Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 207 Accesses

Abstract

Conventional proton MR images of the lungs are hampered by the low proton density in the lungs and by artifacts caused by inhomogeneous static fields within the thorax. Therefore, the lung has traditionally been considered a black hole in terms of MR imaging. In recent years, the introduction of hyperpolarized noble gases, such as helium-3 (3-He) and xenon-129 (129-Xe), has shown promise for functional imaging of the pulmonary air spaces. These isotopes have a nuclear spin of 1/2 and are thus sensitive to nuclear magnetic resonance techniques. In the presence of a strong magnetic field (B0) these spins in a given atom can exist in one of either two ground states aligned either parallel to or anti-parallel to B0. Conventional proton MRI utilizes the fact that in thermal equilibrium a slightly larger proportion of the spins adopt the lower energy ground state (parallel to B0) and this population can be subsequently excited into the higher state by radio frequency excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert MS, Cates GD, Driehuys B et al. (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370:199–201

    Article  PubMed  CAS  Google Scholar 

  • Altes TA, Powers PL, Knight-Scott J et al. (2001a) Hyperpolarized 3-He MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imaging 13: 378–384

    Article  PubMed  CAS  Google Scholar 

  • Altes T, Froh DK, Salerno M et al. (2001b) Hyperpolarized Helium-3 MR imaging of lung ventilation changes following airway mucus clearance treatment in cystic fibrosis. Proc ISMRM 9:2003

    Google Scholar 

  • American Thoracic Society (1962) Chronic bronchitis, asthma and pulmonary emphysems. A statement by the committee on diagnostic standards for non-tuberculous respiratory disease. Am Rev Respir Dis 85:762–768

    Google Scholar 

  • Becker J, Heil W, Krug B et al. (1994) Study of mechanical compression of spin-polarized 3He gas. Nucl Instrum Methods A 346:45–51

    Article  CAS  Google Scholar 

  • Becker J, Bermuth J, Ebert M et al. (1998) Interdisciplinary experiments with polarized 3He. Nucl Instrum Methods A 402:327–336

    Article  CAS  Google Scholar 

  • Bhalla M, Turcios N, Aponte V et al. (1991) Cystic fibrosis: scoring system with thin section CT. Radiology 179:783–788

    PubMed  CAS  Google Scholar 

  • Black RD, Middleton HD, Cates GD et al. (1996) In vivo He-3 MR images of guinea pig lungs. Radiology 199:867–870

    PubMed  CAS  Google Scholar 

  • Carr JJ, Reed JC, Choplin RH, Pope TL Jr, Case LD (1992) Plain and computed radiography for detecting experimentally induced pneumothorax in cadavers: implications for detection in patients. Radiology 183:193–199

    PubMed  CAS  Google Scholar 

  • Chen XJ, Chawla MS, Hedlund LW, Möller HE, MacFall JR, Johnson GA (1998) MR microscopy of lung airways with hyperpolarized 3-He. Magn Reson Med 39:79–84

    Article  PubMed  CAS  Google Scholar 

  • Colegrove FD, Schearer LD, Walters GK (1963) Polarisation of He3 gas by optical pumping. Phys Rev 132:2561–2572

    Article  CAS  Google Scholar 

  • Cooper JD, Trulock EP, Triantafillou AN et al. (1995) Bilateral pneumonectomy (volume reduction) for chronic obstructive pulmonary disease. J Thorac Cardiovasc Surg 109:106–119

    Article  PubMed  CAS  Google Scholar 

  • Darasse L, Guillot G, Nacher PJ, Tastevin G (1997) Low-field 3He nuclear magnetic resonance in human lungs. CR Acad Sci II B 324:691–700

    Google Scholar 

  • DeLange EE, Mugler JP, Brookeman JR et al. (1999) Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology 210:851–857

    CAS  Google Scholar 

  • Deninger AJ, Eberle B, Ebert M et al. (1999) Quantification of regional intrapulmonary oxygen partial pressure evolution during apnea. J Magn Reson Imaging 141:207–216

    CAS  Google Scholar 

  • Donnelly LF, Gelfand MJ, Brody AS, Wilmont RW (1997) Comparison between morphologic changes seen on high-resolution CT and regional pulmonary perfusion seen on SPECT in patients with cystic fibrosis. Pediatr Radiol 27:920–925

    Article  PubMed  CAS  Google Scholar 

  • Donnelly LF, MacFall JR, McAdams HP et al. (1999) Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung-preliminary observation. Radiology 212:885–889

    PubMed  CAS  Google Scholar 

  • Driehuys B, Cates GD, Miron E, Sauer K, Walter DK, Happer W (1996) High-volume production of laser-polarized 129Xe. Appl Phys Lett 69:1668–1670

    Article  CAS  Google Scholar 

  • Durand E, Guillot G, Darrasse L, Tastevin G, Nacher PJ, Vignaud A, Vattolo D, Bittoun J (2002) CPMG measurements and ultrafast imaging in human lungs with hyperpolarized helium-3 at low field (0.1 T). Magn Reson Med 47:75–81

    Article  PubMed  CAS  Google Scholar 

  • Eberle B, Weiler N, Markstaller K et al. (1999) Analysis of intrapulmonary O2 concentration by MR imaging of inhaled hyperpolarised 3He. J Appl Phys 87:2043–2052

    CAS  Google Scholar 

  • Ebert M, Großmann T, Heil W et al. (1996) Nuclear magnetic resonance imaging on humans using hyperpolarised 3He. Lancet 347:1297–1299

    Article  PubMed  CAS  Google Scholar 

  • Evans JW, Wagner PD (1977) Limits on VA/Q distribution from analysis of experimental inert gas elimination. J Appl Physiol 42:588–599

    Google Scholar 

  • Frahm J, Haase A, Matthaei D (1986) Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3:321–327

    Article  PubMed  CAS  Google Scholar 

  • Gast KK, Puderback MU, Rodriguez I et al. (2002a) Dynamic ventilation (3)He-magnetic resonance imaging with lung motion correction: gas flow distribution analysis. Invest Radiol 37:126–134

    Article  PubMed  Google Scholar 

  • Gast KK, Viallon M, Eberle B et al. (2002b) MRI in lung transplant recipients using hyperpolarized 3He: comparison with CT. J Magn Reson Imaging 15:268–274

    Article  PubMed  Google Scholar 

  • Gentile TR, Jones GL, Thompson AK et al. (2000) Demonstration of a compact compressor for application of metastability-exchange optical pumping of 3He to human lung imaging. Magn Reson Med 43:290–294

    Article  PubMed  CAS  Google Scholar 

  • Gierada DS, Hakimian S, Slone RM, Yusen RD (1998) MR analysis of lung volume and thoracic dimensions in patients with emphysema before and after lung volume reduction surgery. AJR Am J Roentgenol 170:707–714

    PubMed  CAS  Google Scholar 

  • Gierada DS, Saam B, Yablonskiy D, Cooper JD, Lefrak SS, Conradi MS (2000) Dynamic echo planar MR imaging of lung ventilation with hyperpolarized 3He in normal subjects and patients with severe emphysema. NMR Biomed 13:176–181

    Article  PubMed  CAS  Google Scholar 

  • Goodson BM (2002) Nuclear magnetic resonance of laserpolarized noble gases in molecules, materials, and organisms. J Magn Reson 155:157–216

    Article  PubMed  CAS  Google Scholar 

  • Guenther D, Eberle B, Hast J et al (2000) 3-He MRI in healthly volunteers: preliminary correlation with smoking history and lung volumes. NMR Biomed 13:182–189

    Article  PubMed  CAS  Google Scholar 

  • Heil W, Humblot Otten EW, Schäfer M, Surkau R, Leduc M (1995) Very long nuclear relaxation times of spin polarized helium 3 in metal coated cells. Phys Lett A 201:337–343

    Google Scholar 

  • Johnson GA, Cates G, Chen XJ et al. (1997) Dynamics of magnetization in hyperpolarized gas MRI of the lung. Magn Reson Med 38:66–71

    Article  PubMed  CAS  Google Scholar 

  • Johnson GA, Cofer GP, Hedlund LW, Maronpot RR, Suddarth SA (2001) Registered 1H and 3He magnetic resonance microscopy of the lung. Magn Reson Med 45:365–370

    Article  PubMed  CAS  Google Scholar 

  • Kastler A (1950) Quelques suggestions concernant la production optique et la detection optique d’une inégalité de population des niveaux de quantification spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la resonance magnétique. J Phys Radium 11:255–265

    Article  CAS  Google Scholar 

  • Kauczor HU, Hofmann D, Kreitner KF et al. (1996) Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201:564–568

    PubMed  CAS  Google Scholar 

  • Kauczor HU, Ebert M, Kreitner KF et al. (1997) Imaging of the lungs using 3He MRI: preliminary clinical experience in 18 patients with and without lung disease. J Magn Reson Imaging 7:538–543

    Article  PubMed  CAS  Google Scholar 

  • Kauczor HU, Chen XJ, Beek EJR van, Schreiber W (2001) Pulmonary ventilation imaged by MRI: at the doorstep of clinical application. Eur Respir J 17:1–16

    Article  Google Scholar 

  • MacFall JR, Charles HC, Black RD et al. (1996) Human lung air spaces: potential for MR imaging with hyperpolarized He-3. Radiology 200:553–558

    PubMed  CAS  Google Scholar 

  • Mai VM, Liu B, Li W et al. (2002) Influence of oxygen flow rate on signal and T(l) changes in oxygen-enhanced ventilation imaging. J Magn Reson Imaging 16:37–41

    Article  PubMed  Google Scholar 

  • Mata J, Altes T, Christopher J, Mugler J, Brookeman J, Lange E de (2001) Positional dependence of small inferior ventilation defects seen on hyperpolarized helium-3 MR of the lung. Proc ISMRM 9:949

    Google Scholar 

  • McAdams HP, Palmer SM, Donnelly LF, Charles HC, Tapson VF, MacFall JR (1999) Hyperpolarized 3He-enhanced MR imaging in lung transplant patients: preliminary results. AJR Am J Roentgenol 173:955–959

    PubMed  CAS  Google Scholar 

  • Middleton H, Black RD, Saam B et al. (1995) MR imaging with hyperpolarized 3He gas. Magn Reson Med 33:271–275

    Article  PubMed  CAS  Google Scholar 

  • Miron E, Schaefer S, Schreiber D, Wijngaarden WA van, Zeng X, Happer W (1984) Polarisation of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys Rev A 29:3092–3110

    Article  Google Scholar 

  • Mugler JP, Driehuys B, Brookeman JR et al. (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37:809–815

    Article  PubMed  Google Scholar 

  • Mugler JP, Brookeman JR, Knight-Scott J, Maier T, Lange EE de, Bogorad PL (1998) Interleaved echo-planar imaging of the lungs with hyperpolarized 3He. Proc ISMRM 6:448

    Google Scholar 

  • Mugler JP, Salerno M, Lange EE de, Brookeman JR (2002) Optimized TrueFISP hyperpolarized 3He MRI of the lung yields a 3-fold SNR increase compared to FLASH. Proc ISMRM 10:2019

    Google Scholar 

  • Nacher PJ, Tastevin G, Maître X, Dollat X, Lemaire B, Olejnik J (1999) A peristaltic compressor for hyperpolarized helium. Eur Radiol 9:B18

    Google Scholar 

  • Nathanson I, Conboy K, Murphy S, Afshani E, Kuhn JP (1991) Ultrafast computerized tomography of the chest in cystic fibrosis: a new scoring system. Pediatr Pulmonol 11:81–86

    Article  PubMed  CAS  Google Scholar 

  • Paradis I (1998) Bronchiolitis obliterans: pathogenesis, prevention and management. Am J Med Sci 315:161–178

    Article  PubMed  CAS  Google Scholar 

  • Piepsz A, Wetzburger C, Spehl M (1980) Critical evaluation of lung scintigraphy in cystic fibrosis. J Nucl Med 21:909–913

    PubMed  CAS  Google Scholar 

  • Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows: report of the working party standardization of lung function tests. European community for steel and coal-official statement of the European respiratory society. Eur Respir J 6 [Suppl 16]:5–20

    Google Scholar 

  • Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ (1988) MR fluoroscopy: technical feasibility. Magn Reson Med 8:1–15

    Article  PubMed  CAS  Google Scholar 

  • Rizi RR, Baumgardner JE, Saha PK et al. (2001) Regional lung compliance by hyperpolarized 3helium magnetic resonance imaging. Proc ISMRM 9:944

    Google Scholar 

  • Roberts DA, Rizi RR, Lipson DA et al. (2000) Detection and localization of pulmonary air leaks using laser-polarized 3He MRI. Magn Reson Med 44:379–382

    Article  PubMed  CAS  Google Scholar 

  • Roca J, Wagner PD (1994) Principles and information content of the multiple inert gas elimination technique. Thorax 49:815–824

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Roisin R (1994) Contribution of multiple inert gas elimination technique to pulmonary medicine. Thorax 49:813–814

    Article  Google Scholar 

  • Ruppert K, Brookeman JR, Mugler JP (1998) Real-time MR imaging of pulmonary gas-flow dynamics with hyperpolarized 3He. Proc ISMRM: 1909

    Google Scholar 

  • Saam B, Happer W, Middleton H (1995) Nuclear relaxation of 3He in the presence of 02. Phys Rev A 52:862–865

    Article  PubMed  CAS  Google Scholar 

  • Saam B, Yablonskiy DA, Gierada DS, Conradi MS (1999) Rapid imaging of hyperpolarized gas using EPI. Magn Reson Med 42:507–514

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Bilek AM, Oteiza E et al. (1996) Temporal dynamics of hyperpolarized 129Xe resonances in living rats. J Magn Reson B 111:300–304

    Article  PubMed  CAS  Google Scholar 

  • Salerno M, Altes TA, Brookeman JR, Lange EE de, Mugler JP III (2001) Dynamic spiral MR imaging of pulmonary gas flow using hyperpolarized 3He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46:667–677

    Article  PubMed  CAS  Google Scholar 

  • Schreiber WG, Weiler N, Kauczor HU et al. (2000) Ultraschnelle MRT der Lungenventilation mittels hochpolarisiertem Helium-3. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:129–133

    Article  PubMed  CAS  Google Scholar 

  • Tseng CH, Wong GP, Pomeroy VR et al. (1998) Low-field MRI of laser polarized noble gas. Phys Rev Lett 81:3785–3788

    Article  PubMed  CAS  Google Scholar 

  • Van Vaals JJ, Brummer ME, Dixon WT et al. (1993) “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675

    Article  PubMed  Google Scholar 

  • Viallon M, Cofer GP, Suddarth SA et al. (1999) Functional MR microscopy of the lung using hyperpolarized 3He. Magn Reson Med 41:787–792

    Article  PubMed  CAS  Google Scholar 

  • Viallon M, Berthezene Y, Callot V et al. (2000) Dynamic imaging of hyper-polarised (3)He distribution in rat lungs using interleaved-spiral scans. NMR Biomed 13:207–213

    Article  PubMed  CAS  Google Scholar 

  • Wagner PD, Rodriguez-Roisin R (1991) Clinical advances in pulmonary gas exchange. Am Rev Respir Dis 143:883–888

    PubMed  CAS  Google Scholar 

  • Wagner PD, Smith CM, Davies NJH, McEvoy RD, Gale GE (1985) Estimation of ventilation-perfusion inequality by inert gas elimination without arterial sampling. J Appl Physiol 59:376–383

    PubMed  CAS  Google Scholar 

  • Wagshul ME, Button TM, Li HF et al. (1996) In vivo MR imaging and spectroscopy using hyperpolarized 129Xe. Magn Reson Med 36:183–191

    Article  PubMed  CAS  Google Scholar 

  • Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642

    Article  CAS  Google Scholar 

  • Wild JM, Paley MNH, Viallon M, Schreiber WG, Beek EJR van, Griffiths PD (2002a) K-Space filtering in 2D gradient echo breath-hold hyperpolarized 3He MRI: spatial resolution and signal to noise considerations. Magn Reson Med 47: 687–695

    Article  PubMed  Google Scholar 

  • Wild JM, Schmiedeskamp J, Paley MNJ et al. (2002b) MR imaging of the lungs with hyperpolarized 3-helium transported by air. Phys Med Biol 47:N185–190

    Article  PubMed  CAS  Google Scholar 

  • Wild JM, Fichele S, Woodhouse N, Paley MNJ, Swift AJ, Kasuboski L, Beek EJR van (2003a) Assessment and compensation of susceptibility artifacts in gradient echo MRI of hyperpolarized 3He gas. Magn Reson Med 50:417–422

    Article  PubMed  Google Scholar 

  • Wild JM, Paley MNJ, Kasuboski L, Swift AJ, Fichele S, Woodhouse N, Griffiths PD, Beek EJR van (2003b) Dynamic radial projection MRI of inhaled hyperpolarized 3He gas. Magn Reson Med 49:991–997

    Article  PubMed  Google Scholar 

  • Wong GP, Tseng CH, Pomeroy VR et al. (1999) A system for low field imaging of laser-polarized noble gas. J Magn Reson 141:217–227

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse N, Wild JM, Fichele S et al. (2002) Measurement of a reduction in the effective lung volume of a smoker as measured by combined proton single shot fast spin echo/ hyperpolarized helium-3 MRI. Proc Br Chap ISMRM 58

    Google Scholar 

  • Zaporohan J, Ley S, Gast K et al. (2002) Aerated versus ventilated lung: Value of the 3He MRI and CT. Proc ISMRM 10:132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Beek, E.J.R., Swift, A., Wild, J.M. (2004). Helium MR Imaging. In: Kauczor, HU. (eds) Functional Imaging of the Chest. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18621-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18621-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62202-1

  • Online ISBN: 978-3-642-18621-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics