Advertisement

Can Planck See Transplanck?

  • Ulf H. Danielsson
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 92)

Abstract

In this talk I review a recently proposed modulation of the power spectrum of primordial density fluctuations generated through transplankian (maybe stringy) effects during inflation. I briefly discuss the mechanism leading to the modulation, apply it to a generic slow-roll scenario of inflation and argue that the effects obtained are rather generic signatures of transplanckian physics. I also investigate how these primordial modulation effects may leave an imprint in the cosmic microwave background radiation, possibly detectable by satellite experiments.

Keywords

Cosmic Microwave Background Planck Scale Hubble Constant Loop Amplitude String Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Brandenberger, “Inflationary cosmology: Progress and problems,” arXiv:hepph/9910410Google Scholar
  2. 2.
    J. Martin and R. H. Brandenberger, “The trans-Planckian problem of inflationary cosmology,” Phys. Rev. D 63, 123501 (2001) [arXiv:hep-th/0005209]ADSCrossRefGoogle Scholar
  3. 3.
    J. C. Niemeyer, “Inflation with a high frequency cutoff,” Phys. Rev. D 63, 123502 (2001) [arXiv:astro-ph/0005533]ADSCrossRefGoogle Scholar
  4. 4.
    R. H. Brandenberger and J. Martin, “The robustness of inflation to changes in super-Planck-scale physics,” Mod. Phys. Lett. A 16, 999 (2001) [arXiv:astroph/0005432]ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Kempf, “Mode generating mechanism in inflation with cutoff,” Phys. Rev. D 63, 083514 (2001) [arXiv:astro-ph/0009209]MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    C. S. Chu, B. R. Greene and G. Shiu, “Remarks on inflation and noncommutative geometry,” Mod. Phys. Lett. A 16, 2231 (2001) [arXiv:hep-th/0011241]MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    J. Martin and R. H. Brandenberger, “A cosmological window on trans-Planckian physics,” arXiv:astro-ph/0012031Google Scholar
  8. 8.
    L. Mersini, M. Bastero-Gil and P. Kanti, “Relic dark energy from trans-Planckian regime,” Phys. Rev. D 64, 043508 (2001) [arXiv:hep-ph/0101210].ADSCrossRefGoogle Scholar
  9. 9.
    J. C. Niemeyer and R. Parentani, “Trans-Planckian dispersion and scale-invariance of inflationary perturbations,” Phys. Rev. D 64, 101301 (2001) [arXiv:astroph/0101451]ADSCrossRefGoogle Scholar
  10. 10.
    A. Kempf and J. C. Niemeyer, “Perturbation spectrum in inflation with cutoff,” Phys. Rev. D 64, 103501 (2001) [arXiv:astro-ph/0103225]ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Starobinsky, “Robustness of the inflationary perturbation spectrum to trans-Planckian physics,” Pisma Zh. Eksp. Teor. Fiz. 73, 415 (2001) [JETP Lett. 73, 371 (2001)] [arXiv:astro-ph/0104043]Google Scholar
  12. 12.
    R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, “Inflation as a probe of short distance physics,” Phys. Rev. D 64, 103502 (2001) [arXiv:hep-th/0104102]MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. Bastero-Gil and L. Mersini, “SN1A data and CMB of Modified Curvature at Short and Large Distances,” Phys. Rev. D 65 (2002) 023502 [arXiv:astroph/0107256]ADSCrossRefGoogle Scholar
  14. 14.
    L. Hui and W. H. Kinney, “Short distance physics and the consistency relation for scalar and tensor fluctuations in the inflationary universe,” arXiv:astro-ph/0109107Google Scholar
  15. 15.
    R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, “Imprints of short distance physics on inflationary cosmology,” arXiv:hep-th/0110226Google Scholar
  16. 16.
    M. Bastero-Gil, P. H. Frampton and L. Mersini, “Modified dispersion relations from closed strings in toroidal cosmology,” arXiv:hep-th/0110167Google Scholar
  17. 17.
    R. H. Brandenberger, S. E. Joras and J. Martin, “Trans-Planckian physics and the spectrum of fluctuations in a bouncing universe,” arXiv:hep-th/0112122Google Scholar
  18. 18.
    J. Martin and R. H. Brandenberger, “The Corley-Jacobson dispersion relation and trans-Planckian inflation,” arXiv:hep-th/0201189Google Scholar
  19. 19.
    J. C. Niemeyer, “Cosmological consequences of short distance physics,” arXiv:astro-ph/0201511Google Scholar
  20. 20.
    F. Lizzi, G. Mangano, G. Miele and M. Peloso, “Cosmological perturbations and short distance physics from noncommutative geometry,” arXiv:hep-th/0203099Google Scholar
  21. 21.
    G. Shiu and I. Wasserman, “On the signature of short distance scale in the cosmic microwave background,” arXiv:hep-th/0203113Google Scholar
  22. 22.
    R. Brandenberger and P. M. Ho, “Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations,” arXiv:hep-th/0203119Google Scholar
  23. 23.
    S. Shankaranarayanan, “Is there an imprint of Planck scale physics on inflationary cosmology?,” arXiv:gr-qc/0203060Google Scholar
  24. 24.
    N. Kaloper, M. Kleban, A. E. Lawrence and S. Shenker, “Signatures of short distance physics in the cosmic microwave background,” arXiv:hep-th/0201158Google Scholar
  25. 25.
    R. H. Brandenberger and J. Martin, “On signatures of short distance physics in the cosmic microwave background,” arXiv:hep-th/0202142Google Scholar
  26. 26.
    S. F. Hassan and M. S. Sloth, “Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle,” arXiv:hep-th/0204110Google Scholar
  27. 27.
    U. H. Danielsson, “A note on inflation and transplanckian physics,” Phys. Rev. D 66, 023511 (2002) [arXiv:hep-th/0203198]MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, “A generic estimate of trans-Planckian modifications to the primordial power spectrum in inflation,” arXiv:hepth/0204129Google Scholar
  29. 29.
    U.H. Danielsson, “Inflation, holography and the choice of vacuum in de Sitter space,” JHEP 0207, 040 (2002) [arXiv:hep-th/0205227]MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    J. C. Niemeyer, R. Parentani and D. Campo, “Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff,” arXiv:hepth/0206149Google Scholar
  31. 31.
    K. Goldstein and D. A. Lowe, “Initial state effects on the cosmic microwave background and trans-planckian physics,” arXiv:hep-th/0208167Google Scholar
  32. 32.
    U H. Danielsson, “On the consistency of de Sitter vacua,” hep-th/0210058Google Scholar
  33. 33.
    R. H. Brandenberger, “Trans-Planckian physics and inflationary cosmology,” arXiv:hep-th/0210186Google Scholar
  34. 34.
    W. H. Kinney, “Cosmology, inflation, and the physics of nothing,” arXiv:astroph/0301448Google Scholar
  35. 35.
    K. Goldstein and D. A. Lowe, “A note on alpha-vacua and interacting field theory in de Sitter space,” Nucl. Phys. B 669 (2003) 325 [arXiv:hep-th/0302050]MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    G. L. Alberghi, R. Casadio and A. Tronconi, “Trans-Planckian footprints in inflationary cosmology,” arXiv:gr-qc/0303035Google Scholar
  37. 37.
    C. Armendariz-Picon and E. A. Lim, “Vacuum choices and the predictions of inflation,” arXiv:hep-th/0303103Google Scholar
  38. 38.
    D. J. Chung, A. Notari and A. Riotto, “Minimal theoretical uncertainties in inflationary predictions,” arXiv:hep-ph/0305074Google Scholar
  39. 39.
    J. Martin and R. Brandenberger, “On the dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics,” arXiv:hep-th/0305161Google Scholar
  40. 40.
    The NASA MAP mission, homepage http://map.gsfc.nasa.gov/Google Scholar
  41. 41.
    The ESA Planck mission, homepage http://astro.estec.esa.nl/SA-general/Projects/Planck/Google Scholar
  42. 42.
    L. Bergström and U. H. Danielsson, “Can MAP and Planck map Planck physics?,” JHEP 0212 (2002) 038 [arXiv:hep-th/0211006]ADSCrossRefGoogle Scholar
  43. 43.
    D. Polarski and A. A. Starobinsky, “Semiclassicality and decoherence of cosmological perturbations,” Class. Quant. Grav. 13, 377 (1996) [arXiv:gr-qc/9504030]MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    V. Bozza, M. Giovannini and G. Veneziano, JCAP 0305 (2003) 001 [arXiv:hepth/0302184]MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    N. Kaloper, M. Kleban, A. Lawrence, S. Shenker and L. Susskind, “Initial conditions for inflation,” arXiv:hep-th/0209231Google Scholar
  46. 46.
    N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar field in de Sitter space-time,” Ann. Inst. Henri Poincaré, vol. IX, nr 2, (1968) 109.MathSciNetGoogle Scholar
  47. 47.
    E. Mottola, “Particle Creation In De Sitter Space,” Phys. Rev. D 31 (1985) 754MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    B. Allen, “Vacuum States In De Sitter Space,” Phys. Rev. D 32 (1985) 3136MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    R. Floreanini, C. T. Hill and R. Jackiw, “Functional Representation For The Isometries Of De Sitter Space,” Annals Phys. 175 (1987) 345MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    R. Bousso, A. Maloney and A. Strominger, “Conformai vacua and entropy in de Sitter space,” arXiv:hep-th/0112218Google Scholar
  51. 51.
    M. Spradlin and A. Volovich, “Vacuum states and the S-matrix in dS/CFT,” arXiv:hep-th/0112223Google Scholar
  52. 52.
    T. Banks and L. Mannelli, “De Sitter vacua, renormalization and locality,” arXiv:hep-th/0209113Google Scholar
  53. 53.
    M. B. Einhorn and F. Larsen, “Interacting Quantum Field Theory in de Sitter Vacua,” arXiv:hep-th/0209159Google Scholar
  54. 54.
    M. B. Einhorn and F. Larsen, “Squeezed states in the de Sitter vacuum,” Phys. Rev. D 68 (2003) 064002 [arXiv:hep-th/0305056]MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    A. A. Starobinsky and I. I. Tkachev, “Trans-Planckian particle creation in cosmology and ultra-high energy cosmic rays,” arXiv:astro-ph/0207572Google Scholar
  56. 56.
    A. R. Liddle and D. H. Lyth, “Cosmological inflation and large-scale structure”, Cambridge University Press 2000Google Scholar
  57. 57.
    P. Horava and E. Witten, “Heterotic and type I string dynamics from eleven dimensions,” Nucl. Phys. B 460 (1996) 506 [arXiv:hep-th/9510209]MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    P. Horava and E. Witten, “Eleven-Dimensional Supergravity on a Manifold with Boundary,” Nucl. Phys. B 475 (1996) 94 [arXiv:hep-th/9603142]MathSciNetADSzbMATHCrossRefGoogle Scholar
  59. 59.
    J. Polchinski, “String Theory. Vol. 2: Superstring Theory And Beyond,” Cambridge, UK: Univ. Pr. (1998) 531Google Scholar
  60. 60.
    P. Mukherjee and Y. Wang, “Wavelet Band Powers of the Primordial Power Spectrum from CMB Data,” Astrophys. J. 593 (2003) 38 [arXiv:astro-ph/0301058]ADSCrossRefGoogle Scholar
  61. 61.
    J. R. Bond, G. Efstathiou and M. Tegmark, “Forecasting Cosmic Parameter Errors from Microwave Background Anisotropy Experiments,” Mon. Not. Roy. Astron. Soc. 291, L33–L41 (1997) [arXiv:astro-ph/9702100]ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ulf H. Danielsson
    • 1
  1. 1.Institutionen för Teoretisk FysikUppsalaSweden

Personalised recommendations