New Perspectives in Testing the General Relativistic Lense-Thirring Effect

  • Lorenzo Iorio
Part of the Springer Proceedings in Physics book series (SPPHY, volume 92)


Testing the effects predicted by the General Theory of Relativity, in its linearized weak field and slow motion approximation, in the Solar System is difficult because they are very small. Among them the post-Newtonian gravitomagnetic Lense-Thirring effect, or dragging of the inertial frames, on the orbital motion of a test particle is very interesting and, up to now, there is not yet an undisputable experimental direct test of it. Here we illustrate how it could be possible to measure it with an accuracy of the order of 1%, together with other tests of Special Relativity and post-Newtonian gravity, with a joint space based OPTIS/LARES mission in the gravitational field of Earth. Up to now, the data analysis of the orbits of the existing geodetic LAGEOS and LAGEOS II satellites has yielded a test of the Lense-Thirring effect with a claimed accuracy of 20%-30%.


Test Particle Semi Major Axis Orbital Configuration Zonal Harmonic Zonal Harmonic Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, New York 1995)zbMATHGoogle Scholar
  2. 2.
    C.M. Will, Theory and Experiment in Gravitational Physics, 2nd edn. (Cambridge University Press, Cambridge 1993)zbMATHCrossRefGoogle Scholar
  3. 3.
    C.M. Will,
  4. 4.
    L. Schiff, Am. J. Phys. 28, 340 (1960)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    C.W.F. Everitt and other members of the Gravity Probe B team: ‘Gravity Probe B, Countdown to Launch’. In Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, ed. by C Lämmerzahl, CW.F. Everitt, F.W. Hehl (Springer, Berlin 2001) pp. 52–82CrossRefGoogle Scholar
  6. 6.
    A. Lawler, Science 299, 1827 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Lawler, Science 300, 880 (2003)CrossRefGoogle Scholar
  8. 8.
    T.E. Sterne, An Introduction to Celestial Mechanics (Interscience, New York 1960)zbMATHGoogle Scholar
  9. 9.
    J. Lense, H. Thirring, Phys. Z. 19, 156 (1918), translated by B. Mashhoon, F.W. Hehl, D.S. Theiss, Gen. Rel. and Gravit. 16, 711 (1984)zbMATHGoogle Scholar
  10. 10.
    L. Iorio, Il Nuovo Cimento B 116, 777 (2001)ADSGoogle Scholar
  11. 11.
    I. Ciufolini, Class, and Quantum Grav. 17, 2369 (2000)ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    I. Ciufolini, Il Nuovo Cimento A 109, 1709 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    W.M. Kaula, Theory of Satellite Geodesy (Blaisdell Publishing Company, Waltham 1966)Google Scholar
  14. 14.
    D. Lucchesi, Plan. and Space Sci. 49, 447 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    D. Lucchesi, Plan. and Space Sci. 50, 1067 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    F.G. Lemoine et al., The Development of the Joint NASA GSFC and the National Imagery Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861 (1998)Google Scholar
  17. 17.
    L. Iorio, Celest. Mech and Dyn. Astron. 86, 277 (2003)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    J. Ries, R.J. Eanes, B.D. Tapley, ‘Lense-Thirring Precession Determination from Laser Ranging to Artificial Satellites’. In Nonlinear Gravitodynamics. The Lense-Thirring Effect, ed. by R. Ruffini, C. Sigismondi (World Scientific, Singapore 2003) pp. 201–211CrossRefGoogle Scholar
  19. 19.
    I. Ciufolini, Phys. Rev. Lett. 56, 278 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    L. Iorio, I. Ciufolini, E. Pavlis, Class, and Quantum Grav. 19, 4301 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    L. Iorio, Phys. Lett. A 298, 315 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    L. Iorio, D. Lucchesi, I. Ciufolini, Class. and Quantum Grav. 19, 4311 (2002)ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    L. Iorio, Gen. Rel. and Gravit. 35, 1263 (2003)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    C. Läm merzahl, H. Dittus, A. Peters, S. Schiller, Class. and Quantum Grav. 18, 2499 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    P. Touboul, Comptes Rendus de l’Acad. Sci. Série IV: Physique Astrophysique 2, 1271 (2001)Google Scholar
  26. 26.
    E. Pavlis, ‘Geodetic Contributions to Gravitational Experiments in Space’. In Recent Developments in General Relativity, ed. by R. Cianci, R. Collina, M. Francaviglia, P. Fré (Springer, Milan 2000) pp. 217–233Google Scholar
  27. 27.
    J.C. Ries, R.J. Eanes, B.D. Tapley, G.E. Peterson, ‘Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission’. In Proceedings of the 13th International Laser Ranging Workshop, Washington DC, October 7-11, 2002 Preprint Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lorenzo Iorio
    • 1
  1. 1.Dipartimento di Fisica dell’Università di BariBariItaly

Personalised recommendations