Oxygen-Sensitive Imaging, Gas Exchange

  • Balthasar Eberle
  • Hans-Ulrich Kauczor
Part of the Medical Radiology book series (MEDRAD)


Respiration in mammalians is a cyclic tidal phenomenon. Each breath replenishes a portion of alveolar gas containing humidified dead space gas with fresh gas by exchanging gas back and forth through common conducting airways and by diffusive mixing in the very distal air spaces. Pulmonary perfusion, on the other hand, is a pulsatile and continuous process. Oxygen diffuses from the alveolar gas space across the alveolocapillary membrane into the oxygen-depleted mixed venous blood, whereas carbon dioxide diffuses in the opposite direction. This process is extremely efficient: partial pressures of oxygen and carbon dioxide of pulmonary capillary blood and alveolar gas nearly equilibrate within one-third of the red blood cell average transit time (~1 s) through pulmonary capillaries.


Magn Reson Image Partial Liquid Ventilation Liquid Ventilation Alveolar Dead Space Porcine Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert MS, Cates GD, Driehuys B et al. (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370:199–201PubMedCrossRefGoogle Scholar
  2. Albert MS, Schepkin VD, Budinger TF (1995) Measurement of 129Xe Tl in blood to explore the feasibility of hyperpolarized 129Xe MRI. J Comput Assist Tomogr 19:975–978PubMedCrossRefGoogle Scholar
  3. Albert MS, Tseng CH, Williamson D et al. (1996) Hyperpolarized 129Xe MR imaging of the oral cavity. J Magn Reson B 111:204–207PubMedCrossRefGoogle Scholar
  4. Albert MS, Kacher DF, Balamore D et al. (1999) T(1) of (129)Xe in blood and the role of oxygenation. J Magn Reson 140: 264–273PubMedCrossRefGoogle Scholar
  5. Albert MS, Balamore D, Kacher DF et al. (2000) Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood. NMR Biomed 13:407–414PubMedCrossRefGoogle Scholar
  6. Baumgardner JE, Choi IC, Vonk-Noordegraaf A et al. (2000) Sequential V(A)/Q distributions in the normal rabbit by micropore membrane inlet mass spectrometry. J Appl Physiol 89:1699–1708PubMedGoogle Scholar
  7. Chen Q, Jakob PM, Griswold MA et al. (1998) Oxygen enhanced MR ventilation imaging of the lung. Magma 7:153–161PubMedCrossRefGoogle Scholar
  8. Chen Q, Levin DL, Kim D et al. (1999) Pulmonary disorder: ventilation-perfusion MR imaging with animal models. Radiology 213:871–879PubMedGoogle Scholar
  9. Chen XJ, Moller HE, Chawla MS et al. (1999a) Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo, part I: diffusion coefficient. Magn Reson Med 42:721–728PubMedCrossRefGoogle Scholar
  10. Chen XJ, Moller HE, Chawla MS et al. (1999b) Spatially resolved measurements of hyperpolarized gas properties in the lung in vivo, part II: T* (2). Magn Reson Med 42:729–737PubMedCrossRefGoogle Scholar
  11. Croce MA, Fabian TC, Patton JH Jr et al. (1998) Partial liquid ventilation decreases the inflammatory response in the alveolar environment of trauma patients. J Trauma 45:273–280PubMedCrossRefGoogle Scholar
  12. Deninger A, Eberle B, Ebert M et al. (1999) Quantitation of regional intrapulmonary oxygen partial pressure evaluation during apnoe by 3He-MRI. J Magn Reson 141: 207–216PubMedCrossRefGoogle Scholar
  13. Deninger A, Eberle B, Ebert M et al. (2000) 3He-MRI-based measurements of intrapulmonary pO2 and its time course during apnea in healthy volunteers: first results, reproducibility and technical limitations. NMR Biomed 13:194–201PubMedCrossRefGoogle Scholar
  14. Deninger A, Eberle B, Bermuth J et al. (2002) Assessment of a single-acquisition imaging sequence for oxygen-sensitive 3He MRI. Magn Reson Med 47:105–114PubMedCrossRefGoogle Scholar
  15. Eberle B, Weiler N, Markstaller K et al. (1997) Analysis of regional intrapulmonary (O2-concentrations by MR imaging of inhaled hyperpolarized helium-3. J Appl Physiol 87: 2043–2052Google Scholar
  16. Eberle B, Markstaller K, Lill J et al. (2000) Oxygen-sensitive 3He magnetic resonance imaging of the lungs in patients after unilateral lung transplantation. Am J Respir Crit Care Med 161:A718Google Scholar
  17. Eberle B, Markstaller K, Stepniak A et al. (2002) 3Helium-MRI-based assessment of regional gas exchange impairment during experimental pulmonary artery occlusion. Anesthesiology 96:A1309Google Scholar
  18. Edelman RR, Hatabu H, Tadamura E et al. (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239PubMedCrossRefGoogle Scholar
  19. Fishman JE, Joseph PM, Floyd TF et al. (1987) Oxygen-sensitive 19F NMR imaging of the vascular system in vivo. Magn Reson Imaging 5:279–285PubMedCrossRefGoogle Scholar
  20. Fishman JE, Joseph PM, Carvlin MJ et al. (1989) In vivo measurements of vascular oxygen tension in tumors using MRI of a fluorinated blood substitute. Invest Radiol 24:65–71PubMedCrossRefGoogle Scholar
  21. Goodson BM, Song Y, Taylor RE et al. (1997) In vivo NMR and MRI using injection delivery of laser-polarized 129 Xe. Proc Natl Acad Sci USA 94:14725–14729PubMedCrossRefGoogle Scholar
  22. Greenspan JS, Wolfson MR, Rubenstein SD, Shaffer TH (1989) Liquid ventilation of preterm baby (letter). Lancet 2:1095PubMedCrossRefGoogle Scholar
  23. Hatabu H, Tadamura E, Chen Q et al. (2001) Pulmonary ventilation: dynamic MRI with inhalation of molecular oxygen. Eur J Radiol 37:172–178PubMedCrossRefGoogle Scholar
  24. Heussel CP, Scholz A, Schmittner M et al. (2003) Measurements of alveolar P02 using 19F-MRI in partial liquid ventilation. Invest Radiol 10 (in press)Google Scholar
  25. Hoffman EA, Olson LE (1998) Characteristics of respiratory system complexity captured via X-ray computed tomography: image acquisition, display, and analysis. In: Hlastala MP, Robertson HT (eds) Complexity in structure and function of the lung. Dekker, New York, pp 325–378Google Scholar
  26. Jameson CJ, Jameson AK, Hwang JK (1988) Nuclear spin relaxation by intermolecular magnetic dipole coupling in the gas phase. 129Xe in oxygen. J Chem Phys 89:4074–4081CrossRefGoogle Scholar
  27. Joseph PM, Yuasa Y, Kundel HL et al. (1985) Magnetic resonance imaging of fluorine in rats infused with artificial blood. Invest Radiol 20:504–509PubMedCrossRefGoogle Scholar
  28. Kaisers U, Kelly KP, Busch T (2003) Liquid ventilation. Br J Anaesth 91:143–151PubMedCrossRefGoogle Scholar
  29. Kinoshita Y, Kohshi K, Kunugita N et al. (2000) Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging. Br J Cancer 82:88–92PubMedCrossRefGoogle Scholar
  30. Kuethe DO, Caprihan A, Fukushima E et al. (1998) Imaging lungs using inert fluorinated gases. Magn Reson Med 39:85–88PubMedCrossRefGoogle Scholar
  31. Kuethe DO, Caprihan A, Gach HM et al. (2000) Imaging of obstructed ventilation with NMR using inert fluorinated gases. J Appl Physiol 88:2279–2286PubMedGoogle Scholar
  32. Kuethe DO, Behr VC, Begay S (2002) Volume of rat lungs measured throughout the respiratory cycle using 19F NMR of the inert gas SF6. Magn Reson Med 48:547–549PubMedCrossRefGoogle Scholar
  33. Laukemper-Ostendorf S, Scholz A, Bürger K et al. (2002) 19F-MRI of perflubron for measurement of oxygen partial pressure in porcine lungs during partial liquid ventilation. Magn Reson Med 47:82–89PubMedCrossRefGoogle Scholar
  34. Löffler R, Muller CJ, Peller M et al. (2000) Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magn Reson Med 43:860–866PubMedCrossRefGoogle Scholar
  35. Lowe KC (1997) Perfluorochemical respiratory gas carriers: applications in medicine and biotechnology. Sci Prog 80: 169–193PubMedGoogle Scholar
  36. Lowe KC (1999) Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev 13:171–184PubMedCrossRefGoogle Scholar
  37. Lumb AB (2000) Nunn’s applied respiratory physiology, 5th edn. Butterworth Heinemann, OxfordGoogle Scholar
  38. Mai VM, Bankier AA, Prasad PV et al. (2001) MR ventilation-perfusion imaging of human lung using oxygen-enhanced and arterial spin labeling techniques. J Magn Reson Imaging 14:574–579PubMedCrossRefGoogle Scholar
  39. Mai VM, Liu B, Li W et al. (2002a) Influence of oxygen flow rate on signal and T(1) changes in oxygen-enhanced ventilation imaging. J Magn Reson Imaging 16:37–41PubMedCrossRefGoogle Scholar
  40. Mai VM, Liu B, Polzin JA et al. (2002b) Ventilation-perfusion ratio of signal intensity in human lung using oxygen-enhanced and arterial spin labeling techniques. Magn Reson Med 48:341–350PubMedCrossRefGoogle Scholar
  41. Markstaller K, Eberle B, Kauczor HU et al. (2001) Temporal dynamics of lung aeration determined by dynamic CT in a porcine model of ARDS. Br J Anaesth 87:459–468PubMedCrossRefGoogle Scholar
  42. McAdams HP, Hatabu H, Donnelly LF et al. (2000) Novel techniques for MR imaging of pulmonary air spaces. Magn Reson Imaging Clin North Am 8:205–219Google Scholar
  43. Möller H, Chawla MS, Chen XJ et al. (1998) Vascular 129Xe MR imaging in live rats. Proceedings of the International Society of Magnetic Resonance Medicine, 6th meeting, p 1910Google Scholar
  44. Möller H, Hedlund L, Chen X et al. (2001) Measurements of hyperpolarized gas properties in the lung, part III: 3He T1. Magn Reson Med 45:421–430PubMedCrossRefGoogle Scholar
  45. Mugler JP III, Driehuys B, Brookeman JR et al. (1997) MR imaging and spectroscopy using hyperpolarized 129-xenon gas. Preliminary human results. Magn Reson Med 37:809–815PubMedCrossRefGoogle Scholar
  46. Müller CJ, Löffler R, Deimling M et al. (2001) MR lung imaging at 0.2 T with T1-weighted true FISP: native and oxygen-enhanced. J Magn Reson Imaging 14:164–168PubMedCrossRefGoogle Scholar
  47. Müller CJ, Schwaiblmair M, Scheidler J et al. (2002) Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary findings. Radiology 222:499–506PubMedCrossRefGoogle Scholar
  48. Nakagawa T, Sakuma H, Murashima S et al. (2001) Pulmonary ventilation-perfusion MR imaging in clinical patients. J Magn Reson Imaging 14:419–424PubMedCrossRefGoogle Scholar
  49. Newbury N, Barton A, Cates G et al. (1993) Gaseous 3He-3He magnetic dipolar spin relaxation. Phys Rev A 48: 4411–4420PubMedCrossRefGoogle Scholar
  50. Ogawa S, Lee TM, Kay AR et al. (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  51. Ohno Y, Chen Q, Hatabu H (2001a) Oxygen-enhanced magnetic resonance ventilation imaging of lung. Eur J Radiol 37:164–171PubMedCrossRefGoogle Scholar
  52. Ohno Y, Hatabu H, Takenaka D et al. (2001b) Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol 177:185–194PubMedGoogle Scholar
  53. Ohno Y, Hatabu H, Takenaka D et al. (2002) Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med 47:1139–1144PubMedCrossRefGoogle Scholar
  54. Olsson L, Magnusson P, Deninger A et al. (2002) Intrapulmonary pO2 measured by low field MR imaging of hyperpolarized 3He. Proceedings of the International Society of Magnetic Resonance Medicine 10:2021Google Scholar
  55. Pratt RG, Zheng J, Stewart BK et al. (1997) Application of a 3D volume 19F MR imaging protocol for mapping oxygen tension (pO2) in perfluorocarbons at low field. Magn Reson Med 37:307–313PubMedCrossRefGoogle Scholar
  56. Quintel M, Meinhardt J, Waschke KF (1998) Partial liquid ventilation. Anaesthesist 47:479–489PubMedCrossRefGoogle Scholar
  57. Riley RL, Cournand A (1949) “Ideal” alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol 1:825–847PubMedGoogle Scholar
  58. Rinck PA, Petersen SB, Lauterbur PC (1984) NMR imaging of fluorine-containing substances. 19-Fluorine ventilation and perfusion studies. ROFO Fortschr Geb Rontgenstr Nuklearmed 140:239–243PubMedCrossRefGoogle Scholar
  59. Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP III (2000) Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med 44:349–357PubMedCrossRefGoogle Scholar
  60. Saam B, Happer W, Middleton H (1995) Nuclear relaxation of 3He in the presence of O2. Phys Rev A 52:862–865PubMedCrossRefGoogle Scholar
  61. Saam BT, Yablonskiy DA, Kodibagkar VD et al. (2000) MR imaging of diffusion of (3)He gas in healthy and diseased lungs. Magn Reson Med 44:174–179PubMedCrossRefGoogle Scholar
  62. Sakai K, Bilek AM, Oteiza E et al. (1996) Temporal dynamics of hyperpolarized 129Xe resonances in living rats. J Magn Reson Ser B 111:300–304CrossRefGoogle Scholar
  63. Salerno M, Altes TA, Brookeman JR et al. (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46:667–677PubMedCrossRefGoogle Scholar
  64. Samaratunga RC, Pratt RG, Zhu Y et al. (1994) Implementation of a modified birdcage resonator for 19F/1H MRI at low fields (0.14 T). Med Phys 21:697–705PubMedCrossRefGoogle Scholar
  65. Schearer L, Walters G (1965) Nuclear spin-lattice relaxation in the presence of magnetic field gradients. Phys Rev A 139: 1398–1402Google Scholar
  66. Schreiber WG, Markstaller K, Weiler N et al. (2000a) 19F-MRT of pulmonary ventilation in the breath-hold technic using SF6 gas. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:500–503PubMedCrossRefGoogle Scholar
  67. Schreiber WG, Weiler N, Kauczor HU et al. (2000b) Ultraschnelle MRT der Lungenventilation mittels hochpolarisiertem Helium-3. RoFo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:129–133PubMedCrossRefGoogle Scholar
  68. Schreiber WG, Eberle B, Laukemper-Ostendorf S et al. (2001) Dynamic (19)F-MRI of pulmonary ventilation using sulfur hexafluoride (SF(6)) gas. Magn Reson Med 45:605–613PubMedCrossRefGoogle Scholar
  69. Stock KW, Chen Q, Morrin M et al. (1999) Oxygen-enhanced magnetic resonance ventilation imaging of the human lung at 0.2 and 1.5 T. J Magn Reson Imaging 9:838–841PubMedCrossRefGoogle Scholar
  70. Surkau R, Becker J, Ebert M et al. (1997) Realization of a broad band neutron spin filter with compressed polarized 3He gas. Nucl Instr Methods A 384:444–450CrossRefGoogle Scholar
  71. Swanson SD, Rosen MS, Agranoff BW et al. (1997) Brain MRI with laser-polarized 129Xe. Magn Reson Med 38:695–698PubMedCrossRefGoogle Scholar
  72. Swanson SD, Rosen MS, Coulter KP et al. (1999) Distribution and dynamics of laser-polarized 129Xe magnetization in vivo. Magn Reson Med 42:1137–1145PubMedCrossRefGoogle Scholar
  73. Thomas SR, Clark LC, Ackerman JL et al. (1986) MR imaging of the lung using liquid perfluorocarbons. J Comput Assist Tomogr 10:1–9PubMedCrossRefGoogle Scholar
  74. Thomas SR, Millard RW, Pratt RG et al. (1994) Quantitative pO2 imaging in vivo with perfluorocarbon F-19 NMR: tracking oxygen from the airway through the blood to organ tissues. Artif Cells Blood Substit Immobil Biotechnol 22:1029–1042PubMedCrossRefGoogle Scholar
  75. Thomas SR, Gradon L, Pratsinis SE et al. (1997) Perfluorocarbon compound aerosols for delivery to the lung as potential 19F magnetic resonance reporters of regional pulmonary pO2. Invest Radiol 32:29–38PubMedCrossRefGoogle Scholar
  76. Tseng CH, Peled S, Nascimben L et al. (1997) NMR of laser-polarized 129Xe in blood foam. J Magn Reson 126:79–86PubMedCrossRefGoogle Scholar
  77. Venegas JG (1998) Noninvasive measurement of local VA, Q, and VA/Q distributions by PET. In: Hlastala M, Robertson HT (eds) Complexity in structure and function of the lung. Lung biology in health and disease. Dekker, New York, pp 483–508Google Scholar
  78. Vidal Melo MF, Harris RS, Layfield D et al. (2002) Changes in regional ventilation after autologous blood clot pulmonary embolism. Anesthesiology 97:671–681Google Scholar
  79. Wagner PD (1998) Ventilation, pulmonary blood flow, and ventilation-perfusion relationships. In: Fishman AP (ed) Pulmonary diseases and disorders, 3rd edn. McGraw-Hill, New York, pp 177–192Google Scholar
  80. Wagner PD, Saltzman HA, West JB (1974) Measurement of continuous distribution of ventilation-perfusion ratios: theory. J Appl Physiol 36:507–514Google Scholar
  81. Weibel ER (1970) Anatomical distribution of air channels, blood vessels, and tissue in the lung. In: Arcangeli P (ed) Normal values for respiratory function in man. Panminerva Medica, MilanGoogle Scholar
  82. West JB, Dollery CT (1960) Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO2. J Appl Physiol 15:405–410PubMedGoogle Scholar
  83. Wilson GJ, Santyr GE, Anderson ME et al. (1999) Longitudinal relaxation times of 129Xe in rat tissue homogenates at 9.4 T. Magn Reson Med 41:933–938PubMedCrossRefGoogle Scholar
  84. Wolber J, Cherubini A, Dzik-Jurasz AS et al. (1999) Spin-lattice relaxation of laser-polarized xenon in human blood. Proc Natl Acad Sei USA 96:3664–3669CrossRefGoogle Scholar
  85. Wolber J, Cherubini A, Leach MO et al. (2000) Hyperpolarized 129Xe NMR as a probe for blood oxygenation. Magn Reson Med 43:491–496PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Balthasar Eberle
    • 1
  • Hans-Ulrich Kauczor
    • 2
  1. 1.Institut für Anästhesiologie der Universität und des Inselspitals BernBernSwitzerland
  2. 2.Innovative Krebsdiagnostik und TherapieDeutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany

Personalised recommendations