Advertisement

On CPT Symmetry: Cosmological, Quantum-Gravitational and Other Possible Violations and Their Phenomenology

  • Nick E. Mavromatos
Part of the Springer Proceedings in Physics book series (SPPHY, volume 92)

Abstract

I discuss various ways in which CPT symmetry may be violated, and their phenomenology in current or immediate future experimental facilities, both terrestrial and astrophysical. Specifically, I discuss first violations of CPT symmetry due to the impossibility of defining a scattering matrix as a consequence of the existence of microscopic or macroscopic space-time boundaries, such as Planck-scale Black-Hole (event) horizons, or cosmological horizons due to the presence of a (positive) cosmological constant in the Universe. Second, I discuss CPT violation due to breaking of Lorentz symmetry, which may characterize certain approaches to quantum gravity, and third, I describe models of CPT non invariance due to violations of locality of interactions. In each of the above categories I discuss experimental sensitivities. I argue that the majority of Lorentz-violating cases of CPT breaking, with minimal (linear) suppression by the Planck-mass scale, are already excluded by current experimental tests. There are however some (stringy) models which can evade these constraints.

Keywords

Cosmological Constant Quantum Gravity Vertex Operator Open String Lorentz Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lüd ers, Ann. Phys. (N.Y.) 2, 1 (1957); R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That (Redwood City, USA: Addison Wesley (1989)); K. Fujikawa, Int. J. Mod. Phys. A16, 4025 (2001) [arXiv:hep-th/0107076]ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    S. Hawking, Comm. Math. Phys. 87, 395 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Wald, Phys. Rev. D21, 2742 (1980)MathSciNetADSGoogle Scholar
  4. 4.
    B. P. Schmidt et al., Astrophys. J. 507, 46 (1998) [arXiv:astro-ph/9805200]; S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517, 565 (1999) [arXiv:astro-ph/9812133]; J. P. Blakeslee et al., Astrophys. J. 589, 693 (2003) [arXiv:astro-ph/0302402]; A. G. Riess et al., Astrophys. J. 560, 49 (2001) [arXiv:astro-ph/0104455]; S. Perlmutter and B. P. Schmidt, arXiv:astroph/0303428; J. L. Tonry et al., arXiv:astro-ph/0305008ADSCrossRefGoogle Scholar
  5. 5.
    G. F. Smoot et al., Astrophys. J. 396, LI (1992); C. L. Bennett et al., Astrophys. J. 436, 423 (1994) [arXiv:astro-ph/9401012]Google Scholar
  6. 6.
    C. L. Bennett et al., arXiv:astro-ph/0302207; D. N. Spergel et al., arXiv:astroph/0302209Google Scholar
  7. 7.
    G. Lindblad, Comm. Math. Phys. 48, 119 (1976); Rep. Math. Phys. 10, 393 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    F. David, Mod. Phys. Lett. A 3 1651 (1988);. Distler and H. Kawai, Nucl. Phys. B 321, 509 (1989); see also: N. E. Mavromatos and J. L. Miramontes, Mod. Phys. Lett. A 4, 1847 (1989); E. D’Hoker and P. S. Kurzepa, Mod. Phys. Lett. A 5, 1411 (1990); I. R. Klebanov, I. I. Kogan and A. M. Polyakov, Phys. Rev. Lett. 71, 3243 (1993) [arXiv:hep-th/9309106]; C. Schmidhuber and A. A. Tseytlin, Nucl. Phys. B 426, 187 (1994) [arXiv:hep-th/9404180]ADSCrossRefGoogle Scholar
  9. 9.
    J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B 293, 37 (1992) [arXiv:hep-th/9207103]; Erice Subnucl Phys. Series, Vol. 31 1 (World Sci. 1994) [arXiv:hep-th/9311148]; J. Chaos, Solitons and Fractals, Vol. 10, 345 (1999) (eds. C. Castro and M.S. El Naschie, Elsevier Science, Pergamon 1999) [arXiv:hepth/9805120]MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    R. R. Metsaev and A. A. Tseytlin, Nucl. Phys. B 293, 385 (1987)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    H. Osborn, Phys. Lett. B 222, 97 (1989); Nucl. Phys. B 363, 486 (1991)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    I. Antoniadis, C. Bachas, J. R. Ellis and D. V. Nanopoulos, Nucl. Phys. B 328, 117 (1989)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    W. Fischler and L. Susskind, Phys. Lett. B 171, 383 (1986); Phys. Lett. B 173, 262 (1986)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    G. A. Diamandis, B. C. Georgalas, N. E. Mavromatos, E. Papantonopoulos and I. Pappa, Int. J. Mod. Phys. A 17, 2241 (2002) [arXiv:hep-th/0107124]; G. A. Diamandis, B. C. Georgalas, N. E. Mavromatos and E. Papantonopoulos, Int. J. Mod. Phys. A 17, 4567 (2002) [arXiv:hep-th/0203241]MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    E. Gravanis and N. E. Mavromatos, Phys. Lett. B 547, 117 (2002) [arXiv:hepth/0205298]; N. E. Mavromatos, arXiv:hep-th/0210079ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    I. I. Kogan, Phys. Lett. B 265, 269 (1991)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    R. Adler et al. [CPLEAR collaboration], Phys. Lett. B 364, 239 (1995) [arXiv:hepex/9511001]ADSCrossRefGoogle Scholar
  18. 18.
    J. Ellis, J. Hagelin, D.V. Nanopoulos and M. Srednicki, Nucl. Phys. B241, 381 (1984)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B 293, 142 (1992) [arXiv:hep-ph/9207268]; Int. J. Mod. Phys. A 11, 1489 (1996) [arXiv:hepth/9212057]; J. R. Ellis, J. L. Lopez, N. E. Mavromatos and D. V. Nanopoulos, Phys. Rev. D 53, 3846 (1996) [arXiv:hep-ph/9505340]MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    P. Huet and M. E. Peskin, Nucl. Phys. B 434, 3 (1995) [arXiv:hep-ph/9403257]ADSCrossRefGoogle Scholar
  21. 21.
    F. Benatti and R. Floreanini, Phys. Lett. B 468 (1999) 287 [arXiv:hep-ph/9910508]ADSCrossRefGoogle Scholar
  22. 22.
    E. Lisi, A. Marrone and D. Montanino, Phys. Rev. Lett. 85, 1166 (2000) [arXiv:hepph/0002053]ADSCrossRefGoogle Scholar
  23. 23.
    F. Benatti and R. Floreanini, Phys. Rev. D 64, 085015 (2001) [arXiv:hepph/0105303]ADSCrossRefGoogle Scholar
  24. 24.
    M. Czachor and M. Kuna, Phys. Rev. A 58 (1998) 128 [arXiv:quant-ph/9708029]ADSCrossRefGoogle Scholar
  25. 25.
    J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Rev. D 63, 024024 (2001) [arXiv:gr-qc/0007044]ADSCrossRefGoogle Scholar
  26. 26.
    Y. Fukuda et al. [Super-Kamiokande Coll.], Phys. Rev. Lett. 81, 1562 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    S. L. Adler, Phys. Rev. D 62, 117901 (2000) [arXiv:hep-ph/0005220]ADSCrossRefGoogle Scholar
  28. 28.
    G. J. Milburn, arXiv:gr-qc/0308021Google Scholar
  29. 29.
    G. Veneziano, Europhys. Lett. 2, 199 (1986); D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. B 216, 41 (1989); A. Kempf, G. Mangano and R. B. Mann, Phys. Rev. D 52, 1108 (1995) [arXiv:hep-th/9412167]ADSCrossRefGoogle Scholar
  30. 30.
    V.A. Kostelecky, arXiv:hep-ph/9912528; CPT and Lorentz Symmetry II (V. A. Kostelecky ed., World Sci, Singapore 2002) and references therein; see also: R. Bluhm, V. A. Kostelecky and N. Russell, Phys. Rev. Lett. 82, 2254 (1999) [arXiv:hep-ph/98102Google Scholar
  31. 31.
    R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999) [arXiv:gr-qc/9809038]; For a review see: L. Smolin, arXiv:hep-th/0303185, and references thereinMathSciNetADSCrossRefGoogle Scholar
  32. 32.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002) [arXiv:gr-qc/0012051]; J. Magueijo and L. Smolin, Phys. Rev. Lett. 88, 190403 (2002) [arXiv:hepth/0112090]MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    M. Amoretti et al. [ATHENA Coll.], Nature 419, 456 (2002); G. Gabrielse et al. [ATRAP Coll.], Phys. Rev. Lett. 89, 213401 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    J. Alfaro, H. A. Morales-Tecotl and L. F. Urrutia, Phys. Rev. D 66, 124006 (2002) [arXiv:hep-th/0208192]; D. Sudarsky, L. Urrutia and H. Vucetich, Phys. Rev. Lett. 89, 231301 (2002) [arXiv:gr-qc/0204027]; R. C. Myers and M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003) [arXiv:hep-ph/0301124]MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    T. Jacobson, S. Liberati and D. Mattingly, arXiv:astro-ph/0212190Google Scholar
  36. 36.
    R. Bluhm, arXiv:hep-ph/0111323Google Scholar
  37. 37.
    J. Ellis, N. E. Mavromatos and A. S. Sakharov, arXiv:astro-ph/0308403; J. Ellis, N. E. Mavromatos, D. V. Nanopoulos and A. S. Sakharov, arXiv:astro-ph/0309144 and to appearGoogle Scholar
  38. 38.
    J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Rev. D 61, 027503 (2000) [arXiv:gr-qc/9906029]; Phys. Rev. D 62, 084019 (2000) [arXiv:grqc/0006004]MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    J. Polchinski, arXiv:hep-th/9611050; C. P. Bachas, arXiv:hep-th/9806199Google Scholar
  40. 40.
    I. I. Kogan and N. E. Mavromatos, Phys. Lett. B 375, 111 (1996) [arXiv:hepth/9512210]; I. L Kogan, N. E. Mavromatos and J. F. Wheater, Phys. Lett. B 387, 483 (1996) [arXiv:hep-th/9606102]; J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Int. J. Mod. Phys. A 12, 2639 (1997) [arXiv:hep-th/9605046]; N. E. Mavromatos and R. J. Szabo, Phys. Rev. D 59, 104018 (1999) [arXiv:hep-th/9808124]MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. 41.
    M. Berkooz, M. R. Douglas and R. G. Leigh, Nucl. Phys. B 480, 265 (1996) [arXiv:hep-th/9606139]MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. 42.
    See, for instance: J.A. Wheeler nd K. Ford, Geons, Black Holes and Quantum Foam: A life in Physics (New York, USA: Norton (1998))Google Scholar
  43. 43.
    G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and S. Sarkar, Nature 393, 763 (1998) [arXiv:astro-ph/9712103]ADSCrossRefGoogle Scholar
  44. 44.
    J. R. Ellis, K. Farakos, N. E. Mavromatos, V. A. Mitsou and D. V. Nanopoulos, Astrophys. J. 535, 139 (2000) [arXiv:astro-ph/9907340]; J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and A. S. Sakharov, Astron. Astrophys. 402, 409 (2003) [arXiv:astro-ph/0210124]ADSCrossRefGoogle Scholar
  45. 45.
    R. Lieu and L. W. Hillman, arXiv:astro-ph/0211402; R. Ragazzoni, M. Turatto and W. Gaessler, Astrophys. J. 587, L1 (2003) [arXiv:astro-ph/0303043]Google Scholar
  46. 46.
    Y. J. Ng, H. van Dam and W. A. Christiansen, Astrophys. J. 591, L87 (2003) [arXiv:astro-ph/0302372]; Y. J. Ng, Mod. Phys. Lett. A 18, 1073 (2003) [arXiv:grqc/0305019]ADSCrossRefGoogle Scholar
  47. 47.
    C. Athanassopoulos et al. [LSND Coll.], Phys. Rev. Lett. 77, 3082 (1996) [arXiv:nucl-ex/9605003]; A. Aguilar et al. [LSND Coll.], Phys. Rev. D 64, 112007 (2001) [arXiv:hep-ex/0104049]ADSCrossRefGoogle Scholar
  48. 48.
    A.O. Bazarko,for the MiniBooNE Coll., Nucl. Phys. Proc. Suppl. B91, 210 (2000)ADSGoogle Scholar
  49. 49.
    M. Maltoni, T. Schwetz, M. A. Tortola and J. W. Valle, arXiv:hep-ph/0309130Google Scholar
  50. 50.
    H. Murayama and T. Yanagida, Phys. Lett. B 520, 263 (2001) [arXiv:hepph/0010178]ADSCrossRefGoogle Scholar
  51. 51.
    A. Kostelecky and M. Mewes, arXiv:hep-ph/0309025, and references thereinGoogle Scholar
  52. 52.
    G. Barenboim and J. Lykken, Phys. Lett. B 554, 73 (2003) [arXiv:hep-ph/0210411]ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    A. Strumia, Phys. Lett. B 539, 91 (2002) [arXiv:hep-ph/0201134]ADSCrossRefGoogle Scholar
  54. 54.
    K. Eguchi et al. [KamLAND Coll.], Phys. Rev. Lett. 90, 021802 (2003) [arXiv:hepex/0212021]ADSCrossRefGoogle Scholar
  55. 55.
    For recent reviews see: J. R. Ellis, arXiv:astro-ph/0305038; A. B. Lahanas, N. E. Mavromatos and D. V. Nanopoulos, arXiv:hep-ph/0308251, and references thereinGoogle Scholar
  56. 56.
    L. B. Okun, arXiv:hep-ph/0210052Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Nick E. Mavromatos
    • 1
    • 2
  1. 1.Departamento de Física TéoricaUniversidad de ValenciaBurjassot, ValenciaSpain
  2. 2.Department of Physics-Theoretical PhysicsKing’s College LondonLondonUK

Personalised recommendations