Advertisement

Results from DAMA/Nal and Perspectives for DAMA/LIBRA

  • R. Bernabei
  • P. Belli
  • F. Cappella
  • F. Montecchia
  • F. Nozzoli
  • A. Incicchitti
  • D. Prosperi
  • R. Cerulli
  • C. J. Dai
  • H. H. Kuang
  • J. M. Ma
  • Z. P. Ye
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 92)

Abstract

The ⋍ 100 kg highly radiopure NaI(Tl) set-up of the DAMA project (DAMA/Nal) took data over seven annual cycles up to July 2002 and has achieved results on various rare processes. Its main aim has actually been the exploitation of the model independent WIMP annual modulation signature. After this conference the total exposure, collected during the seven annual cycles, was released. This cumulative exposure (107731 kg x day) has given a model independent evidence for the presence of a Dark Matter particle component in the galactic halo at 6.3 σ C.L.; this main result is summarised here. Some of the many possible corollary model dependent quests for the candidate particle are mentioned. At present, after about five years of new developments, a second generation low background set-up (DAMA/LIBRA with a mass of ⋍ 250 kg Nal(Tl)) was built and is taking data since March 2003. New R&D efforts toward a possible Nal(Tl) ton set-up, we proposed in 1996, have been funded and started in 2003.

Keywords

Dark Matter Annual Cycle Galactic Halo Residual Rate Candidate Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Belli, R. Bernabei, C. Bacci, A. Incicchitti, R. Marcovaldi, D. Prosperi, DAMA proposal to INFN Scientific Committee II, April 24th 1990Google Scholar
  2. 2.
    R. Bernabei et al., this Proceed. (LNGS/EXP-08/03 available at www.lngs.infn.it), talk given by A. IncicchittiGoogle Scholar
  3. 3.
    R. Bernabei et al., Astrop. Phys. 7 (1997) 73; R. Bernabei et al., Il Nuovo Cimento Al 10 (1997) 189; P. Belli et al., Nucl. Phys. B563 (1999) 97; P. Belli et al., Astrop. Phys. 10 (1999) 115; R. Bernabei et al., Nucl. Phys. A705 (2002) 29; P. Belli et al., Nucl. Instr. & Meth. A498 (2003) 352ADSCrossRefGoogle Scholar
  4. 4.
    R. Bernabei et al., Il Nuovo Cim. A112 (1999) 545ADSGoogle Scholar
  5. 5.
    R. Bernabei et al., La Rivista del Nuovo Cimento 26 (2003) 1–73 (astro-ph/0307403)ADSGoogle Scholar
  6. 6.
    R. Bernabei et al., Phys. Lett. B 389 (1996) 757ADSGoogle Scholar
  7. 7.
    K.A. Drukier et al., Phys. Rev. D 33 (1986) 3495; K. Freese et al., Phys. Rev. D 37 (1988) 3388ADSGoogle Scholar
  8. 8.
    R. Bernabei et al., Il Nuovo Cimento A 112 (1999) 1541ADSCrossRefGoogle Scholar
  9. 9.
    R. Bernabei et al., Phys. Rev. Lett. 83 (1999) 4918; F. Cappella et al., Eur. Phys. J.-direct C14 (2002) 1ADSCrossRefGoogle Scholar
  10. 10.
    R. Bernabei et al., Phys. Lett. B 515 (2001) 6ADSGoogle Scholar
  11. 11.
    R. Bernabei et al., Phys. Lett. B 408 (1997) 439ADSGoogle Scholar
  12. 12.
    P. Belli et al., Phys. Rev. C60 (1999) 065501ADSGoogle Scholar
  13. 13.
    P. Belli et al., Phys. Lett. B460 (1999) 236ADSGoogle Scholar
  14. 14.
    D. Smith and N. Weiner, Phys. Rev. D 64 (2001) 043502ADSGoogle Scholar
  15. 15.
    K. Freese et al. astro-ph/0309279Google Scholar
  16. 16.
    P. Belli, talk at TAUP 97, LNGS (1997); R. Bernabei et al., Nucl. Phys. B (Proc. Suppl.) 70 (1999) 79Google Scholar
  17. 17.
    R. Bernabei et al., Phys. Lett. B 424 (1998) 195ADSGoogle Scholar
  18. 18.
    R. Bernabei et al., Phys. Lett. B 450 (1999) 448ADSGoogle Scholar
  19. 19.
    P. Belli et al., Phys. Rev. D 61 (2000) 023512ADSGoogle Scholar
  20. 20.
    R. Bernabei et al., Phys. Lett. B 480 (2000) 23ADSGoogle Scholar
  21. 21.
    R. Bernabei et al., Eur. Phys. J. C18 (2000) 283ADSCrossRefGoogle Scholar
  22. 22.
    R. Bernabei et al., Phys. Lett. B 509 (2001) 197ADSGoogle Scholar
  23. 23.
    R. Bernabei el al., Eur. Phys. J. C23 (2002) 61ADSCrossRefGoogle Scholar
  24. 24.
    P. Belli et al., Phys. Rev. D 66 (2002) 043503ADSGoogle Scholar
  25. 25.
    W.H. Press and G. B. Rybicki, Astrophys. J. 338 (1989) 277; J.D. Scargle, Astrophys. J. 263 (1982) 835ADSCrossRefGoogle Scholar
  26. 26.
    R. Foot, astro-ph/0309330, hep-ph/0308254Google Scholar
  27. 27.
    G. Prezeau et al., astro-ph/0309115Google Scholar
  28. 28.
    D.E. Groom et al., Eur. Phys. J. C 15 (2000) 1Google Scholar
  29. 29.
    A. Bottino et al., Phys. Rev. D 67 (2003) 063519; A. Bottino et al., hep-ph/0304080 ADSGoogle Scholar
  30. 30.
    D. Hooper and T. Plehn, MADPH-02-1308, CERN-TH/2002-29, hep-ph/0212226Google Scholar
  31. 31.
    G. Bél anger, F. Boudjema., A. Pukhov and S. Rosier-Lees, hep-ph/0212227 Google Scholar
  32. 32.
    K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • R. Bernabei
    • 1
  • P. Belli
    • 1
  • F. Cappella
    • 1
  • F. Montecchia
    • 1
    • 5
  • F. Nozzoli
    • 1
  • A. Incicchitti
    • 2
  • D. Prosperi
    • 2
  • R. Cerulli
    • 3
  • C. J. Dai
    • 4
  • H. H. Kuang
    • 4
  • J. M. Ma
    • 4
  • Z. P. Ye
    • 4
    • 6
  1. 1.Dipartimento di FisicaUniversità di Roma “Tor Vergata” and INFNRomeItaly
  2. 2.Dipartimento di FisicaUniversità di Roma “La Sapienza” and INFNRomeItaly
  3. 3.INFN — Laboratori Nazionali del Gran SassoAssergi (Aq)Italy
  4. 4.IHEP, Chinese AcademyBeijingChina
  5. 5.Università “Campus Bio-medico” di RomaRomeItaly
  6. 6.University of Zhao QingGuang DongChina

Personalised recommendations