Introduction and Background Information

  • Kurt Faber


Any exponents of classical organic chemistry will probably hesitate to consider a biochemical solution for one of their synthetic problems. This would be due, very often, to the fact, that biological systems would have to be handled. Where the growth and maintainance of whole microorganisms is concerned, such hesitation is probably justified. In order to save endless frustrations, close collaboration with a biochemist is highly recommended to set up and use fermentation systems [1, 2]. On the other hand, isolated enzymes (which may be obtained increasingly easily from commercial sources either in a crude or partially purified form) can be handled like any other chemical catalyst [3]. Due to the enormous complexity of biochemical reactions compared to the repertoire of classical organic reactions, it follows that most of the methods described will have a strong empirical aspect. This ‘black box’ approach may not entirely satisfy the scientific purists, but as organic chemists are rather prone to be pragmatists, they may accept that the understanding of a biochemical reaction mechanism is not a conditio sine qua non for the success of a biotransformation [4]. in other words, a lack of understanding of biochemical reactions should never deter us from using them if their usefulness has been established. Notwithstanding, it is undoubtedly an advantage to have an acquaintance with basic biochemistry, and with enzymology in particular.


Enzyme Property Chemical Catalyst Chemical Operator Catalytic Power Conditio Sine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodhue CT (1982) Microb. Transform. Bioact. Compd. 1: 9Google Scholar
  2. 2.
    Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Introduction to Biocatalysis Using Enzymes and Micro-organisms, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    The majority of commonly used enzyme preparations are available through chemical suppliers. Nevertheless, for economic reasons, it may be worth contacting an enzyme producer directly, in particular if bulk quantities are required. For a list of enzyme suppliers see the appendix.Google Scholar
  4. 4.
    After all, the exact structure of a Grignard-reagent is still unknown.Google Scholar
  5. 5.
    Baross JA, Deming JW (1983) Nature 303: 423CrossRefGoogle Scholar
  6. 6.
    Hough DW. Danson MJ (1999) Curr. Opinion Chem. Biol. 3: 39CrossRefGoogle Scholar
  7. 7.
    Prieur D (1997) Trends Biotechnol. 15: 242CrossRefGoogle Scholar
  8. 8.
    Feyerabend P (1988) Against Method, Verso, LondonGoogle Scholar
  9. 9.
    Laane C, Boeren S, Vos K, Veeger C (1987) Biotechnol. Bioeng. 30: 81CrossRefGoogle Scholar
  10. 10.
    Carrca G, Otlolina G, Riva S (1995) Trends Biotechnol. 13: 63CrossRefGoogle Scholar
  11. 11.
    Bell G. Hailing PJ, Moore BD. Partridge J. Rees DG (1995) Trends Biotechnol. 13: 468CrossRefGoogle Scholar
  12. 12.
    Koskinen AMP, Klibanov AM (eds) (1996) Enzymatic Reactions in Organic Media, Blackie Academic & Professional, LondonGoogle Scholar
  13. 13.
    Gutman AL, Shapira M (1995) Synthetic Applications of Enzymatic Reactions in Organic Solvents. In: Fiechter A (ed) Adv. Biochem. Eng. Biotechnol., vol 52, pp 87–128, Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. 14.
    Menger FM (1993) Acc. Chem. Res. 26: 206CrossRefGoogle Scholar
  15. 15.
    Only proteases are exceptions to this rule for obvious reasons.Google Scholar
  16. 16.
    Sih CJ, Abushanab E, Jones JB (1977) Ann. Rep. Med. Chem. 12: 298CrossRefGoogle Scholar
  17. 17.
    Boland W, Fröβl C, Lorenz M (1991) Synthesis 1049Google Scholar
  18. 18.
    Schmidt-Kastner G, Egerer P (1984) Amino Acids and Peptides. In: Kieslich K (ed) Biotechnology, Verlag Chemie, Weinheim, vol 6a, pp 387–419Google Scholar
  19. 19.
    Gutman AL, Zuobi K, Guibe-Jampel E (1990) Tetrahedron Lett. 31: 2037CrossRefGoogle Scholar
  20. 20.
    Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) J. Chem. Soc, Chem. Commun. 1120Google Scholar
  21. 21.
    Zhang D, Pouller CD (1993) J. Am. Chem. Soc. 115: 1270CrossRefGoogle Scholar
  22. 22.
    Yamamoto Y, Yamamoto K, Nishioka T, Oda J (1988) Agric. Biol. Chem. 52: 3087CrossRefGoogle Scholar
  23. 23.
    Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol. 10: 256CrossRefGoogle Scholar
  24. 24.
    Nagasawa T, Yamada H (1989) Trends Biotechnol. 7: 153CrossRefGoogle Scholar
  25. 25.
    Mansuy D, Battoni P (1989) Alkane Functionalization by Cytochromes P-450 and by Model Systems Using O2 or H2O2. In: Hill CL (ed) Activation and Functionalization of Alkanes, Wiley, New YorkGoogle Scholar
  26. 26.
    May SW (1979) Enzyme Microb. Technol. 1:15CrossRefGoogle Scholar
  27. 27.
    Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN (1991) J. Am. Chem. Soc. 113; 667CrossRefGoogle Scholar
  28. 28.
    Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett. 26: 4527CrossRefGoogle Scholar
  29. 29.
    Walsh CT, Chen Y-C J (1988) Angew. Chem., Int. Ed. Engl. 27: 333CrossRefGoogle Scholar
  30. 30.
    Servi S (1990) Synthesis 1Google Scholar
  31. 31.
    Phillips RS, May SW (1981) Enzyme Microb. Technol. 3: 9CrossRefGoogle Scholar
  32. 32.
    Findeis MH, Whitesides GM (1987) J. Org. Chem. 52: 2838CrossRefGoogle Scholar
  33. 33.
    Akbtar M, Botting NB, Cohen MA, Gani D (1987) Tetrahedron 43: 5899CrossRefGoogle Scholar
  34. 34.
    Effenberger F, Ziegler Th (1987) Angew. Chem., Int. Ed. Engl. 26: 458CrossRefGoogle Scholar
  35. 35.
    Neidleman SL, Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications, Ellis Horwood Ltd., ChichesterGoogle Scholar
  36. 36.
    Buist PH, Dimnik GP (1986) Tetrahedron Lett. 27: 1457CrossRefGoogle Scholar
  37. 37.
    Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Tetrahedron 54: 8841CrossRefGoogle Scholar
  38. 38.
    Ohta H (1999) Adv. Biochem. Eng. Biotechnol. 63: 1Google Scholar
  39. 39.
    Schwab JM, Henderson BS (1990) Chem. Rev. 90: 1203CrossRefGoogle Scholar
  40. 40.
    Fuganti C, Grasselli P (1988) Baker’s Yeast Mediated Synthesis of Natural Products. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in Agricultural Biotechnology, ACS Symposium Series, vol 389, pp 359–370Google Scholar
  41. 41.
    Toone EJ, Simon ES, Bednarski MD, Whitesides GM (1989) Tetrahedron 45: 5365CrossRefGoogle Scholar
  42. 42.
    Kitazume T, Ikeya T, Murata K (1986) J. Chem. Soc, Chem. Commun. 1331Google Scholar
  43. 43.
    Williams RM (2002) Chem Pharm Bull 50: 711CrossRefGoogle Scholar
  44. 44.
    Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) J. Chem. Soc, Chem. Commun. 1321Google Scholar
  45. 45.
    Pohnert G (2001) Chem Bio Chem 2: 873Google Scholar
  46. 46.
    Abe I, Rohmer M, Prestwich GD (1993) Chem. Rev. 93: 2189CrossRefGoogle Scholar
  47. 47.
    Ganem B (1996) Angew. Chem. 108: 1014CrossRefGoogle Scholar
  48. 48.
    Sweers HM, Wong C-H (1986) J. Am. Chem. Soc. 108: 6421CrossRefGoogle Scholar
  49. 49.
    Bashir NB, Phythian SJ. Reason AJ, Roberts SM (1995) J. Chem. Soc, Perkin Trans. 1, 2203CrossRefGoogle Scholar
  50. 50.
    For exceptional D-chiral proteins see: Jung G (1992) Angew. Chem., Int. Ed. Enel. 31: 1457CrossRefGoogle Scholar
  51. 51.
    Sib CJ, Wu S-H (1989) Topics Stereochem. 19: 63CrossRefGoogle Scholar
  52. 52.
    Fischer E (1898) Zeitschr. physiol. Chem. 26: 60CrossRefGoogle Scholar
  53. 53.
    Crossley R (1992) Tetrahedron 48: 8155CrossRefGoogle Scholar
  54. 54.
    De Camp WH ( 1989) Chirality 1: 2CrossRefGoogle Scholar
  55. 55.
    According to a BBC-report, the sale of rao-Thalidomide to third-world countries has been resumed in mid-1996!Google Scholar
  56. 56.
    Ariens EJ (1988) Stereospecificity of Bioactive Agents. In: Ariens EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of Pesticides, Elsevier, Amsterdam, pp 39–108Google Scholar
  57. 57.
    Crosby J (1997) Introduction. In: Chirality in Industry II, Collins AN, Sheldrake GN, Crosby J (eds), pp 1–10, Wiley, ChichesterGoogle Scholar
  58. 58.
    Millership JS, Fitzpatrick A (1993) Chirality 5: 573CrossRefGoogle Scholar
  59. 59.
    Borman S (1992) Chem. Eng. News, June 15:5Google Scholar
  60. 60.
    FDA (1992) Chirality 4: 338CrossRefGoogle Scholar
  61. 61.
    Sheldon RA (1993) Chirotechnology, Marcel Dekker Inc., New YorkGoogle Scholar
  62. 62.
    Collins AN, Sheldrake GN, Crosby J (eds) (1992, 1997) Chirality in Industry, 2 vols, Wiley, ChichesterGoogle Scholar
  63. 63.
    Morrison JD (ed) (1985) Chiral Catalysis. In: Asymmetric Synthesis, vol 5, Academic Press, LondonGoogle Scholar
  64. 64.
    Hanessian S (1983) Total Synthesis of Natural Products: the ‘Chiron’ Approach, Pergamon Press, OxfordGoogle Scholar
  65. 65.
    Scott JW (1984) Readily Available Chiral Carbon Fragments and their Use in Synthesis. In: Morrison JD, Scott JW (eds) Asymmetric Synthesis, Academic Press, New York, vol 4, pp 1–226Google Scholar
  66. 66.
    Margolin AL (1993) Enzyme Microb. Technol. 15: 266CrossRefGoogle Scholar
  67. 67.
    Phillips, RS (1996) Trends Biotechnol. 14: 13CrossRefGoogle Scholar
  68. 68.
    Schuster M, Aaviksaar A, Jakubke H-D (1990) Tetrahedron 46: 8093CrossRefGoogle Scholar
  69. 69.
    Yeh Y, Feeney (1996) Chem. Rev. 96: 601CrossRefGoogle Scholar
  70. 70.
    Klibanov AM (1990) Acc. Chem. Res. 23: 114CrossRefGoogle Scholar
  71. 71.
    For a convenient method for controlling the substrate concentration see: D’Arrigo P. Fuganti C, Pedrocchi-Fantoni G, Servi S (1998) Tetrahedron 54: 15017CrossRefGoogle Scholar
  72. 72.
    Anfinsen CB (1973) Science 181: 223CrossRefGoogle Scholar
  73. 73.
    The amino acid sequence of a protein is generally referred to as its ‘primary structure’, whereas the three-dimensional arrangement of the polyamide chain (the ‘backbone’) in space is called the’ secondary structure’. The ‘tertiary structure’ includes the arrangement of all atoms, i.e. the amino acid side chains are included, whereas the ‘quartemary structure’ describes the aggregation of several protein molecules to form oligomers.Google Scholar
  74. 74.
    Cooke R, Kuntz ID (1974) Ann. Rev. Biophys. Bioeng. 3: 95CrossRefGoogle Scholar
  75. 75.
    Water bound to an enzyme’s surface exhibits a (formai) freezing point of about —20° C.Google Scholar
  76. 76.
    Also called London-forcesGoogle Scholar
  77. 77.
    Also called Coulomb-interactions.Google Scholar
  78. 78.
    Ahern TJ, Klibanov AM (1985) Science 228: 1280CrossRefGoogle Scholar
  79. 79.
    Adams MWW, Kelly RM (1998) Trends Biotechnol. 16: 329CrossRefGoogle Scholar
  80. 80.
    Mozhaev VV, Martinek K (1984) Enzyme Microb. Technol. 6: 50CrossRefGoogle Scholar
  81. 81.
    Jencks WP (1969) Catalysis in Chemistry and Enzymology, McGraw-Hill, New-YorkGoogle Scholar
  82. 82.
    Fersht A (1985) Enzyme Structure and Mechanism, 2nd edition, Freeman, New YorkGoogle Scholar
  83. 83.
    Walsh C (ed) (1979) Enzymatic Reaction Mechanism, Freeman, San FranciscoGoogle Scholar
  84. 84.
    Fischer E (1894) Ber. dtsch. chem. Ges. 27: 2985CrossRefGoogle Scholar
  85. 85.
    Koshland DE, Neet KE (1968) Ann. Rev. Biochem. 37: 359CrossRefGoogle Scholar
  86. 86.
    Dewar MJS (1986) Enzyme 36: 8Google Scholar
  87. 87.
    A ‘record’ of rate acceleration factor of 1014 has been reported. See: Lipscomb WN (1982) Acc. Chem. Res. 15:232CrossRefGoogle Scholar
  88. 88.
    Warshel A. Aqvist J, Creighton S (1989) Proc. Natl. Acad. Sci. 86: 5820CrossRefGoogle Scholar
  89. 89.
    Johnson LN (1984) Inclusion Compds. 3: 509Google Scholar
  90. 90.
    Ogston AG ( 1948) Nature 162: 963CrossRefGoogle Scholar
  91. 91.
    The following rationale was adapted from: Jones JB (1976) Biochemical Systems in Organic Chemistry: Concepts, Principles and Opportunities. In: Jones JB, Sih CJ. Perlman D (eds) Applications of Biochemical Systems in Organic Chemistry, part 1, Wiley, New York, pp 1–46Google Scholar
  92. 92.
    Cipiciani A, Fringuelli F, Mancini V, Piermatti O, Scappini AM, Ruzziconi R (1997) Tetrahedron 53: 11853CrossRefGoogle Scholar
  93. 93.
    Kielbasinski P, Goralczyk P, Mikolajczyk M, Wieczorek MW, Majzner WR (1998) Tetrahedron: Asymmetry 9: 2641CrossRefGoogle Scholar
  94. 94.
    Eyring H (1935) J. Chem. Phys. 3: 107CrossRefGoogle Scholar
  95. 95.
    Kraut J (1988) Science 242: 533CrossRefGoogle Scholar
  96. 96.
    Wong C-H (1989) Science 244: 1145CrossRefGoogle Scholar
  97. 97.
    Wolfenden R (1999) Bioorg. Med. Chem. 7: 647CrossRefGoogle Scholar
  98. 98.
    The individual reaction rates vA and VB correspond to VA = (kcat / Km)A · [E] · [A] and VB = (kcat / Km)B · [E] · [B], respectively, according to Michaelis-Menten kinetics. The ratio of the individual reaction rates is an important parameter for the description of the enantioselectivity of a reaction: VA / vB = E (‘Enantiomeric Ratio’, see Chapter 2.1.1).Google Scholar
  99. 99.
    Internationa] Union of Biochemistry and Molecular Biology (1992) Enzyme Nomenclature, Academic Press, New YorkGoogle Scholar
  100. 100.
    Schomburg D (ed) (2002) Enzyme Handbook, Springer, HeidelbergGoogle Scholar
  101. 101.
    Appel RD, Bairoch A, Hochslrasser DF (1994) Trends Biochem. Sci. 19: 258CrossRefGoogle Scholar
  102. 102.
    Bairoch A (1999) Nucl Acids Res 27: 310; <>CrossRefGoogle Scholar
  103. 103.
    Kindel S (1981) Technology 1: 62Google Scholar
  104. 104.
    Crout DHG, Christen M (1989) Biotransformations in Organic Synthesis. In: Scheffold R (ed) Modern Synthetic Methods, vol 5, pp 1–114Google Scholar
  105. 105.
    Based on the biotransformation database Faber K (2003) ~12 000 entries.Google Scholar
  106. 106.
    Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem., Int. Ed. Engl. 24: 539CrossRefGoogle Scholar
  107. 107.
    A ‘cofactor’ is tightly bound to an enzyme (e.g. FAD), whereas a ‘coenzyme’ can dissociate into the medium (e.g. NADH). In practice, however, this distinction is not always made in a consequent manner.Google Scholar
  108. 108.
    Chaplin MF, Bucke C (1990) Enzyme Technology, Cambridge University Press, New YorkGoogle Scholar
  109. 109.
    White JS, White DC (1997) Source Book of Enzymes, CRC Press, Boca RatonGoogle Scholar
  110. 110.
    Spradlin JE (1989) Tailoring Enzymes for Food Processing, Whitaker JR, Sonnet PE (eds) ACS Symposium Series, vol 389, p 24, J. Am. Chem. Soc, Washington 29–333Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kurt Faber
    • 1
  1. 1.Department of Chemistry, Organic & Bioorganic ChemistryUniversity of GrazGrazAustria

Personalised recommendations