Skip to main content

Carcinogens Target Cell Respiration and Induce Glycolysis

  • Chapter
Cancer — Between Glycolysis and Physical Constraint
  • 72 Accesses

Abstract

Genetic instability has been implicated prominently in tumor formation. The main evidence comes first from the discovery of chromosomal aberrations and then from mutations of oncogenes or tumor suppressor genes. These anomalies of the genome are usually not a primary event but secondary to stress of extracellular origin such as hypoxia or physical constraints. Carcinogens (either viral, chemical, or physical) target cell respiration and induce glycolysis. Thus carcinogens mimic hypoxia and induce mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Volpe JP (1992) Can a non-tumorigenic dose of carcinogen cause two or more errors in a cell? Cancer Lett 64:91–97

    Article  PubMed  CAS  Google Scholar 

  2. Field JK (1992) Oncogenes and tumour-suppressor genes in squamous cell carcinoma of the head and neck. Eur J Cancer B Oral Oncol 28B: 67–76

    Article  PubMed  CAS  Google Scholar 

  3. Hahn WC, Weinberg RA (2002) Mechanism of diseases:Rules for making human tumor cells. N E J M 347:1593–1603

    Article  CAS  Google Scholar 

  4. Dollé ME, Snyder W, Dunson DB, Vijg J (2002) Mutational fingerprints of aging. Nucleic Acids Res 30:545–549

    Article  PubMed  Google Scholar 

  5. McKenzie GJ, Harris RS, Lee PL, Rosenberg SM. The SOS response regulates adaptive mutation. Proc Natl Acad Sci USA 97:6646–6651

    Google Scholar 

  6. Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105

    Article  PubMed  CAS  Google Scholar 

  7. Honda Y, Honda S (2002) Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 959:466–474

    Article  PubMed  CAS  Google Scholar 

  8. Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment. Cancer Research 56:5754–5757

    Google Scholar 

  9. Rockwell S, Yuan J, Peretz S, Glazer PM (2001) Genomic instability in cancer. Novartis Found Symp 240:133–142

    Article  PubMed  CAS  Google Scholar 

  10. Pouyssegur J, Franchi A, Pages G (2001) pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Found Symp 240: 186–196

    Article  PubMed  CAS  Google Scholar 

  11. Royds JA, Dower SK, Qwarnstrom EE, Lewis CE (1998) Response of tumour cells to hypoxia: role of p53 and NFkB. Mol Pathol 51:55–61

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi S, Ikeda Y, Okochi E, Cui L, Nagao M, Shirai T (2000) Mutation induction by mechanical irritation caused by uracil induced urolithiasis in Big Blue rats. Mutat Res 447:275–280

    Article  PubMed  CAS  Google Scholar 

  13. Xu Q, Schett G, Li C, Hu Y, Wick G (2000) Mechanical stress-induced heat shock protein 70 expression in vascular smooth muscle cells is regulated by Rac and Ras small G proteins but not mitogen-activated protein kinases. Circ Res 86:1122–1128

    Article  PubMed  CAS  Google Scholar 

  14. Basnakian IA, Bondarenko VM, Melnikova VA, Beliavskaia VA (2001) Stress-inducible bacterial proteins and virulence Zh Mikrobiol Epidemiol Immunobiol 5:101–108

    Google Scholar 

  15. Hecker M, Volker U (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91

    Article  PubMed  CAS  Google Scholar 

  16. Rickley TM, Belknap WR (1991) Comparison of the expression of several stress responsive genes in potato tubers. Plant Mol Biol 16:1009–1018

    Article  Google Scholar 

  17. Ikeda T, Abe K, Ota A, Ikenoue T (1999) Heat shock protein 70 and heat shock cognate protein 70 messenger ribonucleic acid induction in the brains, hearts, and livers of neonatal rats after hypoxic stress. Am J Obstet Gynecol 180: 457–461

    Article  PubMed  CAS  Google Scholar 

  18. Nishizawa J, Nakai A, Komeda M, Ban T, Nagata K (2002) Increased preload directly induces the activation of heat shock transcription factor 1 in the left ventricular overloaded heart. Cardiovasc Res 55:341–348

    Article  PubMed  CAS  Google Scholar 

  19. Smith S, Stuber F, Schroeder S (2001) Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. Intensive Care Med 27:1835–1841

    Article  Google Scholar 

  20. Chang J, Wasser JS, Cornelussen RN, Knowlton AA (2001) Activation of heat-shock factor by stretch-activated channels in rat hearts. Circulation 104: 209–214

    Article  PubMed  CAS  Google Scholar 

  21. Ruddock LW, Klappa P (1999) Oxidative stress: protein folding with a novel redox switch. Curr Biol 9: R400–402

    Article  PubMed  CAS  Google Scholar 

  22. Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379:19–26

    PubMed  CAS  Google Scholar 

  23. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven A, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    PubMed  CAS  Google Scholar 

  24. Wong HR (1998) Potential protective role of the heat shock response in sepsis. New Horiz 6:194–200

    PubMed  CAS  Google Scholar 

  25. Rutherford SL, Lindquist S (1998) Hsp 90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  PubMed  CAS  Google Scholar 

  26. Rakitsky VN, Koblyakov VA, Turusov VS (2000) Nongenotoxic (epigenetic) carcinogens: pesticides as an example. A critical review. Teratog Carcinog Mutagen 20:229–240

    Article  CAS  Google Scholar 

  27. Weber LP, Janz DM (2001) Effect of beta-naphthoflavone and dimethylbenz[a] anthracene on apoptosis and HSP70 expression in juvenile channel catfish ovary. Aquat Toxicol 54:39–50

    Article  PubMed  CAS  Google Scholar 

  28. Salminen WF Jr, Voellmy R, Roberts SM (1996) Induction of Hsp 70 in HepG2 cells in response to hepatotoxicants. Toxicol Appl Pharmacol 141:117–123

    PubMed  CAS  Google Scholar 

  29. Mairesse N, Delhaye M, Galand P (1990) Enhanced expression of a 27 kD protein during diethylnitrosamine-induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun 170:908–914

    Article  PubMed  CAS  Google Scholar 

  30. Lindeman B, Skarpen E, Huitfeldt HS (1998) Stress protein expression in rat liver during tumour promotion: induction of heat-shock protein 27 in hepatocytes exposed to 2-acetylaminofluorene. Carcinogenesis 19:1559–1563

    Article  PubMed  CAS  Google Scholar 

  31. Calabrese V, Renis M, Calderone A, Russo A, Reale S, Barcellona ML, Rizza V (1998) Stress proteins and SH-groups in oxidant-induced cellular injury after chronic ethanol administration in rat. Free Radie Biol Med 24:1159–1167

    Article  CAS  Google Scholar 

  32. Warburg O (1956) “On The Origin of Cancer Cells.” Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  33. Weber MJ, Evans PK, Johnson MA, McNair TF, Nakamura KD, Salter DW (1984) Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus. Fed Proc 43:107–112

    PubMed  CAS  Google Scholar 

  34. Marchand MJ, Maisin L, Hue L, Rousseau GG (1992) Activation of 6-phospho-fructo-2-kinase by pp6o v-src is an indirect effect. Biochem J 285:413–417

    PubMed  CAS  Google Scholar 

  35. Rady P, Arany I, Bojan F, Kertai P (1980) Effect of carcinogenic and non-carcinogenic chemicals on the activities of four glycolytic enzymes in mouse lung. Chem Biol Interact 31:209–213

    Article  PubMed  CAS  Google Scholar 

  36. Zhou R, Vander Heiden MG, Rudin CM (2002) Genotoxic exposure is associated with alterations in glucose uptake and metabolism. Cancer Res 62: 3515–3520

    PubMed  CAS  Google Scholar 

  37. Beck EG (1976) Interaction between fibrous dust and cells in vitro. Ann Anat Pathol (Paris) 21:227–236

    CAS  Google Scholar 

  38. Bhat HK (2002) Depletion of mitochondrial DNA and enzyme in estrogeninduced hamster kidney tumors: a rodent model of hormonal carcinogenesis. J Biochem Mol Toxicol 16:1–9

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt JV, Bradfield CA (1996) AH receptor signaling pathways. Annu Rev-Cell Dev Biol 12:55–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwartz, L. (2004). Carcinogens Target Cell Respiration and Induce Glycolysis. In: Cancer — Between Glycolysis and Physical Constraint. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18543-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18543-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20496-1

  • Online ISBN: 978-3-642-18543-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics