseri A, Créa F, Kaski JC, Davies G (1992) Mechanisms and significance of cardiac ischémic pain (review). Prog Cardiovasc Dis 35:1–18

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Catena TG, Van der Heide RS et al. (1993) Cardiac protection by ischaemic preconditioning is not mediated by myocardial stunning. Cardiovasc Res 27:585–592

    Article  PubMed  CAS  Google Scholar 

  • Mcmurray J, Chopra M (1991) Influence of ACE inhibitors on free radicals and reperfusion injury: pharmacological curiosity or therapeutic hope? Br J Clin Pharmacol 31:373–379

    Article  PubMed  CAS  Google Scholar 

  • Mellemkjaer S, Nielsen-Kudsk JE (2000) Glibenclamide inhibits relaxation of isolated porcine coronary arteries under conditions of impaired glycolysis. Eur J Pharmacol 270:307–312

    Google Scholar 

  • Miller WL, Belardinelli L, Bacchus AN et al. (1979) Canine myocardial adenosine and lactate production, oxygen consumption, and coronary blood flow during stellate ganglia stimulation. Circ Res 45:708–718

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi T, Masaki T (1999) Pathophysiology of endothelin in the cardiovascular system. Ann Rev Physiol 61:391–415

    Article  CAS  Google Scholar 

  • Monge JC (1998) Neurohormonal markers of clinical outcome in cardiovascular disease: is endothelin the best one? J Cardiovasc Pharmacol 32(Suppl 2):S36–S42

    PubMed  CAS  Google Scholar 

  • Pasquet A, Robert A, D’Hondt AM et al. (1999) Prognostic value of myocardial ischemia and viability in patients with chronic left ventricular ischémie dysfunction [published erratum appears in Circulation 100:1584]. Circulation 100:141–148

    Article  PubMed  CAS  Google Scholar 

  • Paulus WJ, Vantrimpont PJ, Shah A (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92: 2119–2126

    Article  PubMed  CAS  Google Scholar 

  • Pepine CJ, Cohn PF, Deedwania PC et al. (1994) Effects of treatment on outcome in mildly symptomatic patients with ischemia during daily life. The Atenolol Silent Ischemia Study (ASIST). Circulation 90: 762–768

    Article  PubMed  CAS  Google Scholar 

  • Pijls NH, Kern MJ, Yock PG, De Bruyne B (2000) Practice and potenzial pitfalls of coronary pressure measurement. Cathet Cardiovasc Diagn 49:1–16

    Article  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pfluegers Arch 440:653–656

    Article  CAS  Google Scholar 

  • Prinzmetal M, Kennamer R, Merliss R et al. (1959) Angina pectoris I. A variant form of angina pectoris: preliminary report. Am J Med 27: 375–388

    Article  PubMed  CAS  Google Scholar 

  • Quyyumi AA (1998) Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med 105:32S–39S

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar AR, Prasad K, Mantha SV et al. (1999) Protection of coronary angioplasty-induced oxidative stress by Isovue used during angioplasty. Can J Cardiol 15:989–998

    PubMed  CAS  Google Scholar 

  • Restorff W von, Bassenge E (1976) Evaluation of a neurogenic rapid coronary dilatation during an excitatory response in conscious dogs. Pfluegers Arch 367:157–164

    Article  Google Scholar 

  • Robertson RM, Wood AJJ, Vaughn WK, Robertson D (1982) Exacerbation of vasotonic angina pectoris by propranolol. Circulation 65:281–290

    Article  PubMed  CAS  Google Scholar 

  • Roeske WR, Yamamura HI (1996) Autonomie control of the myocardium: muscarinic cholinergic receptor mechanisms. In: Shepherd JT, Vatner SF (eds) Nervous control of the heart. Harwood Academic Publishers, Amsterdam, pp 111-137

    Google Scholar 

  • Roux S, Breu V, Ertel SI, Clozel M (1999) Endothelin antagonism with bosentan: a review of potenzial applications. J Mol Med 77: 364–376

    Article  PubMed  CAS  Google Scholar 

  • Rowe GG (1970) Inequalities of myocardial perfusion in coronary artery disease („coronary steal“). Circulation 42:193–194

    Article  PubMed  CAS  Google Scholar 

  • Safi AM, Kwan TW (2000) „No-reflow“ phenomenon following percutaneous coronary intervention: an uncommon complication. Angiology 51:247–252

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Miyauchi T, Kobayashi M et al. (1996) Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384:353–355

    Article  PubMed  CAS  Google Scholar 

  • Sakata N, Imanaga Y, Meng J et al. (1999) Increased advanced glycation end products in atherosclerotic lesions of patients with end-stage renal disease. Atherosclerosis 142:67–77

    Article  PubMed  CAS  Google Scholar 

  • Schaper J, Schaper W (2000) Angiogenesis and coronary collateral circulation. In: Sperelakis N, Kurachi Y, Terzic A, Cohen MV (eds) Heart physiology and pathophysiology, 4th edn. Academic Press, pp 1031–1043

    Google Scholar 

  • Schaper W, Gorge G, Winkler B, Schaper J (1988) The collateral circulation of the heart. Prog Cardiovasc Dis 31: 57–77

    Article  PubMed  CAS  Google Scholar 

  • Schlossman J, Ammendola A, Ashman K et al. (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase l-beta. Nature 404:197–201

    Article  Google Scholar 

  • Schwarz ER, Schaper J, Altehoefer C et al. (1996) Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol 27:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Schwemmer M, Bassenge E (2003) New Approaches to Overcome Tolerance to Nitrates. Cardiovasc Drugs Ther 17:159–173

    Article  PubMed  CAS  Google Scholar 

  • Shan K, Bick RJ, Poindexter BJ et al. (2000) Altered adrenergic receptor density in myocardial hibernation in humans: a possible mechanism of depressed myocardial function. Circulation 102:2599–2606

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H (2000) Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Cire J 64:1–12

    Article  CAS  Google Scholar 

  • Sydow K, Daiber A, Oelze M et al (2004) Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest 113:482–489

    PubMed  CAS  Google Scholar 

  • Takehana K, Ruiz M, Petruzella FD (2000) Response to incremental doses of dobutamine early after reperfusion is predictive of the degree of myocardial salvage in dogs with experimental acute myocardial infarction. J Am Coll Cardiol 35:1960–1968

    Article  PubMed  CAS  Google Scholar 

  • Telemaque S, Emoto N, deWit D, Yanagisawa M (1998) In vivo role of endothelin-converting nzyme-1 as examined by adenovirus-mediated overexpression in rats. J Cardiol Pharmacol 31(Suppl 1): S548–S550

    Article  CAS  Google Scholar 

  • Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85:659–665

    Article  PubMed  CAS  Google Scholar 

  • Topol EJ, Ellis SG (1991) Coronary collaterals revisited. Accessory pathway to myocardial preservation during infarction. Circulation 83: 1084–1086

    Article  PubMed  CAS  Google Scholar 

  • Van den Heuvel AF, Van Gilst WH, Van Veldhuisen DJ (1997) Long-term anti-ischemic effects of angiotensin-converting enzyme inhibition in patients after myocardial infarction. The Captopril and Thrombolysis Study (CATS) Investigators. J Am Coll Cardiol 30:400–405

    Article  PubMed  Google Scholar 

  • White RE, Kryman JP, El Mowafy AM et al. (2000) cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells. Circ Res 86:897–905

    Article  PubMed  CAS  Google Scholar 

  • Winniford MD, Filipchuk N, Hillis LD (1983) Alpha-adrenergic blockade for variant angina: a long-term, double-blind, randomized trial. Circulation 67:1185–1188

    Article  PubMed  CAS  Google Scholar 

  • Yasue H, Touyama M, Shimamoto M et al. (1974) Role of autonomie nervous system in the pathogenesis of Prinzmetal’s variant form of angina. Circulation 50:534–539

    Article  PubMed  CAS  Google Scholar 

  • Yasue H, Touyama M, Kato H et al. (1976) Prinzmetal’s form of angina as a manifestation of alpha-adrenergic receptor-mediated coronary artery spasm: documentation by coronary angiography. Am Heart J 91:148–155

    Article  PubMed  CAS  Google Scholar 

  • Zeiher AM, Drexler H, Wollschläger H, Saurbier B, Just HJ (1989) Coronary vasomotion in response to sympathetic stimulation in humans — importance of the functional integrity of the endothelium. J Am Coll Cardiol 14:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Zeiher AM, Drexler H, Wollschläger H, Just HJ (1991) Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunc-tion with different early stages of coronary atherosclerosis. Circulation 83:391–401

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Hintze TH, Kaley G (1996) Neural regulation of coronary vascular resistance: role of nitric oxide in reflex cholinergic coronary vasodilation in normal and pathophysiologic states. EXS 76:1–19

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bassenge, E. (2004). Physiologie der Koronardurchblutung. In: Roskamm, H., Neumann, FJ., Kalusche, D., Bestehorn, HP. (eds) Herzkrankheiten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18649-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18649-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62220-5

  • Online ISBN: 978-3-642-18649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics