Skip to main content

Introduction and Background Information

  • Chapter
Biotransformations in Organic Chemistry
  • 293 Accesses

Abstract

Any exponents of classical organic chemistry will probably hesitate to consider a biochemical solution for one of their synthetic problems. This would be due, very often, to the fact, that biological systems would have to be handled. Where the growth and maintainance of whole microorganisms is concerned, such hesitation is probably justified. In order to save endless frustrations, close collaboration with a biochemist is highly recommended to set up and use fermentation systems [1, 2]. On the other hand, isolated enzymes (which may be obtained increasingly easily from commercial sources either in a crude or partially purified form) can be handled like any other chemical catalyst [3]. Due to the enormous complexity of biochemical reactions compared to the repertoire of classical organic reactions, it follows that most of the methods described will have a strong empirical aspect. This ‘black box’ approach may not entirely satisfy the scientific purists, but as organic chemists are rather prone to be pragmatists, they may accept that the understanding of a biochemical reaction mechanism is not a conditio sine qua non for the success of a biotransformation [4]. in other words, a lack of understanding of biochemical reactions should never deter us from using them if their usefulness has been established. Notwithstanding, it is undoubtedly an advantage to have an acquaintance with basic biochemistry, and with enzymology in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goodhue CT (1982) Microb. Transform. Bioact. Compd. 1: 9

    CAS  Google Scholar 

  2. Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Introduction to Biocatalysis Using Enzymes and Micro-organisms, Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. The majority of commonly used enzyme preparations are available through chemical suppliers. Nevertheless, for economic reasons, it may be worth contacting an enzyme producer directly, in particular if bulk quantities are required. For a list of enzyme suppliers see the appendix.

    Google Scholar 

  4. After all, the exact structure of a Grignard-reagent is still unknown.

    Google Scholar 

  5. Baross JA, Deming JW (1983) Nature 303: 423

    Article  CAS  Google Scholar 

  6. Hough DW. Danson MJ (1999) Curr. Opinion Chem. Biol. 3: 39

    Article  CAS  Google Scholar 

  7. Prieur D (1997) Trends Biotechnol. 15: 242

    Article  CAS  Google Scholar 

  8. Feyerabend P (1988) Against Method, Verso, London

    Google Scholar 

  9. Laane C, Boeren S, Vos K, Veeger C (1987) Biotechnol. Bioeng. 30: 81

    Article  CAS  Google Scholar 

  10. Carrca G, Otlolina G, Riva S (1995) Trends Biotechnol. 13: 63

    Article  Google Scholar 

  11. Bell G. Hailing PJ, Moore BD. Partridge J. Rees DG (1995) Trends Biotechnol. 13: 468

    Article  CAS  Google Scholar 

  12. Koskinen AMP, Klibanov AM (eds) (1996) Enzymatic Reactions in Organic Media, Blackie Academic & Professional, London

    Google Scholar 

  13. Gutman AL, Shapira M (1995) Synthetic Applications of Enzymatic Reactions in Organic Solvents. In: Fiechter A (ed) Adv. Biochem. Eng. Biotechnol., vol 52, pp 87–128, Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Menger FM (1993) Acc. Chem. Res. 26: 206

    Article  CAS  Google Scholar 

  15. Only proteases are exceptions to this rule for obvious reasons.

    Google Scholar 

  16. Sih CJ, Abushanab E, Jones JB (1977) Ann. Rep. Med. Chem. 12: 298

    Article  CAS  Google Scholar 

  17. Boland W, Fröβl C, Lorenz M (1991) Synthesis 1049

    Google Scholar 

  18. Schmidt-Kastner G, Egerer P (1984) Amino Acids and Peptides. In: Kieslich K (ed) Biotechnology, Verlag Chemie, Weinheim, vol 6a, pp 387–419

    Google Scholar 

  19. Gutman AL, Zuobi K, Guibe-Jampel E (1990) Tetrahedron Lett. 31: 2037

    Article  CAS  Google Scholar 

  20. Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) J. Chem. Soc, Chem. Commun. 1120

    Google Scholar 

  21. Zhang D, Pouller CD (1993) J. Am. Chem. Soc. 115: 1270

    Article  CAS  Google Scholar 

  22. Yamamoto Y, Yamamoto K, Nishioka T, Oda J (1988) Agric. Biol. Chem. 52: 3087

    Article  CAS  Google Scholar 

  23. Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol. 10: 256

    Article  CAS  Google Scholar 

  24. Nagasawa T, Yamada H (1989) Trends Biotechnol. 7: 153

    Article  CAS  Google Scholar 

  25. Mansuy D, Battoni P (1989) Alkane Functionalization by Cytochromes P-450 and by Model Systems Using O2 or H2O2. In: Hill CL (ed) Activation and Functionalization of Alkanes, Wiley, New York

    Google Scholar 

  26. May SW (1979) Enzyme Microb. Technol. 1:15

    Article  CAS  Google Scholar 

  27. Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN (1991) J. Am. Chem. Soc. 113; 667

    Article  Google Scholar 

  28. Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett. 26: 4527

    Article  CAS  Google Scholar 

  29. Walsh CT, Chen Y-C J (1988) Angew. Chem., Int. Ed. Engl. 27: 333

    Article  Google Scholar 

  30. Servi S (1990) Synthesis 1

    Google Scholar 

  31. Phillips RS, May SW (1981) Enzyme Microb. Technol. 3: 9

    Article  CAS  Google Scholar 

  32. Findeis MH, Whitesides GM (1987) J. Org. Chem. 52: 2838

    Article  CAS  Google Scholar 

  33. Akbtar M, Botting NB, Cohen MA, Gani D (1987) Tetrahedron 43: 5899

    Article  Google Scholar 

  34. Effenberger F, Ziegler Th (1987) Angew. Chem., Int. Ed. Engl. 26: 458

    Article  Google Scholar 

  35. Neidleman SL, Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications, Ellis Horwood Ltd., Chichester

    Google Scholar 

  36. Buist PH, Dimnik GP (1986) Tetrahedron Lett. 27: 1457

    Article  CAS  Google Scholar 

  37. Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Tetrahedron 54: 8841

    Article  CAS  Google Scholar 

  38. Ohta H (1999) Adv. Biochem. Eng. Biotechnol. 63: 1

    CAS  Google Scholar 

  39. Schwab JM, Henderson BS (1990) Chem. Rev. 90: 1203

    Article  CAS  Google Scholar 

  40. Fuganti C, Grasselli P (1988) Baker’s Yeast Mediated Synthesis of Natural Products. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in Agricultural Biotechnology, ACS Symposium Series, vol 389, pp 359–370

    Google Scholar 

  41. Toone EJ, Simon ES, Bednarski MD, Whitesides GM (1989) Tetrahedron 45: 5365

    Article  CAS  Google Scholar 

  42. Kitazume T, Ikeya T, Murata K (1986) J. Chem. Soc, Chem. Commun. 1331

    Google Scholar 

  43. Williams RM (2002) Chem Pharm Bull 50: 711

    Article  CAS  Google Scholar 

  44. Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) J. Chem. Soc, Chem. Commun. 1321

    Google Scholar 

  45. Pohnert G (2001) Chem Bio Chem 2: 873

    CAS  Google Scholar 

  46. Abe I, Rohmer M, Prestwich GD (1993) Chem. Rev. 93: 2189

    Article  CAS  Google Scholar 

  47. Ganem B (1996) Angew. Chem. 108: 1014

    Article  Google Scholar 

  48. Sweers HM, Wong C-H (1986) J. Am. Chem. Soc. 108: 6421

    Article  CAS  Google Scholar 

  49. Bashir NB, Phythian SJ. Reason AJ, Roberts SM (1995) J. Chem. Soc, Perkin Trans. 1, 2203

    Article  Google Scholar 

  50. For exceptional D-chiral proteins see: Jung G (1992) Angew. Chem., Int. Ed. Enel. 31: 1457

    Article  Google Scholar 

  51. Sib CJ, Wu S-H (1989) Topics Stereochem. 19: 63

    Article  Google Scholar 

  52. Fischer E (1898) Zeitschr. physiol. Chem. 26: 60

    Article  CAS  Google Scholar 

  53. Crossley R (1992) Tetrahedron 48: 8155

    Article  CAS  Google Scholar 

  54. De Camp WH ( 1989) Chirality 1: 2

    Article  Google Scholar 

  55. According to a BBC-report, the sale of rao-Thalidomide to third-world countries has been resumed in mid-1996!

    Google Scholar 

  56. Ariens EJ (1988) Stereospecificity of Bioactive Agents. In: Ariens EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of Pesticides, Elsevier, Amsterdam, pp 39–108

    Google Scholar 

  57. Crosby J (1997) Introduction. In: Chirality in Industry II, Collins AN, Sheldrake GN, Crosby J (eds), pp 1–10, Wiley, Chichester

    Google Scholar 

  58. Millership JS, Fitzpatrick A (1993) Chirality 5: 573

    Article  CAS  Google Scholar 

  59. Borman S (1992) Chem. Eng. News, June 15:5

    Google Scholar 

  60. FDA (1992) Chirality 4: 338

    Article  Google Scholar 

  61. Sheldon RA (1993) Chirotechnology, Marcel Dekker Inc., New York

    Google Scholar 

  62. Collins AN, Sheldrake GN, Crosby J (eds) (1992, 1997) Chirality in Industry, 2 vols, Wiley, Chichester

    Google Scholar 

  63. Morrison JD (ed) (1985) Chiral Catalysis. In: Asymmetric Synthesis, vol 5, Academic Press, London

    Google Scholar 

  64. Hanessian S (1983) Total Synthesis of Natural Products: the ‘Chiron’ Approach, Pergamon Press, Oxford

    Google Scholar 

  65. Scott JW (1984) Readily Available Chiral Carbon Fragments and their Use in Synthesis. In: Morrison JD, Scott JW (eds) Asymmetric Synthesis, Academic Press, New York, vol 4, pp 1–226

    Google Scholar 

  66. Margolin AL (1993) Enzyme Microb. Technol. 15: 266

    Article  CAS  Google Scholar 

  67. Phillips, RS (1996) Trends Biotechnol. 14: 13

    Article  CAS  Google Scholar 

  68. Schuster M, Aaviksaar A, Jakubke H-D (1990) Tetrahedron 46: 8093

    Article  CAS  Google Scholar 

  69. Yeh Y, Feeney (1996) Chem. Rev. 96: 601

    Article  CAS  Google Scholar 

  70. Klibanov AM (1990) Acc. Chem. Res. 23: 114

    Article  CAS  Google Scholar 

  71. For a convenient method for controlling the substrate concentration see: D’Arrigo P. Fuganti C, Pedrocchi-Fantoni G, Servi S (1998) Tetrahedron 54: 15017

    Article  Google Scholar 

  72. Anfinsen CB (1973) Science 181: 223

    Article  CAS  Google Scholar 

  73. The amino acid sequence of a protein is generally referred to as its ‘primary structure’, whereas the three-dimensional arrangement of the polyamide chain (the ‘backbone’) in space is called the’ secondary structure’. The ‘tertiary structure’ includes the arrangement of all atoms, i.e. the amino acid side chains are included, whereas the ‘quartemary structure’ describes the aggregation of several protein molecules to form oligomers.

    Google Scholar 

  74. Cooke R, Kuntz ID (1974) Ann. Rev. Biophys. Bioeng. 3: 95

    Article  CAS  Google Scholar 

  75. Water bound to an enzyme’s surface exhibits a (formai) freezing point of about —20° C.

    Google Scholar 

  76. Also called London-forces

    Google Scholar 

  77. Also called Coulomb-interactions.

    Google Scholar 

  78. Ahern TJ, Klibanov AM (1985) Science 228: 1280

    Article  CAS  Google Scholar 

  79. Adams MWW, Kelly RM (1998) Trends Biotechnol. 16: 329

    Article  CAS  Google Scholar 

  80. Mozhaev VV, Martinek K (1984) Enzyme Microb. Technol. 6: 50

    Article  CAS  Google Scholar 

  81. Jencks WP (1969) Catalysis in Chemistry and Enzymology, McGraw-Hill, New-York

    Google Scholar 

  82. Fersht A (1985) Enzyme Structure and Mechanism, 2nd edition, Freeman, New York

    Google Scholar 

  83. Walsh C (ed) (1979) Enzymatic Reaction Mechanism, Freeman, San Francisco

    Google Scholar 

  84. Fischer E (1894) Ber. dtsch. chem. Ges. 27: 2985

    Article  CAS  Google Scholar 

  85. Koshland DE, Neet KE (1968) Ann. Rev. Biochem. 37: 359

    Article  CAS  Google Scholar 

  86. Dewar MJS (1986) Enzyme 36: 8

    CAS  Google Scholar 

  87. A ‘record’ of rate acceleration factor of 1014 has been reported. See: Lipscomb WN (1982) Acc. Chem. Res. 15:232

    Article  CAS  Google Scholar 

  88. Warshel A. Aqvist J, Creighton S (1989) Proc. Natl. Acad. Sci. 86: 5820

    Article  CAS  Google Scholar 

  89. Johnson LN (1984) Inclusion Compds. 3: 509

    CAS  Google Scholar 

  90. Ogston AG ( 1948) Nature 162: 963

    Article  CAS  Google Scholar 

  91. The following rationale was adapted from: Jones JB (1976) Biochemical Systems in Organic Chemistry: Concepts, Principles and Opportunities. In: Jones JB, Sih CJ. Perlman D (eds) Applications of Biochemical Systems in Organic Chemistry, part 1, Wiley, New York, pp 1–46

    Google Scholar 

  92. Cipiciani A, Fringuelli F, Mancini V, Piermatti O, Scappini AM, Ruzziconi R (1997) Tetrahedron 53: 11853

    Article  CAS  Google Scholar 

  93. Kielbasinski P, Goralczyk P, Mikolajczyk M, Wieczorek MW, Majzner WR (1998) Tetrahedron: Asymmetry 9: 2641

    Article  CAS  Google Scholar 

  94. Eyring H (1935) J. Chem. Phys. 3: 107

    Article  CAS  Google Scholar 

  95. Kraut J (1988) Science 242: 533

    Article  CAS  Google Scholar 

  96. Wong C-H (1989) Science 244: 1145

    Article  CAS  Google Scholar 

  97. Wolfenden R (1999) Bioorg. Med. Chem. 7: 647

    Article  CAS  Google Scholar 

  98. The individual reaction rates vA and VB correspond to VA = (kcat / Km)A · [E] · [A] and VB = (kcat / Km)B · [E] · [B], respectively, according to Michaelis-Menten kinetics. The ratio of the individual reaction rates is an important parameter for the description of the enantioselectivity of a reaction: VA / vB = E (‘Enantiomeric Ratio’, see Chapter 2.1.1).

    Google Scholar 

  99. Internationa] Union of Biochemistry and Molecular Biology (1992) Enzyme Nomenclature, Academic Press, New York

    Google Scholar 

  100. Schomburg D (ed) (2002) Enzyme Handbook, Springer, Heidelberg

    Google Scholar 

  101. Appel RD, Bairoch A, Hochslrasser DF (1994) Trends Biochem. Sci. 19: 258

    Article  CAS  Google Scholar 

  102. Bairoch A (1999) Nucl Acids Res 27: 310; <http://www.expasy.ch/enzyme/>

    Article  CAS  Google Scholar 

  103. Kindel S (1981) Technology 1: 62

    Google Scholar 

  104. Crout DHG, Christen M (1989) Biotransformations in Organic Synthesis. In: Scheffold R (ed) Modern Synthetic Methods, vol 5, pp 1–114

    Google Scholar 

  105. Based on the biotransformation database Faber K (2003) ~12 000 entries.

    Google Scholar 

  106. Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem., Int. Ed. Engl. 24: 539

    Article  Google Scholar 

  107. A ‘cofactor’ is tightly bound to an enzyme (e.g. FAD), whereas a ‘coenzyme’ can dissociate into the medium (e.g. NADH). In practice, however, this distinction is not always made in a consequent manner.

    Google Scholar 

  108. Chaplin MF, Bucke C (1990) Enzyme Technology, Cambridge University Press, New York

    Google Scholar 

  109. White JS, White DC (1997) Source Book of Enzymes, CRC Press, Boca Raton

    Google Scholar 

  110. Spradlin JE (1989) Tailoring Enzymes for Food Processing, Whitaker JR, Sonnet PE (eds) ACS Symposium Series, vol 389, p 24, J. Am. Chem. Soc, Washington 29–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faber, K. (2004). Introduction and Background Information. In: Biotransformations in Organic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18537-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18537-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20097-0

  • Online ISBN: 978-3-642-18537-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics