CT for Assessment of Ventilation Distribution

  • Edwin J. R. van Beek
Part of the Medical Radiology book series (MEDRAD)


The assessment of ventilation distribution is an important clinical parameter for many respiratory disorders. It yields additional information compared to pulmonary function tests, as morphological changes and regional distribution of disease can be visualized. Furthermore, dynamic assessment using paired inspiratory and expiratory imaging is capable of predicting lung function. Thus, ventilation computed tomography (CT) aims to determine the distribution of inspired air in a quantitative, time-resolved and regional fashion. The amount of air in the distal airways will result in changes in density, allowing quantification of air distribution on a regional basis and the assessment of small airway diseases as in spired air becomes trapped at expiration. It is this additional information that makes imaging of ventilation distribution so valuable.


Pulmonary Function Test Spiral Compute Tomography High Resolution Compute Tomography Dynamic Compute Tomography Electron Beam Compute Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa H, Webb WR (1998) Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis. Am J Roentgenol 206:89–94Google Scholar
  2. Arakawa H, Webb WR, McCowin M, et al. (1998) Inhomogenous lung attenuation at thin-section CT: diagnostic value of expiratory scans. Radiology 206:89–94PubMedGoogle Scholar
  3. Bartz RR, Stern EJ (2000) Airways obstruction in patients with sarcoidosis. Expiratory CT scan findings. J Thorac Imaging 15:285–289PubMedCrossRefGoogle Scholar
  4. Bayat S, Le Duc G, Porra L, et al. (2001) Quantitative functional lung imaging with synchrotron radiation using inhaled xenon as contrast agent. Phys Med Biol 46:3287–3299PubMedCrossRefGoogle Scholar
  5. Bhalla M, Naidich DP, McGuinness G, et al. (1996) Diffuse lung disease: bassessment with helical CT-preliminary observations of the role of maximum and minimum intensity projection images. Radiology 200:341–347PubMedGoogle Scholar
  6. Bongaerts AHH, Sheedy II PF (1999) Electron beam tomography and pulmonary thromboembolism. In: Oudkerk M, Beek EJR van, Cate JW ten (eds) Pulmonary embolism. Blackwell, Berlin, pp 226–249Google Scholar
  7. Brasch RC, Gould RG, Gooding CA, Ringertz HG, Lipton MJ (1987) Upper airway obstruction in infants and children: evaluation with ultrafast CT. Radiology 165:459–466PubMedGoogle Scholar
  8. Brody AS, Kuhn JP, Seidel FG, Brodsky LS (1991) Airway evaluation in children with use of ultrafast CT: pitfalls and recommendations. Radiology 178:181–184PubMedGoogle Scholar
  9. Chen D, Webb WR, Storto ML, et al. (1998) Assessment of air trapping using postexpiratory high-resolution computed tomography. J Thorac Imaging 13:135–143PubMedCrossRefGoogle Scholar
  10. Cullen SC, Gross EG (1951) Anesthetic properties of Xenon in animals and human beings with additional observation on Krypton. Science 113:580–581PubMedCrossRefGoogle Scholar
  11. Flohr T, Prokop M, Becker C, et al. (2002) A retrospectively ECG-gated multislice spiral CT scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage. Eur Radiol 12:1497–1503PubMedCrossRefGoogle Scholar
  12. Foley WD, Haughton VM, Schmidt J, Wilson CR (1978) Xenon contrast enhancement in computed body tomography. Radiology 129:219–220PubMedGoogle Scholar
  13. Furukawa M, Kashiwagi S, Matsunaga N, Suzuki M, Kishimoto K, Shirao S (2002) Evaluation of cerebral perfusion parameters measured by perfusion CT in chronic cerebral ischemia: comparison with xenon CT. J Comput Assist Tomogr 26:272–278PubMedCrossRefGoogle Scholar
  14. Galvin JR, Rooholamini SA, Stanford W (1989) Obstructive sleep apnea: diagnosis with ultrafast CT. Radiology 171:775–778PubMedGoogle Scholar
  15. Gevenois PA, Martelaer V de, De Vuyst P, Zanen J, Yernault JC (1995) Comparison of comupted density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 152:653–657PubMedGoogle Scholar
  16. Gevenois PA, De Vuyst P, Sy M, et al. (1996) Pulmonary emphysema: quantitative CT during expiration. Radiology 199:825–829PubMedGoogle Scholar
  17. Gierada, DS, Yusen RD, Pilgram TK, et al. (2001) Repeatability of quantitative CT indexes of emphysema on patients evaluated for lung volume reduction surgery. Radiology 220:448–454PubMedGoogle Scholar
  18. Gleeson FV, Traill ZC, Hansell DM (1996) Evidence on expiratory CT scans of small airway obstruction in sarcoidosis. Am J Roentgenol 166:1052–1054Google Scholar
  19. Gotway MB, Lee ES, Reddy GP, Golden JE, Webb WR (2000) Low-dose, dynamic, expiratory thin-section CT of the lungs using a spiral CT scanner. J Thorac Imaging 15:168–172PubMedCrossRefGoogle Scholar
  20. Gur D, Drayer BP, Borovetz HS, Griffith BP, Hardesty RL, Wolfson SK (1979) Dynamic computed tomography of the lung: regional ventilation measurements. J Comput Assist Tomogr 3:749–753PubMedGoogle Scholar
  21. Gur D, Shabason L, Borovetz HS, et al. (1981) Regional pulmonary ventilation measurements by xenon enhanced dynamic computed tomography: an update. J Comput Assist Tomogr 5: 678–683PubMedCrossRefGoogle Scholar
  22. Hansell DM, Wells AU, Rubens MB, et al. (1994) Bronchiectasis: functional significance of areas of decreased attenuation at expiratory CT. Radiology 193:369–374PubMedGoogle Scholar
  23. Herbert DL, Gur D, Shabason L, et al. (1982) Mapping of human local pulmonary ventilation by xenon enhanced computed tomography. J Comput Assist Tomogr 6:1088–1093PubMedCrossRefGoogle Scholar
  24. Heremans A, Verschakelen JA, Van Fraeyenhoven L, Demedts M (1992) Measurement of lung density by means of quantitative CT scanning: a study of correlations with pulmonary function tests. Chest 102: 805–811PubMedCrossRefGoogle Scholar
  25. Hoffman, EA, Tajik JK, Kugelmass SD (1995) Matching pulmonary structure and perfusion via combined dynamic multislice CT and thin-slice high-resolution CT. Comput Med Imaging Graph 19:101–112PubMedCrossRefGoogle Scholar
  26. Hu S, Hoffman EA, Reinhardt JM (2001) Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20:490–498PubMedCrossRefGoogle Scholar
  27. Hunsaker AR, Ingenito IP, Reilly JJ, Costello P (2002) Lung volume reduction surgery for emphysema: correlation of CT and V/Q imaging with physiologic mechanisms of improvement in lung function. Radiology 222:491–498PubMedCrossRefGoogle Scholar
  28. Im JG, Kim SH, Chung MJ, Koo JM, Han MC (1996) Lobular low attenuation of the lung parenchyma on CT: evaluation of 48 patients. J Comput Assist Tomogr 20:752–762CrossRefGoogle Scholar
  29. Johnson JL, Kramer SS, Mahboubi S (1998) Air trapping in children: evaluation with dynamic lung densitometry with spiral CT. Radiology 206:95–101PubMedGoogle Scholar
  30. Kalender WA, Rienmuller R, Seissler W, et al. (1990) Measurement of pulmonary parenchymal attenuation: use of Spirometric gating with quantitative CT. Radiology 175:265–268PubMedGoogle Scholar
  31. Kalender WA, Fichte H, Bautz W, et al. (1991) Semiautomatic evaluation procedures for quantitative CT of the lung. J Comput Assist Tomogr 15:248–255PubMedCrossRefGoogle Scholar
  32. Kauczor HU, Heussel CP, Fischer B, Klamm R, Mildenberger P, Thelen M (1998) Assessment of lung volumes using helical CT at inspiration and expiration: comparison with pulmonary function tests. Am J Roentgenol 171:1091–1095Google Scholar
  33. Kauczor HU, Hast J, Heussel CP, Schlegel J, Mildenberger P, Thelen M (2000) Focal airtrapping at expiratory high-resolution CT: comparison with pulmonary function tests. Eur Radiol 10:1539–1546PubMedCrossRefGoogle Scholar
  34. Kauczor HU, Hast J, Heussel CP, Schlegel J, Mildenberger P, Thelen M (2002) CT attenuation of paired HRCT scans obtained at full inspiratory/expiratory position: comparison with pulmonary function tests. European Radiology 12:2757–2763PubMedGoogle Scholar
  35. Knudson RJ, Standen JR, Kaltenborn WT, et al. (1991) Expiratory computed tomography for assessment of suspected pulmonary emphysema. Chest 99:1357–1366PubMedCrossRefGoogle Scholar
  36. Kramer SS, Hoffman EA (1995) Physiologic imaging of the lung with volumetric high-resolution CT. J Thorac Imag 10:280–290Google Scholar
  37. Kreck TC, Krueger MA, Altemeier WA, et al. (2001) Determination of regional ventilation and perfusion in the lung using xenon and computed tomography. J Appl Physiol 91: 1741–1749PubMedGoogle Scholar
  38. Lamers RJ, Thelissen GR, Kessels AG, et al. (1994) Chronic obstructive pulmonary diseases. Evaluation with spirometrically controlled CT lung densitometry. Radiology 193: 109–113PubMedGoogle Scholar
  39. Leung AN, Fisher K, Valentine V, et al. (1998) Bronchiolitis obliterans after lung transplantation: detection using expiratory HRCT. Chest 113:365–370PubMedCrossRefGoogle Scholar
  40. Lucidarme O, Coche E, Cluzel P, et al. (1998) Expiratory CT scans for chronic airway disease: correlation with pulmonary function test results. Am J Roentgenol 170:301–307Google Scholar
  41. Lucidarme O, Grenier PA, Cadi M, Mourey-Gerosa I, Benali K, Cluzel P (2000) Evaluation of air trapping at CT: comparison of continuous versus suspended expiration CT techniques. Radiology 216:768–772PubMedGoogle Scholar
  42. Lynch DA, Brasch RC, Hardy KA, et al. (1990) Pediatric pulmonary disease: assessment with high-resolution ultrafast CT. Radiology 176:243–248PubMedGoogle Scholar
  43. Marcucci C, Nyhan D, Simon BA (2001) Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J Appl Physiol 90:421–430PubMedCrossRefGoogle Scholar
  44. Markstaller K, Arnold M, Döbrich M, et al. (2001a) A software tool for automatic image-based ventilation analysis using dynamic chest CT-scanning in healthy and ARDS lungs. Fortschr Rontgenstr 173:830–835CrossRefGoogle Scholar
  45. Markstaller K, Eberle B, Kauczor HU, et al. (2001b) Temporal dynamics of lung aeration determined by dynamic CT in a porcine model of ARDS. Br J Anaesth 87:459–468PubMedCrossRefGoogle Scholar
  46. Mayo JR, Webb WR, Gould R, et al. (1987) High-resolution CT of the lungs: an optimal approach. Radiology 163:507–510PubMedGoogle Scholar
  47. Mergo PJ, Williams WF, Gonzalez-Rothi R, et al. (1998) Three-dimentional volumetric assessment of abnormally low attenuation of the lung from routine helical CT: inspiratory and expiratory quantification. Am J Roentgenol 170: 1355–1360Google Scholar
  48. Murata K, Khan A, Rojas KA et al. (1988) Optimization of computed tomography technique to demonstrate the fine structure of the lung. Invest Radiol 23:170–175PubMedCrossRefGoogle Scholar
  49. Murata K, Khan A, Herman PG (1989) Pulmonary parenchnymal disease: evaluation with high-resolution CT. Radiology 170:629–635PubMedGoogle Scholar
  50. Naidich DP, Zerhouni EA, Hutchins GM, et al. (1985) Computed tomography of the pulmonary parenchyma: part 1, distal air-space disease. J Thorac Imaging 1:39–53PubMedCrossRefGoogle Scholar
  51. Nakata H, Komoto T, Nakayama T, et al. (1985) Diffuse peripheral lung disease: evaluation by high-resolution computed tomography. Radiology 157:181–185PubMedGoogle Scholar
  52. Newman KB, Lynch DA, Newman LS, Ellegood D, Newell JD Jr (1994) Quantitative computed tomography detects air trapping due to asthma. Chest 106:105–109PubMedCrossRefGoogle Scholar
  53. Ng CS, Desai SR, Rubens MB, Padley SPG, Wells AU, Hansell DM (1999) Visual quantitation and observer variation of signs of small airways disease at inspiratory and expiratory CT. J Thorac Imaging 14:279–285PubMedCrossRefGoogle Scholar
  54. Padley SPG, Adler BD, Hansell DM, et al. (1993) Bronchiolitis obliterans: high-resolution CT findings and correlation with pulmonary function tests. Clin Radiol 47:236–240PubMedCrossRefGoogle Scholar
  55. Park CS, Müller NL, Worthy SA, et al. (1997) Airway obstruction in asthmatic and healthy individuals: inspiratory and expiratory thin-section CT findings. Radiology 203:361–367PubMedGoogle Scholar
  56. Park KJ, Bergin, CJ, Clausen, JL (1999) Quantitation of emphysema with three-dimensional CT densitometry: comparison with two-dimensional analysis, visual emphysema scores, and pulmonary function test results. Radiology 211541–547Google Scholar
  57. Remy-Jardin M, Remy J, Artaud D, et al. (1996) Diffuse infiltrative lung disease: clinical value of sliding-thin-slab maximum intensity projection CT scans in the detection of mild micronodular patterns. Radiology 200:333–339PubMedGoogle Scholar
  58. Remy-Jardin M, Campistron P, Amara A, et al. (2002a) Workflow issue with multislice CT (MSCT) of the thorax. Usefulness of multiplanar reformations in the diagnostic approach of infiltrative lung disease. Eur Radiol 12 (Suppl 1):134 (abstract)Google Scholar
  59. Remy-Jardin M, Edme JL, Boulenguez C, Remy J, Mastora I, Sobaszek A (2002b) Longitudinal follow-up study of smoker’s lung with thin-section CT in correlation with pulmonary function tests. Radiology 222:261–270PubMedCrossRefGoogle Scholar
  60. Sase S, Honda M, Kushida T, Seiki Y, Machida K, Shibata I (2002) Quantitative cerebral blood flow calculation method using white matter lambda in xenon CT. J Comput Assist Tomogr 26:471–478PubMedCrossRefGoogle Scholar
  61. Schoepf UJ, Becker CR, Bruening RD, et al. (1999) Electrocardiographically gated thin-section CT of the lung. Radiology 212:649–654PubMedGoogle Scholar
  62. Simon B, Marcucci C, Fung M, Lele S (1998) Parameter estimation and confidence intervals for Xe-CT ventilation studies: a Monte Carlo approach. J Appl Physiol 84:709–716PubMedCrossRefGoogle Scholar
  63. Small JH, Flower CD, Traill ZC, et al. (1996) Air trapping in extrinsic allergic alveolitis on computed tomography. Clin Radiol 51:684–688PubMedCrossRefGoogle Scholar
  64. Snyder JV, Pennock B, Herbert D, et al. (1984) Local lung ventilation in critically ill patients using nonradioactive xenonenhanced transmission computed tomography. Crit Care Med 12:46–51PubMedCrossRefGoogle Scholar
  65. Stern EJ, Webb WR (1993) Dynamic imaging of lung morphology with ultrafast high-resolution computed tomography. J Thorac Imaging 8:273–282PubMedCrossRefGoogle Scholar
  66. Stern EJ, Webb WR, Warnock ML, et al. (1991) Bronchopulmonary Sequestration: dynamic, ultrafast, high-resolution CT evidence of air trapping. Am J Roentgenol 157: 947–949Google Scholar
  67. Stern EJ, Webb WR, Golden JA, et al. (1992) Cystic lung disease associated with eosinophilic granuloma and tuberous sclerosis: air trapping at dynamic ultrafast high-resolution CT. Radiology 182:325–329PubMedGoogle Scholar
  68. Stern EJ, Graham CM, Webb WR, Gamsu G (1993) Normal trachea during forced expiration: dynamic CT measurements. Radiology 187:27–31PubMedGoogle Scholar
  69. Stern EJ, Webb WR, Gamsu G (1994) Dynamic quantitative computed tomography: a predictor of pulmonary function in obstructive lung diseases. Invest Radiol 29:564–569PubMedCrossRefGoogle Scholar
  70. Tajik, JK, Tran BQ, Hoffman EA (1996) Xenon enhanced CT imaging of local pulmonary ventilation. Proc SPIE 2709:40–54CrossRefGoogle Scholar
  71. Tajik JK, Chon D, Won C, Tran BQ, Hoffman EA (2002) Sub-second multisection CT of regional pulmonary ventilation. Acad Radiol 9:130–146PubMedCrossRefGoogle Scholar
  72. Thiele J, Klöppel R (1995) Computertomographische Messung der Lungenventilation durch Inhalation von Isovist 300. Röntgenpraxis 48: 259–260PubMedGoogle Scholar
  73. Tomiyama N, Takeuchi N, Imanaka H, et al. (1993) Mechanism of gravity-dependent atelectasis. Analysis by nonradioactive xenon-enhanced dynamic computed tomography. Invest Radiol 28:633–638PubMedCrossRefGoogle Scholar
  74. Webb WR (1997) Radiology of obstructive pulmonary disease. Am J Roentgenol 169:637–647Google Scholar
  75. Webb WR, Stern EJ, Kanth N, et al. (1993) Dynamic pulmonary CT: findings in normal adult men. Radiology 186:117–124PubMedGoogle Scholar
  76. Webb WR, Müller NL, Naidich PD (2001) Technical aspects of HRCT. In: Webb WR, Müller NL, Naidich PD. High-resolution CT of the lung, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 1–47Google Scholar
  77. Winkler S, Nielsen A, Mesina J (1987) Respiratory depression in goats by stable Xenon: implication for CT studies. J Comput Assist Tomogr 11:496–498PubMedCrossRefGoogle Scholar
  78. Worthy SA, Müller NL, Hartman TE, Swensen SJ, Padley SPG, Hansell DM (1997) Mosaic attenuation pattern on thin-section CT scans of the lung: differentiation among infiltrative lung, airway and vascular diseases as a cause. Radiology 205:465–470PubMedGoogle Scholar
  79. Yamaguchi K, Soejima K, Koda E, Sugiyama N (2001) Inhaling gas with different CT densitities allows detection of abnormalities in the lung periphery of patients with smoking-induced COPD. Chest 120:1907–1916PubMedCrossRefGoogle Scholar
  80. Zerhouni EA, Naidich DP, Stitik FP, et al. (1985) Computed tomography of the pulmonary parenchyma: part 2, interstitial disease. J Thorac Imaging 1:54–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Edwin J. R. van Beek
    • 1
  1. 1.Academic Unit of Radiology, Floor CRoyal Hallamshire HospitalSheffieldUK

Personalised recommendations