Advertisement

Laser Spectroscopy

  • Sune Svanberg
Part of the Advanced Texts in Physics book series (ADTP)

Abstract

The wide applicability of lasers in spectroscopy is due to several factors. As we have seen, very high intensities can be obtained in a small frequency interval. The favourable spatial properties of laser beams with the possibility of very good focusing is also of great importance. With the advent of tunable lasers, completely new types of experiments have become possible and investigations that were only barely possible with conventional light sources can now be readily performed. It is fair to state that tunable lasers have revolutionized optical spectroscopy. Several monographs and review articles on laser spectroscopy have been published [9.19.22]. A wealth of material is presented in the proceedings of International Laser Spectroscopy Conferences [9.239.36].

Keywords

Probe Beam Laser Spectroscopy Atomic Beam Rydberg State Laser Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [9.1]
    W. Demtröd er: Laser Spectroscopy, 3rd edn. (Springer, Berlin, Heidelberg 2003)Google Scholar
  2. [9.2]
    A. Corney: Atomic and Laser Spectroscopy (Clarendon, Oxford 1977)Google Scholar
  3. [9.3]
    L.J. Radziemski, R.W. Solarz, J.A. Paisner (eds.): Laser Spectroscopy and its Applications (Dekker, New York 1987)Google Scholar
  4. [9.4]
    V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sciences, Vol. 4 (Springer, Berlin, Heidelberg 1977)Google Scholar
  5. [9.5]
    M.D. Levenson, S. Kano: Introduction to Nonlinear Spectroscopy, revised edn. (Academic Press, New York 1988)Google Scholar
  6. [9.6]
    Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)Google Scholar
  7. [9.7]
    M. Schubert, B. Wilhelmi: Nonlinear Optics and Quantum Electronics, Theoretical Concepts (Wiley, New York 1986)Google Scholar
  8. [9.8]
    S. Stenholm: Foundations of Laser Spectroscopy (Wiley, New York 1984)Google Scholar
  9. [9.9]
    A.L. Schawlow: Spectroscopy in a new light. Rev. Mod. Phys. 54, 697 (1982)ADSCrossRefGoogle Scholar
  10. [9.10]
    N. Bloembergen: Nonlinear optics and spectroscopy. Rev. Mod. Phys. 54, 685 (1982)ADSCrossRefGoogle Scholar
  11. [9.11]
    G.W. Series: Laser spectroscopy. Contemp. Phys. 25, 3 (1984)Google Scholar
  12. [9.12]
    B. Couillaud, A. Ducasse: New methods in high-resolution laser spectroscopy, in Progress in Atomic Spectroscopy, Pt. C, ed. by H.J. Beyer, H. Kleinpoppen (Plenum, New York 1984) p. 57Google Scholar
  13. [9.13]
    R.C. Thompson: High-resolution laser spectroscopy of atomic systems. Rep. Prog. Phys. 48, 531 (1985)ADSCrossRefGoogle Scholar
  14. [9.14]
    H. Walther (ed.): Laser Spectroscopy of Atoms and Molecules, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976)Google Scholar
  15. [9.15]
    K. Shimoda (ed.): High-Resolution Laser Spectroscopy, Topics Appl. Phys., Vol. 13 (Springer, Berlin, Heidelberg 1976)Google Scholar
  16. [9.16]
    Y. Prior, A. Ben-Reuven, M. Rosenbluh: Methods of Laser Spectroscopy (Plenum, New York 1986)Google Scholar
  17. R.A. Smith (ed.): Very High Resolution Spectroscopy (Academic Press, London 1976)Google Scholar
  18. [9.17]
    A. Mooradian, T. Jaeger, P. Stokseth (eds.): Tunable Lasers and Applications, Springer Ser. Opt. Sci., Vol.3 (Springer, Berlin, Heidelberg 1976)Google Scholar
  19. [9.18]
    M.D. Levenson, W.H. Yen (eds.): Lasers, Spectroscopy and New Ideas. A Tribute to A.L. Schawlow, Springer Ser. Opt. Sci., Vol. 54 (Springer, Berlin, Heidelberg 1987)Google Scholar
  20. [9.19]
    M.H. Mittelman: Introduction to the Theory of Laser-Atom Interactions (Plenum, New York 1993)Google Scholar
  21. B.W. Shore: The Theory of Coherent Atomic Excitation. Vol. 1: Simple Atoms and Fields, Vol. 2: Multilevel Atoms and Incoherence (Wiley, New York, 1990)Google Scholar
  22. [9.20]
    D.L. Andrews, A.A. Demitov: Introduction to Laser Spectroscopy (Plenum, New York 1995)Google Scholar
  23. [9.21]
    A.P. Roy (ed.): Spectroscopy — Perspectives and Frontiers (Narosa, New Delhi 1997)Google Scholar
  24. S. Mukamel: Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford 1998)Google Scholar
  25. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg: Atom-Photon Interactions — Basic Processes and Applications (Wiley, New York 1998)Google Scholar
  26. [9.22]
    R. Gupta: Resource letter LS-1: Laser Spectroscopy. Am. J. Phys. 59, 874 (1991)ADSCrossRefGoogle Scholar
  27. T.W. Hänsch, H. Walther: Laser spectroscopy and quantum optics. Rev. Mod. Phys. 71, S242 (1999)CrossRefGoogle Scholar
  28. [9.23]
    R.G. Brewer, A. Mooradian (eds.): Laser Spectroscopy, Proc. 1st Int. Conf., Vail 1973 (Academic Press, New York 1974)Google Scholar
  29. [9.24]
    S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris (eds.): Laser Spectroscopy, Proc. 2nd. Int. Conf., Megeve 1975, Lecture Notes Phys., Vol. 43 (Springer, Berlin, Heidelberg 1975)Google Scholar
  30. [9.25]
    J.L. Hall, J.L. Carlsten (eds.): Laser Spectroscopy III, Proc. 3rd. Int. Conf., Jackson Lake 1977, Springer Ser. Opt. Sci., Vol.7 (Springer, Berlin, Heidelberg 1977)Google Scholar
  31. [9.26]
    H. Walther, K,W. Rothe (eds.): Laser Spectroscopy IV, Proc. 4th Int. Conf., Rottach-Egern 1979, Springer Ser. Opt. Sci., Vol. 21 (Springer, Berlin, Heidelberg 1979)Google Scholar
  32. [9.27]
    A.R.W. McKellar, T. Oka, B.P. Stoicheff (eds.): Laser Spectroscopy V, Proc. 5th Int. Conf., Jasper 1981, Springer Ser. Opt. Sci., Vol. 30 (Springer, Berlin, Heidelberg 1981)Google Scholar
  33. [9.28]
    H.P. Weber, W. Lüthy (eds.).: Laser Spectroscopy VI, Proc. 6th Int. Conf., Interlaken 1983, Springer Ser. Opt. Sci., Vol.40 (Springer, Berlin, Heidelberg 1983)Google Scholar
  34. [9.29]
    T.W. Hänsch, Y.R. Shen (eds.): Laser Spectroscopy VII, Proc. 7th Int. Conf., Maui 1985, Springer Ser. Opt. Sci., Vol.49 (Springer, Berlin, Heidelberg 1985)Google Scholar
  35. [9.30]
    W. Persson, S. Svanberg (eds.): Laser Spectroscopy VIII, Proc. 8th Int. Conf., Åre 1987, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987)Google Scholar
  36. [9.31]
    M.S. Feld, J.E. Thomas, A. Mooradian (eds.): Laser Spectroscopy IX (Academic Press, Boston 1989)Google Scholar
  37. [9.32]
    M. Ducloy, E. Giacobino, G. Camy (eds.): Laser Spectroscopy X (World Scientific, Singapore 1992)Google Scholar
  38. [9.33]
    L. Bloomfield, Th. Gallagher, D. Larson (eds.): Laser Spectroscopy XI (AIP, New York 1994)Google Scholar
  39. [9.34]
    M. Inguscio, M. Allegrini, A. Sasso (eds.): Laser Spectroscopy XII (World Scientific, Singapore 1996)Google Scholar
  40. [9.35]
    Z.-J. Wang, Y.-Z. Wang, Z.-M. Zhang (eds.): Laser Spectroscopy XIII (World Scientific, Singapore 1998)Google Scholar
  41. [9.36]
    R. Blatt, J. Eschner, D. Leibfried, F. Schmidt-Kaler (eds.): Laser Spectroscopy XIV (World Scientific, Singapore 1999)Google Scholar
  42. S. Chu, V. Vutelic, A.J. Kerman, C. Chin (eds.): Laser Spectroscopy 15 (World Scientific, Singapore 2002)Google Scholar
  43. P. Hannaford, A. Siderov, H. Bachor, K. Baldwin (eds.): Laser Spectroscopy 16 (World Scientific, Singapore 2004)Google Scholar
  44. [9.37]
    C.J. Latimer: Recent experiments involving highly excited atoms. Contemp. Phys. 20, 631 (1979)ADSCrossRefGoogle Scholar
  45. [9.38]
    D. Kleppner: ‘The spectroscopy of highly excited atoms.’ In: Progress in Atomic Spectroscopy, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) Pt. B, p. 713Google Scholar
  46. D. Kleppner, M.G. Littman, M.L. Zimmerman: Highly excited atoms. Sci. Am. 244, 130 (1981)Google Scholar
  47. [9.39]
    R.F. Stebbings, F.B. Dunning (eds.): Rydberg States of Atoms and Molecules (Cambridge University Press, Cambridge 1983)Google Scholar
  48. [9.40]
    T.F. Gallagher: Rydberg atoms. Rep. Prog. Phys. 51, 143 (1988)ADSCrossRefGoogle Scholar
  49. [9.41]
    T.F. Gallagher: Resonant collisional energy transfer between Rydberg atoms. Phys. Rep. 210, 319 (1992)ADSCrossRefGoogle Scholar
  50. T.F. Gallagher: Rydberg Atoms (Cambridge University Press, Cambridge 1994)Google Scholar
  51. [9.42]
    J.-P. Connerade: Highly Excited Atoms (Cambridge University Press, Cambridge 1997)Google Scholar
  52. [9.43]
    R.R. Jones, L.D. Noordam: ‘Electronic wavepackets.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 38, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1998) p. 1Google Scholar
  53. G.M. Lankhuijzen, L.D. Noordam: ‘Rydberg ionization: From field to photon.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.38, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1998) p. 121Google Scholar
  54. [9.44]
    W.C. Wiley, I.H. McLaren: Rev. Sci. Instrum. 26, 313 (1955)CrossRefGoogle Scholar
  55. P. Kruit, F.H. Read: J. Phys. E. 16, 313 (1983)ADSCrossRefGoogle Scholar
  56. D.J. Trevor, L.D. van Woerkom, R.R. Freeman: Rev. Sci. Instrum. 60, 1051 (1989)ADSCrossRefGoogle Scholar
  57. J. Spickermann, K. Martin, H.J. Räder, K. Müllen, R.-P. Krüger, H. Schlaad, A.H.E. Müller: Quantitative analysis of broad molecular weight distributions obtained by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Eur. Mass Spectrom. 2, 161 (1996)CrossRefGoogle Scholar
  58. [9.45]
    K.C. Harvey, B.P. Stoicheff: Fine structure of the n 2 D series in rubidium near the ionization limit. Phys. Rev. Lett. 38, 537 (1977)ADSCrossRefGoogle Scholar
  59. [9.46]
    K. Niemax: Spectroscopy using thermionic diode detectors, Appl. Phys. B 38, 147 (1985)ADSCrossRefGoogle Scholar
  60. [9.47]
    T.W. Ducas, M.G. Littman, R.R. Freeman, D. Kleppner: Stark ionization of high-lying states of sodium. Phys. Rev. Lett. 35, 366 (1975)ADSCrossRefGoogle Scholar
  61. T.F. Gallagher, L.M. Humphrey, R.M. Hill, S.A. Edelstein: Resolution of [m l] and [m j] levels in the electric field ionization of highly excited d-states of Na. Phys. Rev. Lett. 37, 1465 (1976)ADSCrossRefGoogle Scholar
  62. T.F. Gallagher, L.M. Humphrey, R.M. Hill, W. Cooke, S.A. Edelstein: Fine structure intervals and polarizabilities of highly excited p and d states of sodium. Phys. Rev. A 15, 1937 (1977)ADSCrossRefGoogle Scholar
  63. [9.48]
    F.V. Kowalski, R.T. Hawkins, A.L. Schawlow: Digital wavemeter for cw lasers. J. Opt. Soc. Am. 66, 965 (1976)ADSCrossRefGoogle Scholar
  64. [9.49]
    J.L. Hall, S.A. Lee: Interferometric real time display of cw dye laser wavelengths with sub-Doppler accuracy. Appl. Phys. Lett. 29, 367 (1976)ADSCrossRefGoogle Scholar
  65. [9.50]
    A. Fischer, K. Kullmer, W. Demtröder: Computer-controlled Fabry-Pérot wavemeter. Opt. Commun. 39, 277 (1981)ADSCrossRefGoogle Scholar
  66. [9.51]
    L.S. Lee, A.L. Schawlow: Multi-wedge wavemeter for pulsed lasers. Opt. Lett. 6, 610 (1981)ADSCrossRefGoogle Scholar
  67. [9.52]
    P. Juncar, J. Pinard: A new method for frequency calibration and laser control. Opt. Commun 14, 438 (1975)ADSCrossRefGoogle Scholar
  68. [9.53]
    T.W. Hän sch, J.J. Snyder: Wavemeters, Dye Lasers, 3rd edn., ed. by F.P. Schäfer, Topics Appl. Phys., Vol. 1 (Springer, Berlin, Heidelberg 1990)Google Scholar
  69. [9.54]
    R. Castell, W. Demtröder, A. Fischer, R. Kullmer, H. Weickenmeier, K. Wikkert: The accuracy of laser wavelength meters. Appl Phys. B 38, 1 (1985)ADSCrossRefGoogle Scholar
  70. [9.55]
    M. Herscher: The spherical mirror Fabry-Pérot interferometer. Appl. Opt. 7, 951 (1968)ADSCrossRefGoogle Scholar
  71. [9.56]
    J.U. White: Long optical paths of large aperture. J. Opt. Soc. Am. 32, 285 (1942)ADSCrossRefGoogle Scholar
  72. [9.57]
    J.U. White: Very long paths in air. J. Opt. Soc. Am. 66, 411 (1976)ADSCrossRefGoogle Scholar
  73. [9.58]
    G. Yale Eastman: The heat pipe. Sci. Am. 218, 38 (1968)CrossRefGoogle Scholar
  74. [9.59]
    C.R. Vidal, J. Cooper: Heat pipe oven. A new well-defined metal vapor device for spectroscopic measurements. J. Appl. Phys. 40, 3370 (1969)ADSCrossRefGoogle Scholar
  75. [9.60]
    H.-L. Chen: Applications of laser absorption spectroscopy. In: [9.3] p. 261Google Scholar
  76. [9.61]
    T.W. Hänsch, A.L. Schawlow, P. Toschek: Ultrasensitive response of a cw dye laser to selective extinction. IEEE J. Quantum Electron. QE-8, 802 (1972)ADSCrossRefGoogle Scholar
  77. [9.62]
    T.H. Harris: Laser intracavity-enhanced spectroscopy. In: [9.97] p. 343Google Scholar
  78. V.M. Baev, T.P. Belikova, E.A. Sviridenkov, A.F. Suchkov: JETP 74, 21 (1978)ADSGoogle Scholar
  79. [9.63]
    V.M. Baev, J. Eschner, E. Paeth, R. Schüler, P.E. Toschek: Intra-cavity spectroscopy with diode lasers. Appl. Phys. B 55, 463 (1992)ADSCrossRefGoogle Scholar
  80. [9.64]
    W. Gurlit, J.P. Burrows, H. Burkhard, R. Böhm, V.M. Baev, P.E. Toschek: Intracavity diode laser for atmospheric field measurements. Infrared Phys. Technol. 37, 95 (1996)ADSCrossRefGoogle Scholar
  81. [9.65]
    A. O’Keefe, D.A.G. Deacon: Cavity ring-down spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544 (1988)ADSCrossRefGoogle Scholar
  82. R.T. Jongma, M.G.H. Boogaarts, I. Holleman, G. Meijer: Trace gas detection with cavity ring down spectroscopy. Rev. Sci. Instrum. 66, 2821 (1995)ADSCrossRefGoogle Scholar
  83. M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing and M.N.R. Ashfold: Cavity ring-down spectroscopy. J. Chem. Soc. Faraday Trans. 94, 337 (1998)CrossRefGoogle Scholar
  84. [9.66]
    J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, R.J. Saykally, A. O’Keefe: Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS). Chem. Phys. Lett. 245, 273 (1995)ADSCrossRefGoogle Scholar
  85. [9.67]
    D.J. Bradley, P. Ewart, J.V. Nicholas, J.R.D. Shaw: Excited state absorption spectroscopy of alkaline earths selectively pumped by tunable dye lasers. I. Barium arc spectra. J. Phys. B 6, 1594 (1973)Google Scholar
  86. [9.68]
    J.R. Rubbmark, S.A. Borgström, K. Bockasten: Absorption spectroscopy of laser-excited barium. J. Phys. B 10, 421 (1977)ADSCrossRefGoogle Scholar
  87. [9.69]
    M.E. Kaminsky, R.T. Hawkins, F.V. Kowalski, A.L. Schawlow: Identification of absorption lines by modulated lower-level population: Spectrum of Na. Phys. Rev. Lett. 36, 671 (1976)ADSCrossRefGoogle Scholar
  88. [9.70]
    A.L. Schawlow: Simplifying spectra by laser level labeling. Phys. Scr. 25, 333 (1982)ADSCrossRefGoogle Scholar
  89. [9.71]
    R. Teets, R. Feinberg, T.W. Hänsch, A.L. Schawlow: Simplification of spectra by polarization labeling. Phys. Rev. Lett. 37, 683 (1976)ADSCrossRefGoogle Scholar
  90. [9.72]
    P. Esherick: Bound, even-parity J = 0 and J = 2 states of Sr. Phys. Rev. A 15, 1920 (1977)ADSCrossRefGoogle Scholar
  91. [9.73]
    J.E.M. Goldsmith, J.E. Lawler: Optogalvanic spectroscopy. Contemp. Phys. 22, 235 (1981)ADSCrossRefGoogle Scholar
  92. [9.74]
    C.J. Sansonetti, K.-H. Weber: Reference lines for dye-laser wavenumber calibration in the optogalvanic spectra of uranium and thorium. J. Opt. Soc. Am. 131, 361 (1984)Google Scholar
  93. [9.75]
    O. Axner, I. Lindgren, I. Magnusson, H. Rubinsztein-Dunlop: Trace element determination in flames by laser-enhanced ionization spectrometry. Anal. Chem. 57, 773 (1985)CrossRefGoogle Scholar
  94. [9.76]
    O. Axner, H. Rubinsztein-Dunlop: Detection of trace amounts of Cr by two laser-based spectroscopic techniques: Laser-enhanced ionization in flames and laser-induced fluorescence in graphite furnace. Appl. Opt. 32, 867 (1993)ADSCrossRefGoogle Scholar
  95. J. Travis and G. Turk (eds.): Laser-Enhanced Ionization Spectrometry (Wiley, New York 1996)Google Scholar
  96. [9.77]
    P. Ljung, E. Nyström, J. Enger, P. Ljungberg, O. Axner: Detection of titanium in electro-thermal atomizers by laser-induced fluorescence. Spectrochim. Acta B 52, 675 (1997); B 52, 703 (1997Google Scholar
  97. P. Ljung, O. Axner: Measurements of rubidium in standard reference samples by wavelength-modulation diode laser absorption spectrometry in a graphite furnace. Spectrochim. Acta B 52, 305 (1997)ADSCrossRefGoogle Scholar
  98. [9.78]
    X. Hou, S.-J.J. Tsai, J.X. Zhou, K.X. Yang, R.F. Leonardo, R.G. Michel: ‘Laser-excited atomic fluorescence spectrometry: Principle, instrumentation and applications.’ In: Lasers in Analytical Spectroscopy, ed. by J. Sneddon, T.L. Thiem, Y.-I. Lee (VCH Publishers, New York 1997)Google Scholar
  99. [9.79]
    A. Zybin, C. Schnürer-Patschan, M.A. Bolshov, K. Niemax: Elemental analysis by diode laser spectroscopy. Trends Anal. Chem. 17, 513 (1998)CrossRefGoogle Scholar
  100. T. Imasaka: Analytical molecular spectroscopy with diode lasers. Spectrochim. Acta Rev. 15, 329 (1993)Google Scholar
  101. A.W. Mantz: A review of spectroscopic applications of tunable semiconductor lasers. Spectrochim. Acta A 51, 221 (1995)Google Scholar
  102. A.W. Mantz: A review of the applicability of tunable diode-laser spectroscopy at high sensitivity. Microchem. J. 50, 351 (1994)CrossRefGoogle Scholar
  103. M. Inguscio, F.S. Cataliotti, C. Fort, F.S. Pavone, M. Prevedelli: ‘A new generation of light sources for applications in spectrocopy.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer, Heidelberg, Berlin 1997)Google Scholar
  104. C.E. Wieman, L. Hollberg: Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1 (1991)ADSCrossRefGoogle Scholar
  105. F.S. Pavone: Diode lasers and their applications in spectroscopy. Rivista del Nuovo Cimento 19, 1 (1996)MathSciNetCrossRefGoogle Scholar
  106. [9.80]
    J.E.M. Goldsmith: Recent advances in flame diagnostics using fluorescence and ionization techniques. In: [9.30] p. 337Google Scholar
  107. [9.81]
    J.A. Paisner, R.W. Solarz: Resonance photoionization spectroscopy. In: [9.3] p. 175Google Scholar
  108. [9.82]
    P. Camus (ed.): Optogalvanic Spectroscopy and its Applications. J. Physique Coll. C7, Suppl. no. 11, Tome 44 (1983)Google Scholar
  109. [9.83]
    P. Hannaford: Spectroscopy with sputtered atoms. Contemp. Phys. 24, 251 (1983)ADSCrossRefGoogle Scholar
  110. [9.84]
    K.C. Smith, P.K. Schenck: Optogalvanic spectroscopy of a neon discharge. Chem. Phys. Lett. 55, 466 (1978)ADSCrossRefGoogle Scholar
  111. [9.85]
    V.S. Letokhov: Laser Photoionization Spectroscopy (Academic Press, Orlando 1987)Google Scholar
  112. [9.86]
    J.C. Travis, G.C. Turk, J.R. DeVoe, P.K. Schenck, C.A. van Dijk: Prog. Anal. Atom. Spectrosc. 7, 199 (1984)Google Scholar
  113. [9.87]
    I. Magnusson, O. Axner, I. Lindgren, H. Rubinsztein-Dunlop: Laserenhanced ionization detection of trace elements in a graphite furnace. Appl. Spectrosc. 40, 968 (1986)ADSCrossRefGoogle Scholar
  114. O. Axner, I. Magnusson, J. Petersson, S. Sjöström: Investigation of the multi-element capability of laser-enhanced ionization spectrometry in flames for analysis of trace elements in water solution. Appl. Spectrosc. 41, 19 (1987)ADSCrossRefGoogle Scholar
  115. [9.88]
    N. Omenetto: ‘The impact of several atomic and molecular laser spectroscopic techniques for chemical analysis.’ In: Laser Technology in Chemistry, Special issue, ed. by H. Medin, S. Svanberg, Appl. Phys. B 46, No. 3 (1988)Google Scholar
  116. [9.89]
    G.S. Hurst, M.G. Payne (eds.): Resonance Ionization Spectroscopy and its Applications 1984, Conf. Series No. 71 (Institute of Physics, Bristol 1984)Google Scholar
  117. G.S. Hurst, C. Grey Morgan (eds.): Resonance Ionization Spectroscopy, Conf. Series No. 84 (Institute of Physics, Bristol 1987)Google Scholar
  118. [9.90]
    G.S. Hurst, M.G. Payne (eds.): Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, Bristol 1988)Google Scholar
  119. [9.91]
    H.-J. Kluge, B.A. Bushaw, G. Passler, K. Wendt, N. Trautmann: Resonance ionization spectroscopy for trace analysis and fundamental research. Fresenius Z. Anal. Chem. 350, 78 (1994)Google Scholar
  120. [9.92]
    C.H. Chen, G.S. Hurst, M.G. Payne: ‘Resonance ionization spectroscopy: Inert gas detection.’ In: Progress in Atomic Spectroscopy, Pt.C, ed. by H.J. Beyer, H. Kleinpoppen (Plenum, New York 1984) p. 115Google Scholar
  121. [9.93]
    G.S. Hurst, M.G. Payne, S.D. Kramer, C.H. Chen, R.C. Phillips, S.L. Allman, G.D. Alton, J.W.T. Dabbs, Rd. Willis, B.E. Lehman: Method for counting noble gas atoms with isotopic selectivity. Rep. Prog. Phys. 48, 1333 (1985)ADSCrossRefGoogle Scholar
  122. V.S. Letokhov: Detecting individual atoms and molecules with lasers. Sci. Am. 259(3), 44 (1988)CrossRefGoogle Scholar
  123. J.T. Höffges, H.W. Baldauf, T. Eichler, S.R. Helmfrid, H. Walther: ‘Resonance fluorescence of a single ion.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer, Berlin, Heidelberg 1997)Google Scholar
  124. [9.94]
    J.A. Gelbwachs (ed.): Laser Spectroscopy for Detection. Proc. SPIE Int. Soc. Opt. Eng. Vol. 286 (SPIE, Washington 1981)Google Scholar
  125. [9.95]
    R.A. Keller: Laser-Based Ultrasensitive Spectroscopy and Detection. Proc. SPIE Int. Soc. Opt. Eng. Vol. 426 (SPIE, Washington 1983)Google Scholar
  126. [9.96]
    J.J. Snyder, R.A. Keller (eds.): Ultrasensitive Laser Spectroscopy, Special issue, J. Opt. Soc. Am. B 2, No 9 (1985)Google Scholar
  127. [9.97]
    D. Kliger (ed.): Ultrasensitive Laser Spectroscopy (Academic Press, New York 1983)Google Scholar
  128. [9.98]
    M. Eigen, R. Rigler: Proc. Natl. Acad. Sci. USA 91, 5740 (1994)ADSCrossRefGoogle Scholar
  129. W.E. Moerner, R.M. Dickson, D.J. Norris: ‘Single-molecule spectroscopy and quantum optics in solids.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 38, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1998) p. 193Google Scholar
  130. M. Orrit, J. Bernard, R. Brown, B. Lounis: ‘Optical spectroscopy of single molecules in solids.’ In: Progress in Optics XXXV, ed. by E. Wolf (Elsevier, Amsterdam 1996), p. 63Google Scholar
  131. Th. Basche, W.E. Moerner, M. Orritt, U.P. Wild (eds.): Single Molecule Optical Detection, Imaging and Spectroscopy (Wiley-VCH, Munich 1997)Google Scholar
  132. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)ADSCrossRefGoogle Scholar
  133. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, M.S. Feld: Surface-enhanced Raman scattering: A new tool for biomedical spectroscopy. Current Science 77, 915 (1999)Google Scholar
  134. [9.99]
    S. Weiss: Fluorescence spectroscopy of single biomolecules. Science 283, 1676 (1999) (Special Issue, March 12, 1999)ADSCrossRefGoogle Scholar
  135. X. Sunney Xie, J.K. Trautman: Single-molecule optical studies at room temperature. Ann. Rev. Phys. Chem. 49, 441 (1998)ADSCrossRefGoogle Scholar
  136. [9.100]
    N. Omenetto (ed.): Analytical Laser Spectroscopy (Wiley, New York 1979)Google Scholar
  137. [9.101]
    E.H. Piepmeier (ed.): Analytical Applications of Lasers (Wiley, New York 1986)Google Scholar
  138. [9.102]
    V.S. Letokhov (ed.): Laser Analytical Spectrochemistry (Hilger, Bristol 1986)Google Scholar
  139. [9.103]
    J. Sneddon, T.L. Thiem, Y.-I. Lee (eds.): Lasers in Analytical Spectroscopy (VCH Publishers, New York 1997)Google Scholar
  140. [9.104]
    N. Omenetto: The role of lasers in analytical atomic spectroscopy — Where, when and why. J. Anal. At. Spectrom. 13, 385 (1998)CrossRefGoogle Scholar
  141. [9.105]
    S. Svanberg: ‘Fundamentals of atmospheric spectroscopy.’ In: Surveillance of Electromagnetic Pollution and Resources by Electromagnetic Waves, ed. by T. Lund (Reidel, Dordrecht 1978)Google Scholar
  142. [9.106]
    L.B. Kreutzer: Laser optoacoustic spectroscopy. A new technique of gas analysis. Anal. Chem. 46, 239A (1974)Google Scholar
  143. [9.107]
    A. Rosencwaig: Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York 1980)Google Scholar
  144. [9.108]
    V. Letokhov, V. Zhaorov: Laser Opto-Acoustic Spectroscopy, Springer Ser. Opt. Sci., Vol.37 (Springer, Berlin, Heidelberg 1986)Google Scholar
  145. [9.109]
    A.C. Tam: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)ADSCrossRefGoogle Scholar
  146. [9.110]
    P. Hess, J. Pelzl (eds.): Photoacoustics and Photothermal Phenomena, Springer Ser. Opt. Sci., Vol.58 (Springer, Berlin, Heidelberg 1988)Google Scholar
  147. [9.111]
    P. Hess (ed.): Photoacoustics (Springer, Berlin, Heidelberg 1990)Google Scholar
  148. [9.112]
    M.W. Sigrist: ‘Air monitoring by laser photoacoustic spectroscopy.’ In: Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist (Wiley, New York 1994)Google Scholar
  149. F.G.C. Bijnen, H. Zuckermann, F.J.M. Harren, J. Reuss: Multi-component trace gas analysis by three photoacoustic cells intracavity in a CO-laser; observation of anaerobic and post-anaerobic emission of acetaldehyde and ethanol in cherry tomatoes. Appl. Opt. 37, 3345 (1998)ADSCrossRefGoogle Scholar
  150. F.J.M. Harren: ‘Photoacoustic spectroscopy in trace gas monitoring.’ In: Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, ed. by R.A. Meyers (Wiley, New York 2000) p. 2203Google Scholar
  151. [9.113]
    C.K.N. Patel, A.C. Tam: Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517 (1981)Google Scholar
  152. [9.114]
    S. Svanberg, P. Tsekeris, W. Happer: Hyperfine structure studies of highly excited D and F levels in alkali atoms using a CW dye laser. Phys. Rev. Lett. 30, 817 (1973)ADSCrossRefGoogle Scholar
  153. S. Svanberg, P. Tsekeris: Hyperfine-structure investigation of highly excited 2 D levels in 87Rb and 133Cs using a cw tunable laser in a two-step excitation scheme. Phys. Rev. A 11, 1125 (1975)ADSCrossRefGoogle Scholar
  154. [9.115]
    G. Belin, I. Lindgren, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in potassium. Phys. Scr. 12, 287 (1975)ADSCrossRefGoogle Scholar
  155. [9.116]
    G. Belin, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in rubidium. Phys. Scr. 13, 351 (1976)ADSCrossRefGoogle Scholar
  156. [9.117]
    G. Belin, L. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in cesium. Phys. Scr. 14, 39 (1976)Google Scholar
  157. [9.118]
    S. Svanberg: Measurement and calculation of excited alkali hyperfine and Stark parameters. In: [9.25] p. 183Google Scholar
  158. [9.119]
    R. Neumann, F. Träger, G. zu Putlitz: ‘Laser-microwave spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 1Google Scholar
  159. T.F. Gallagher: ‘Radiofrequency spectroscopy of Rydberg atoms.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 12Google Scholar
  160. [9.120]
    K. Fredriksson, S. Svanberg: Precision determination of the fine structure of the 4d state in sodium using level crossing spectroscopy. Phys. Lett. A 53, 61 (1975)ADSCrossRefGoogle Scholar
  161. [9.121]
    E. Matthias, R.A. Rosenberg, E.D. Poliakoff, M.G. White, S.-T. Lee, D.A. Shirley: Time-resolved VUV spectroscopy using synchrotron radiation: Fluorescent lifetimes of atomic Kr and Xe. Chem. Phys. Lett. 52, 239 (1977)ADSCrossRefGoogle Scholar
  162. T. Möller, G. Zimmerer: Time-resolved spectroscopy with synchrotron radiation in the vacuum ultraviolet. Phys. Scr. T17, 177 (1987)ADSCrossRefGoogle Scholar
  163. R. Rigler, O. Kristensen, R. Roslund, P. Thyberg, K. Oba, M. Eriksson: Molecular structure and dynamics: Beamline for time-resolved spectroscopy at the MAX synchrotron in Lund. Phys. Scr. T17, 204 (1987)ADSCrossRefGoogle Scholar
  164. [9.122]
    U. Berzinsh, Luo Caiyan, R. Zerne, S. Svanberg: Determination of radiative lifetimes of neutral sulphur by time-resolved VUV laser spectroscopy. Phys. Rev. A 55, 1836 (1997)ADSCrossRefGoogle Scholar
  165. [9.123]
    Se. Johansson, A. Joueizadeh, U. Litzén, J. Larsson, A. Persson, C.-G. Wahlström, S. Svanberg, D.S. Leckrone, G.M. Wahlgren: Comparison of new experimental and astrophysical f-values for some Ru II lines, observed in HST spectra of XLupi. Astrophys. J. 421, 809 (1994)ADSCrossRefGoogle Scholar
  166. [9.124]
    H. Bergström, G.W. Faris, H. Hallstadius, H. Lundberg, A. Persson, C.-G. Wahlström: Radiative lifetime and hyperfine-structure studies on laser-evaporated boron. Z. Phys. D 8, 17 (1988)ADSCrossRefGoogle Scholar
  167. [9.125]
    R.A. Lacy, A.C. Nilsson, R.L. Byer, W.T. Silvfast, O.R. Wood II, S. Svanberg: ‘Photoionization-pumped gain at 185 nm in a laser-ablated Indium plasma.’ In: Short Wavelength Coherent Radiation: Generation and Applications, AIP Conference Proceedings No. 147, ed. by D.T. Attwood, J. Bokor (AIP, New York 1986); and J. Opt. Soc. Am. B 6, 1209 (1989Google Scholar
  168. [9.126]
    Z.-S. Li, J. Norin, A. Persson, C.-G. Wahlström, S. Svanberg, P.S. Doidge, E. Biémont: Radiative properties of neutral germanium obtained from excited state lifetime and branching ratio measurements and comparison with theoretical calculations. Phys. Rev. A 60, 198 (1999)ADSCrossRefGoogle Scholar
  169. [9.127]
    M.B. Gaarde, R. Zerne, C. Luo, Z. Jiang, J. Larsson, S. Svanberg: Determination of radiative lifetimes of excited states in neutral gold using time-resolved VUV laser spectroscopy. Phys. Rev. A 50, 209 (1994)ADSCrossRefGoogle Scholar
  170. R. Zerne, J. Larsson, S. Svanberg: Determination of radiative lifetimes in the 3d 10 np 2 P sequence of neutral copper by time-resolved VUV laser spectroscopy. Phys. Rev. A 49, 128 (1994)ADSCrossRefGoogle Scholar
  171. C. Luo, U. Berzinsh, R. Zerne, S. Svanberg: Determination of radiative lifetimes on neutral bismuth by time-resolved UV/VUV laser spectroscopy. Phys. Rev. A 52, 1936 (1995)ADSCrossRefGoogle Scholar
  172. U. Berzinsh, S. Svanberg: Atomic radiative lifetimes measured by pulsed laser spectroscopy in the UV/VUV spectral region. Adv. Quantum Chem. 30, 283 (1998)ADSCrossRefGoogle Scholar
  173. Z.S. Li, S. Svanberg, P. Quinet, X. Tordoir, E. Biemont: Lifetime measurements in Yb II with time-resolved laser spectroscopy. J. Phys. B 32, 1731 (1999)ADSCrossRefGoogle Scholar
  174. Zhang Zhiguo, Z.S. Li, H. Lundberg, K.Y. Zhang, Z.W. Dai, Jiang Zhankui, S. Svanberg: Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements. J. Phys. B 33, 521 (2000)ADSCrossRefGoogle Scholar
  175. P. Quinet, P. Palmeri, E. Biemont, Z.S. Li, Z.G. Zhang, S. Svanberg: Radiative lifetime measurements and transition probability calculations in lanthanide ions. J. of Alloys and Compounds 344, 255 (2002)CrossRefGoogle Scholar
  176. [9.128]
    J.C. Cooper, N.D. Gibson, J.E. Lawler: Radiative lifetimes in Cr I by laserinduced fluorescence. J. Quant. Spectrosc. Radiat. Transfer 58, 85 (1997)ADSCrossRefGoogle Scholar
  177. G.M. Wahlgren, S.G. Johansson, U. Litzén, N.D. Gibson, J.C. Cooper, J.E. Lawler, D.S. Leckrone, R. Engleman Jr.: Atomic data for the Re II resonance multiplet and its application to astrophysics. Astrophys. J. 475, 380 (1997)ADSCrossRefGoogle Scholar
  178. [9.129]
    P.B. Coates: The correction for photon “pile-up” in the measurement of radiative lifetimes. J. Phys. E 1, 878 (1968)ADSCrossRefGoogle Scholar
  179. [9.130]
    M. Gustavsson, H. Lundberg, L. Nilsson, S. Svanberg: Lifetime measurements for excited states of rare-earth atoms using pulse-modulation of a cw dye laser beam. J. Opt. Soc. Am. 69, 984 (1979)ADSCrossRefGoogle Scholar
  180. J. Carlsson: Accurate time-resolved laser spectroscopy on sodium and bismuth atoms. Z. Phys. D 9, 147 (1988)Google Scholar
  181. [9.131]
    K. Bhatia, P. Grafström, C. Levinson, H. Lundberg, L. Nilsson, S. Svanberg: Natural radiative lifetimes in the perturbed 6snd 1 D 2 sequence of barium. Z. Physik A 303, 1 (1981)Google Scholar
  182. T.F. Gallagher, W. Sandner, K.A. Safinya: Probing configuration interaction of the Ba 5d7d 1 D 2 state using radiofrequency spectroscopy and lifetime measurements. Phys. Rev. A 23, 2969 (1981)ADSCrossRefGoogle Scholar
  183. M. Aymar, R.-J. Champeau, C. Delsart, J.C. Keller: Lifetimes of Rydberg levels in the perturbed 6snd 1,3 D 2 series of barium I. J. Phys. B 14, 4489 (1981)ADSCrossRefGoogle Scholar
  184. [9.132]
    S. Svanberg: Perturbations in Rydberg sequences probed by lifetime, Zeeman-effect and hyperfine structure measurements. In: [9.27] p. 301Google Scholar
  185. [9.133]
    J. Carlsson, L. Sturesson: Accurate time-resolved laser spectroscopy on lithium atoms. Z. Phys. D 14, 281 (1989)ADSCrossRefGoogle Scholar
  186. [9.134]
    J. Carlsson: Accurate time-resolved laser spectroscopy on sodium and bismuth atoms. Z. Phys. D 9, 147 (1988)ADSCrossRefGoogle Scholar
  187. J. Carlsson, P. Jönsson, L. Sturesson, C. Froese Fischer: Multi-configuration Hartree-Fock calculations and time-resolved laser spectroscopy studies of hyperfine structure constants in sodium. Phys. Scr. 46, 394 (1992)ADSCrossRefGoogle Scholar
  188. [9.135]
    C. De Michelis, M. Mattioli: Spectroscopy and impurity behaviour in fusion plasmas. Rep. Prog. Phys. 47, 1233 (1984)ADSCrossRefGoogle Scholar
  189. R.C. Isler: Impurities in Tokomaks. Nuclear Fusion 24, 1599 (1984)CrossRefGoogle Scholar
  190. [9.136]
    R.E. Imhof, F.H. Read: Measurements of lifetimes of atoms, molecules and ions. Rep. Prog. Phys. 40, 1 (1977)ADSCrossRefGoogle Scholar
  191. [9.137]
    P. Erman: ‘Time-resolved spectroscopy of small molecules.’ In: Specialists Periodical Reports, Molecular Spectroscopy, Vol. 6, Chap. 5 (The Chemical Society, London 1979) p. 174Google Scholar
  192. [9.138]
    J.N. Dodd, G.W. Series: ‘Time-resolved fluorescence spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978) p. 639Google Scholar
  193. W.L. Wiese: ‘Atomic transition probabilities and lifetimes.’ In: Progress in Atomic Spectroscopy, Pt. B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 1101Google Scholar
  194. [9.139]
    M.C.E. Huber, R.J. Sandeman: The measurement of oscillator strengths. Rep. Prog. Phys. 49, 397 (1986)ADSCrossRefGoogle Scholar
  195. [9.140]
    O. Poulsen, J.L. Hall: Spectroscopic investigation in 209Bi I using tunablecw-dye-laser spectroscopy. Phys. Rev. A 18, 1089 (1978)ADSCrossRefGoogle Scholar
  196. [9.141]
    S. Svanberg: Natural radiative lifetimes of some excited Bi I levels belonging to the 6p 2 7s and the 6p 2 6d configurations measured by the Hanle method. Phys. Scr. 5, 73 (1972)ADSCrossRefGoogle Scholar
  197. [9.142]
    H.J. Andrä, A. Gaupp, W. Wittmann: New method for precision lifetime measurements by laser excitation of fast-moving atoms. Phys. Rev. Lett. 31, 501 (1973)ADSCrossRefGoogle Scholar
  198. [9.143]
    A. Gaupp, P. Kuske, H.J. Andrä: Accurate lifetime measurements of the lowest 2P1/2 states in neutral lithium and sodium. Phys. Rev. A 26, 3351 (1982)ADSCrossRefGoogle Scholar
  199. C.E. Tanner, A.E. Livingston, R.C. Rafac, F.G. Serpa, K.W. Kukla, H.G. Berry, L. Young, C.A. Kurtz: Phys. Rev. Lett. 69, 2765 (1992)ADSCrossRefGoogle Scholar
  200. [9.144]
    T. Brage, C. Froese Fischer, P. Jönsson: Effects of core-valence and corecore correlation on the line strength of the resonance lines in Li I and Na I. Phys. Rev. A 49, 2181 (1994)ADSCrossRefGoogle Scholar
  201. C.E. Tanner: ‘Precision measurements of atomic lifetimes.’ In: Atomic Physics XIV, ed. by D.J. Wineland, C.E. Wieman, S.J. Smith (AIP Publ., New York 1995) p. 150Google Scholar
  202. [9.145]
    P. Erman, J. Brzozowski, B. Sigfridsson: Gas excitations using highfrequency deflected electron beams: A convenient method for determinations of atomic and molecular lifetimes. Nucl. Instrum. Methods 110, 471 (1973)ADSCrossRefGoogle Scholar
  203. [9.146]
    P. Erman: High-resolution measurements of atomic and molecular lifetimes using the high-frequency deflection technique. Phys. Scr. 11, 65 (1975)ADSCrossRefGoogle Scholar
  204. [9.147]
    P. Erman: Astrophysical applications of time-resolved molecular spectroscopy. Phys. Scr. 20, 575 (1979); Studies of perturbations using time resolved techniques. Phys. Scr. 25, 365 (1982ADSCrossRefGoogle Scholar
  205. [9.148]
    J. Brzozowski, P. Bunker, N. Elander, P. Erman: Predissociation effects in the A, B, and C states of CN and the interstellar formation rate of CH via inverse predissociation. Astrophys. J. 207, 414 (1976)ADSCrossRefGoogle Scholar
  206. [9.149]
    J.K. Link: Measurement of the radiative lifetimes of the first excited states of Na, K, Rb, and Cs by means of the phase-shift method. J. Opt. Soc. Am. 56, 1195 (1966)ADSCrossRefGoogle Scholar
  207. P.T. Cunningham, J.K. Link: Measurement of lifetimes of excited states of Na, T1, In, Ga, Cu, Ag, Pb, and Bi by the phase-shift method. J. Opt. Soc. Am. 57, 1000 (1967)ADSCrossRefGoogle Scholar
  208. L. Armstrong Jr., S. Ferneuille: Theoretical analysis of the phase shift measurement of lifetimes using monochromatic light. J. Phys. B 8, 546 (1975)ADSCrossRefGoogle Scholar
  209. [9.150]
    C.H. Corliss, W.R. Bozman: Experimental transition probabilities for spectral lines of seventy elements. NBS Monograph 53 (National Bureau of Standards, Washington, DC 1962)Google Scholar
  210. [9.151]
    W. Marlow: Hakenmethode. Appl. Opt. 6, 1715 (1967)ADSCrossRefGoogle Scholar
  211. [9.152]
    N.P. Penkin: ‘Experimental determination of electronic transition probabilities and the lifetimes of the excited atomic and ionic states.’ In: Atomic Physics 6, ed. by R. Damburg (Plenum, New York 1979) p. 33Google Scholar
  212. [9.153]
    W.A. van Wijngaarden, K.D. Bonin, W. Happer: Inverse hook method for measuring oscillator strengths for transitions between excited atomic states. Hyperfine Interact. 38, 471 (1987)ADSCrossRefGoogle Scholar
  213. [9.154]
    S. Svanberg: Atomic spectroscopy by resonance scattering. Philos. Trans. R. Soc. London A 293, 215 (1979)ADSCrossRefGoogle Scholar
  214. [9.155]
    J.N. Dodd, G.W. Series: ‘Time-resolved fluorescence spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1978) p. 639Google Scholar
  215. [9.156]
    S. Haroche: Quantum beats and time-resolved fluorescence spectroscopy. In: [9.15] p. 253Google Scholar
  216. [9.157]
    P. Grundevik, H. Lundberg, A.-M. Mårtensson, K. Nystrom, S. Svanberg: Hyperfine-structure study in the P sequence of 23Na using quantum-beat spectroscopy. J. Phys. B 12, 2645 (1979)ADSCrossRefGoogle Scholar
  217. [9.158]
    G. Jönsson, C. Levinson, L Lindgren, A. Persson, C.G. Wahlström: Experimental and theoretical studies of the 4s 2 np 2 P sequence in neutral gallium. Z. Phys. A 322, 351 (1985)ADSCrossRefGoogle Scholar
  218. [9.159]
    J. Bengtsson, J. Larsson, S. Svanberg, C.-G. Wahlström: Hyperfine-structure study of the 3d 105p 2 P 3/2 level of neutral copper using pulsed levelcrossing spectroscopy at short wavelengths. Phys. Rev. A 41, 233 (1990)ADSCrossRefGoogle Scholar
  219. J. Bengtsson, J. Larsson, S. Svanberg, C.G. Wahlström: High-resolution pulsed laser spectroscopy in the UV/VUV spectral region. In: [9.31] p. 86Google Scholar
  220. S. Svanberg: ‘High-resolution laser spectroscopy in the UV/VUV spectral region.’ In: Applied Laser Spectroscopy, ed. by M. Inguscio, W. Demtröder (Plenum, New York 1990)Google Scholar
  221. G.J. Bengtsson, P. Jönsson, J. Larsson, S. Svanberg: Time-resolved spectroscopic studies of the 7p 2 P states of neutral silver following VUV excitation, Z. Physik D 22, 437 (1991)ADSCrossRefGoogle Scholar
  222. J. Larsson, S. Svanberg: High-resolution VUV spectroscopy using pulsed laser sources. Appl. Phys. B 59, 433 (1994)ADSCrossRefGoogle Scholar
  223. [9.160]
    D.P. O’Brien, P. Meystre, H. Walther: ‘Subnatural linewidths in atomic spectroscopy.’ In: Advanced Atomic and Molecular Physics, Vol. 21, ed. by D.R. Bates, B. Bederson (Academic Press, Orlando 1985)Google Scholar
  224. H. Figger, H. Walther: Optical resolution beyond the natural linewidth: A level-crossing experiment on the 3 2 P 3/2 level of sodium using a tunable dye laser. Z. Phys. 267, 1 (1974)ADSCrossRefGoogle Scholar
  225. [9.161]
    P. Schenk, R.C. Hilborn, H. Metcalf: Time-resolved fluorescence from Ba and Ca excited by a pulsed tunable dye laser. Phys. Rev. Lett. 31, 189 (1974)Google Scholar
  226. [9.162]
    J. Bengtsson, J. Larsson, S. Svanberg: Hyperfine structure and radiative lifetime determination for the 4d 10 6s 2 P states of neutral silver using pulsed laser spectroscopy. Phys. Rev. A 42, 545 (1990)ADSCrossRefGoogle Scholar
  227. [9.163]
    F. Shimizu, K. Shimuiu, Y. Gomi, H. Takuma: Direct observation of hyperfine splittings of the 7Li 2 P 3/2 state by subnatural linewidth spectroscopy. Phys. Rev. A 35, 3149 (1987)ADSCrossRefGoogle Scholar
  228. [9.164]
    J. Larsson, L. Sturesson, S. Svanberg: Manipulation of level-crossing signals using narrow-band or pulsed laser excitation. Phys. Scr. 40, 165 (1989)ADSCrossRefGoogle Scholar
  229. [9.165]
    S.L. Shapiro (ed.): Ultrashort Light Pulses, 2nd edn. Topics Appl. Phys., Vol. 18 (Springer, Berlin, Heidelberg 1984)Google Scholar
  230. W. Kaiser (ed.): Ultrashort Laser Pulses and Applications, 2nd edn. Springer Ser. Opt. Sci., Vol.60 (Springer, Berlin, Heidelberg 1993)Google Scholar
  231. [9.166]
    C.V. Shank, E. Ippen, S.L. Shapiro: Picosecond Phenomena, Springer Ser. Chem. Phys., Vol.4 (Springer, Berlin, Heidelberg 1978)Google Scholar
  232. [9.167]
    R.M. Hochstrasser, W. Kaiser, C.V. Shank: Picosecond Phenomena II, Springer Ser. Chem. Phys., Vol. 14 (Springer, Berlin, Heidelberg 1980)Google Scholar
  233. [9.168]
    K. Eisenthal, R.M. Hochstrasser, W. Kaiser, A. Lauberau (eds.): Picosecond Phenomena III, Springer Ser. Chem. Phys., Vol. 23 (Springer, Berlin, Heidelberg 1982)Google Scholar
  234. [9.169]
    D. Auston, K. Eisenthal (eds.): Ultrafast Phenomena IV, Springer Ser. Chem. Phys., Vol. 38 (Springer, Berlin, Heidelberg 1984)Google Scholar
  235. [9.170]
    A. Siegman, G. Fleming (eds.): Ultrafast Phenomena V, Springer Ser. Chem. Phys., Vol. 46 (Springer, Berlin, Heidelberg 1986)Google Scholar
  236. [9.171]
    P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena VI (Springer Berlin, Heidelberg 1988)Google Scholar
  237. [9.172]
    P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena VII (Springer Berlin, Heidelberg 1990)Google Scholar
  238. [9.173]
    P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena VIII (Springer, Berlin, Heidelberg 1993)Google Scholar
  239. [9.174]
    P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail (eds.): Ultrafast Phenomena IX, Springer Ser. Chem. Phys., Vol.60 (Springer, Berlin, Heidelberg 1994)Google Scholar
  240. [9.175]
    P.F. Barbara, J.G. Fujimoto, W.H. Knox, W. Zinth (eds.): Ultrafast Phenomena X, Springer Ser. Chem. Phys., Vol.62 (Springer, Berlin, Heidelberg 1996)Google Scholar
  241. [9.176]
    T. Elsaesser, J.G. Fujimoto, D.A. Wiersmaa, W. Zinth (eds.): Ultrafast Phenomena XI (Springer, Berlin, Heidelberg 1998)Google Scholar
  242. T. Elsaesser, S. Mukamel, M.M. Murnane, N.F. Scherer (eds.): Ultrafast Phenomena XII (Springer, Berlin, Heidelberg 2001)Google Scholar
  243. D.R. Miller, M.M. Murnane, A.M. Weiner (eds.): Ultrafast Phenomena XIII (Springer, Berlin, Heidelberg 2003)Google Scholar
  244. [9.177]
    J.C. Diels, W. Rudolph: Ultrashort Laser Pulse Phenomena (Academic Press, New York 1996)Google Scholar
  245. [9.178]
    T. Baumert, G. Gerber: Femtosecond spectroscopy of molecules and clusters. Adv. At. Mol. Opt. Phys. 35, 163 (1995)ADSCrossRefGoogle Scholar
  246. Th. Elsaesser, M. Woerner: Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures. Phys. Rep. 321, 253 (1999)ADSCrossRefGoogle Scholar
  247. [9.179]
    O. Svelto, S. De Silvresti, G. Denardo (eds.): Ultrafast Processes in Spectroscopy (Plenum, New York 1996)Google Scholar
  248. [9.180]
    E. Schreiber: Femtosecond Real-Time Spectroscopy of Small Molecules and Clusters (Springer, Berlin, Heidelberg 1998)Google Scholar
  249. [9.181]
    R. Schinke: Photodissociation Dynamics (Cambridge University Press, Cambridge 1993)Google Scholar
  250. [9.182]
    G.D. Billings, K.V. Mikkelsen: Introduction to Molecular Dynamics and Chemical Kinetics (Wiley, London 1996)Google Scholar
  251. [9.183]
    J.W. Hepburn, R.E. Continetti, M.A. Johnson (eds.): Laser Techniques for State-Selective and State-to-State Chemistry IV, Proc. SPIE Int. Soc. Opt. Eng. 3271 (1997)Google Scholar
  252. [9.184]
    J. Hoff, J. Deisenhofer: Photophysics of photosynthesis. Phys. Rep. 287, 1 (1997)Google Scholar
  253. [9.185]
    S. Letzring: Buying and using a streak camera. Lasers & Appl. (March 1983) p. 49Google Scholar
  254. [9.186]
    R. Trebino, D.J. Kane: Using phase retrieval to measure the intensity and phase of ultra-short pulses: Frequency-resolved optical gating. J. Opt. Soc. Am. A 10, 1101 (1993)ADSCrossRefGoogle Scholar
  255. D.J. Kane, R. Trebino: Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. QE-29, 571 (1993)ADSCrossRefGoogle Scholar
  256. R. Trebino, K.W. DeLong, D.N. Fittinghoff, D.N. Sweetser, M.A. Krumbugel, B.A. Richman, D.J. Kane: Measuring ultra-short laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277 (1997)ADSCrossRefGoogle Scholar
  257. A. Baltuska, M. Pshenichnikov, D.A. Wiersma: Amplitude and phase characterization of 4.5 fs pulses by frequency-resolved optical gating. Opt. Lett. 23, 1474 (1998)Google Scholar
  258. S. Linden, H. Giessen, J. Kuhl: XFROG, A new method for amplitude and phase characterization of weak ultrashort pulses. Phys. Status Solidi 206, 119 (1998)CrossRefGoogle Scholar
  259. C. Iaconis, I.A. Walmsley: Spectral phase interferometry for direct electricfield reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792 (1998)ADSCrossRefGoogle Scholar
  260. [9.187]
    R.R. Alfano (ed.): The Supercontinuum Laser Source (Springer-Verlag, New York 1989)Google Scholar
  261. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Wöste: Teramobile: A mobile femtosecond-terawatt laser and detection system. Eur. Phys. J. AP 20, 183 (2002)ADSCrossRefGoogle Scholar
  262. [9.188]
    P.R. Smith, D.A. Auston, M.C. Nuss: Subpicosecond photoconducting dipole antennas. IEEE J. Quantum Electron. QE-24, 255 (1988)ADSCrossRefGoogle Scholar
  263. [9.189]
    M. van Exter, Ch. Fattiger, D. Grischkowsky: High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett. 55, 337 (1989)ADSCrossRefGoogle Scholar
  264. D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattiger: Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006 (1990)ADSCrossRefGoogle Scholar
  265. [9.190]
    M. van Exter, D. Grischkowsky: Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microwave Theory Tech. 38, 1684 (1990)ADSCrossRefGoogle Scholar
  266. L. Xu, X.-C. Zhang, D.H. Auston: Terahertz beam generation by femtosecond optical pulses in electro-optic materials. Appl. Phys. Lett. 61, 1784 (1992)ADSCrossRefGoogle Scholar
  267. R.A. Cheville, D. Grischkowsky: Far-infrared terahertz time-domain spectroscopy of flames. Opt. Lett. 20, 1646 (1995)ADSCrossRefGoogle Scholar
  268. B.B. Hu, M.C. Nuss: Imaging with terahertz waves. Opt. Lett. 20, 1716 (1995)ADSCrossRefGoogle Scholar
  269. D.M. Mittleman, R.H. Jacobsen, M.C. Nuss: T-ray imaging. IEEE J. Sel. Topics Quantum Electron. 2, 679 (1996)CrossRefGoogle Scholar
  270. P.Y. Han, G.C. Cho, X.C. Zhang: Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 24, 242 (2000)ADSCrossRefGoogle Scholar
  271. P.H. Siegel: Terahertz technology. IEEE MTT 50, 910 (2002)CrossRefGoogle Scholar
  272. R.M. Woodward, W.P. Wallace, R.J. Pye, B.E. Cole, D.D. Arnone, E.H. Linfield, M. Pepper: Terahertz pulse imaging of ex vivo basal cell carcinoma. J. Invest. Derm. 120, 72 (2003)CrossRefGoogle Scholar
  273. C. Zandonella: Terahertz imaging: T-ray specs. Nature 424, 721 (2003)ADSCrossRefGoogle Scholar
  274. [9.191]
    A.H. Zewail: Laser femtochemistry. Science 242, 1645 (1988)ADSCrossRefGoogle Scholar
  275. A.H. Zewail: The birth of molecules. Sci. Am. 263(6), 40 (1990)CrossRefGoogle Scholar
  276. [9.192]
    M. Dantus, M.J. Rosker, A.H. Zewail: Real-time femtosecond probing of “transition states” in chemical reactions. J. Chem. Phys. 87, 2395 (1987)ADSCrossRefGoogle Scholar
  277. M.J. Rosker, M. Dantus, A.H. Zewail: Femtosecond real-time probing of reactions. I. The technique. J. Chem. Phys. 89, 6113 (1988)ADSCrossRefGoogle Scholar
  278. M.J. Rosker, M. Dantus, A.H. Zewail: Femtosecond real-time probing of reactions. II. The dissociation reaction of ICN. J. Chem. Phys. 89, 6128 (1988)ADSCrossRefGoogle Scholar
  279. [9.193]
    A.H. Zewail: Femtochemistry. J. Phys. Chem. 97, 12 427 (1993)Google Scholar
  280. S. Pedersen, J.L. Herek, A.H. Zewail: The validity of the “diradical hypothesis”: Direct femtosecond studies of the transition-state structures. Science 266, 1359 (1994)ADSCrossRefGoogle Scholar
  281. A.H. Zewail: J. Phys. Chem. 100, 12 701 (1996)CrossRefGoogle Scholar
  282. H. Ihee, V. Lobastov, U. Gomez, B. Goodson, R. Srinivasan, C.-Y. Ruan, A.H. Zewail: Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 385 (2001)CrossRefGoogle Scholar
  283. S.K. Pal, J. Peon, A.H. Zewail: Biological water at the protein surface dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. 99, 1763 (2002)ADSCrossRefGoogle Scholar
  284. [9.194]
    Proc. Femtosecond Chemistry — The Berlin Conference: J. Phys. Chem. 97, 12 424–12 649 (1993) Special issueGoogle Scholar
  285. [9.195]
    A.H. Zewail (ed.): Femtochemistry: Ultrafast Dynamics of the Chemical Bond, Vols. 1 and 2 (World Scientific, Singapore 1994)Google Scholar
  286. [9.196]
    J. Manz, L. Wöste (eds.): Femtosecond Chemistry, Vol.1 and 2 (VCH, Weinheim 1995)Google Scholar
  287. [9.197]
    P. Brumer, M. Shapiro: Laser control of chemical reactions. Sci. Am. 272(3), 34 (1995)CrossRefGoogle Scholar
  288. [9.198]
    M.A. El-Sayed, I. Tanaka, Y. Molin: Ultrafast Processes in Chemistry and Photobiology (Blackwell Science, Oxford 1995)Google Scholar
  289. [9.199]
    M. Chergui (ed.): Femtochemistry: Ultrafast Chemical and Physical Processes in Molecular Systems (World Scientific, Singapore 1996)Google Scholar
  290. [9.200]
    V. Sundström (ed.): Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-Scale Resolution (World Scientific, Singapore 1997)Google Scholar
  291. [9.201]
    D.L. Andrews: Lasers in Chemistry, 3rd edn. (Springer Verlag, Heidelberg 1997)Google Scholar
  292. [9.202]
    M.J. Rosker, T.S. Rose, A.H. Zewail: Real-time dynamics of photofragment-trapping resonances on dissociative potential energy surfaces. Chem. Phys. Lett. 146, 175 (1988)ADSCrossRefGoogle Scholar
  293. [9.203]
    L.R. Khundkar, A.H. Zewail: Picosecond photofragment spectroscopy. IV. Dynamics of consecutive bond breakage in the reaction C2F4I2→ C2F4 + 2I. J. Chem. Phys. 92, 231 (1990)ADSCrossRefGoogle Scholar
  294. [9.204]
    S. Pedersen, L. Banares, A.H. Zewail: Femtosecond vibrational transition state dynamics in a chemical reaction. J. Chem. Phys. 97, 8801 (1992)ADSCrossRefGoogle Scholar
  295. [9.205]
    M. Shapiro, P. Brumer: Coherent and incoherent laser control of photochemical reactions. Int. Rev. Phys. Chem. 13, 187 (1994)CrossRefGoogle Scholar
  296. [9.206]
    C.J. Bardeen, V.V. Yakolev, K.R. Wilson, S.D. Carpenter, P.M. Weber, W.S. Warren: Chem. Phys. Lett. 280, 151 (1997)ADSCrossRefGoogle Scholar
  297. T.C. Weinacht, J. Ahn, P.H. Bucksbaum: Controlling the shape of a quantum wavefunction. Nature 397, 233 (1999)ADSCrossRefGoogle Scholar
  298. J. Ahn, T.C. Weinacht, P.H. Bucksbaum: Science 287, 463 (2000)ADSCrossRefGoogle Scholar
  299. [9.207]
    S.E. Harris: Electromagnetically induced transparancy. Physics Today 50, No 7, 36 (1997)CrossRefGoogle Scholar
  300. O. Kocharovskaya: Amplification and lasing without inversion. Phys. Rep. 219, 175 (1992)ADSCrossRefGoogle Scholar
  301. G. Alzetta, A. Gozzini, L. Moi, G. Orriols: Nuovo Cimento B 36, 5 (1976)ADSCrossRefGoogle Scholar
  302. [9.208]
    O.A. Kocharovskaya, Y.I. Khanin: Coherent amplification of ultrashort pulse in the three-level medium without population inversion. JETP Lett. 48, 630 (1988)ADSGoogle Scholar
  303. [9.209]
    S.E. Harris: Lasers without inversion: Interference of lifetime-broadened resonances, Phys. Rev. Lett. 62, 1033 (1989)ADSCrossRefGoogle Scholar
  304. [9.210]
    M.O. Scully, S.-Y. Zhu, A. Gavridiles: Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813 (1989)ADSCrossRefGoogle Scholar
  305. [9.211]
    P. Mandel: Lasers without inversion: A useful concept? Contemp. Phys. 34, 235 (1993)ADSCrossRefGoogle Scholar
  306. [9.212]
    O. Kocharovskaya: From lasers without inversion to gamma lasers? Laser Physics 5, 284 (1995)Google Scholar
  307. O. Kocharovskaya, R. Kolesov, Yu. Rostovtsev: Lasing without inversion: a new path to gamma-ray laser. Laser Physics 9, 745 (1999)Google Scholar
  308. [9.213]
    J. Gao, C. Guo, X. Guo, G. Jin, P. Wang, J. Zhao, H. Zhang, Y. Jiang, D. Wang, D. Jiang: Observation of light amplification without population inversion. Opt. Commun. 93, 323 (1992)ADSCrossRefGoogle Scholar
  309. A. Nottelman, C. Peers, W. Lange: Inversionless amplification of picosecond pulses due to Zeeman coherence. Phys. Rev. Lett. 70, 1783 (1993)ADSCrossRefGoogle Scholar
  310. E.S. Fry, X. Li, D. Nikonov, G.G. Padmabandu, M.O. Scully, A.V. Smith, F.K. Tittel, C. Wang, S.R. Wilkinson, S.-Y. Zhu: Atomic coherence effect within the sodium D line: Lasing without inversion via population trapping. Phys. Rev. Lett. 70, 3235 (1993)ADSCrossRefGoogle Scholar
  311. W.E. van der Veer, R.J.J. van Dienst, A. Dönszelmann, H.B. van Linden van den Heuvell: Experimental demonstration of light amplification without population inversion. Phys. Rev. Lett. 70, 3243 (1993)ADSCrossRefGoogle Scholar
  312. A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L. Hollberg, M.O. Scully, V.L. Velichansky, H.G. Robinson: Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb. Phys. Rev. Lett. 75, 1499 (1995)ADSCrossRefGoogle Scholar
  313. G.G. Padmabandu et al.: Laser oscillation without population inversion in a sodium atomic beam. Phys. Rev. Lett. 76, 2053 (1996)Google Scholar
  314. J.A. Kleinfeld, A.D. Streater: Gain and coherence effects induced by strong cw-laser coupling in potassium-rare-gas mixtures. Phys. Rev. A 53, 1839 (1996)ADSCrossRefGoogle Scholar
  315. C. Fort, F.S. Cataliotti, T.W. Hänsch, M. Inguscio, M. Prevedelli: Gain without inversion on the cesium D1 line. Opt. Commun. 139, 31 (1997)Google Scholar
  316. [9.214]
    A. Kaspari, M. Jain, G.Y. Jin, S.E. Harris: Electromagnetically induced transparancy: Propagation dynamics. Phys. Rev. Lett. 74, 2447 (1995)ADSCrossRefGoogle Scholar
  317. O. Schmidt, R. Wynands, Z. Hussein, D. Meschede: Steep dispersion and group velocity below c/3000 in coherent population trapping. Phys. Rev. A 53, R27 (1996)ADSCrossRefGoogle Scholar
  318. L. Vestergaard Hau, S.E. Harris, Z. Dutton, C.H. Behroozi: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  319. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully: Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229 (1999)ADSCrossRefGoogle Scholar
  320. D.-F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)ADSCrossRefGoogle Scholar
  321. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)ADSCrossRefGoogle Scholar
  322. [9.215]
    S.E. Harris, L. Vestergaard Hau: Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611 (1999)ADSCrossRefGoogle Scholar
  323. A.S. Zibrov, M.D. Lukin, M.O. Scully: Nondegenerate parametric selfoscillation via multiwave mixing in coherent atomic media. Phys. Rev. Lett. 83, 4049 (1999)ADSCrossRefGoogle Scholar
  324. M.D. Lukin, A. Imamoglu: Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419 (2000)ADSCrossRefGoogle Scholar
  325. [9.216]
    G. Mainfrey, P. Agostini (eds.): Multiphoton Processes (CEA, Paris 1991)Google Scholar
  326. [9.217]
    M. Gavrila (ed.): Atoms in Intense Laser Fields (Academic Press, Boston 1992)Google Scholar
  327. [9.218]
    B. Piraux, A. L’Huillier, K. Rzazewski (eds.): Super-Intense Laser-Atom Physics, NATO ASI Ser. Vol. 316 (Plenum, New York 1993)Google Scholar
  328. [9.219]
    N.B. Delone, V.P. Krainov: Multiphoton Processes in Atoms, Vol. 13 (Springer Verlag, Heidelberg 1994)Google Scholar
  329. [9.220]
    S. Svanberg, J. Larsson, A. Persson, C.-G. Wahlström: Lund high power laser facility — Systems and first results. Phys. Scr. 49, 187 (1994)ADSCrossRefGoogle Scholar
  330. [9.221]
    H.G. Muller, M.V. Fedorov (eds.): Super-Intense Laser-Atom Physics IV (Kluwer, Dordrecht 1996)Google Scholar
  331. [9.222]
    P. Gibbon, E. Förster: Short-pulse laser-plasma interactions. Plasma Phys. Control. Fusion 38, 769 (1996)ADSCrossRefGoogle Scholar
  332. [9.223]
    P. Lambropoulos, H. Walther (eds.): Multiphoton Processes 1996 (IOP Publishing, Bristol 1997)Google Scholar
  333. L.F. DiMauro, R.R. Freeman, K. Kulander: Multiphoton Processes: ICOMP XIII (AIP, Melville, NY 2000)Google Scholar
  334. [9.224]
    P. Lambropoulos, H. Walther (eds.): Multiphoton Physics, IOP Conf. Ser., Vol. 154 (IOP Publishing, Bristol 1997)Google Scholar
  335. [9.225]
    S. Svanberg, A. L’Huillier, C.-G. Wahlström: Atomic physics using shortwavelength coherent radiation. Nucl. Instrum. Methods A 398, 55 (1997)ADSCrossRefGoogle Scholar
  336. [9.226]
    M. Protopapas, C.H. Keitel, P.L. Knight: Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 60, 389 (1997)ADSCrossRefGoogle Scholar
  337. [9.227]
    N.H. March: Atoms and Molecules in Intense Fields (Springer Verlag, Heidelberg 1997)Google Scholar
  338. [9.228]
    L. Di Mauro, M. Murnane, A. L’Huillier (eds.): Applications of ol. Highfield and Short Wavelength Sources (Plenum, New York 1998)Google Scholar
  339. [9.229]
    E. Turcu, B. Dance: X-rays from Laser Plasmas (Wiley, Chichester 1998)Google Scholar
  340. [9.230]
    D. Giulietti, L.A. Gizzi: X-ray emission from laser-produced plasmas. Riv. Nuovo Cimento 21, 1 (1998)Google Scholar
  341. [9.231]
    M. Lontano, G. Mourou, F. Pegoraro, E. Sindroni (eds.): Superstrong Fields in Plasmas, AIP Conf. Proc. 426 (AIP, New York 1998)Google Scholar
  342. [9.232]
    F.H.M. Faisal: Theory of Multiphoton Processes (Plenum, New York 1987)Google Scholar
  343. [9.233]
    P. Mulser: High Power Laser-Matter Interaction (Springer, Berlin, Heidelberg 1999)Google Scholar
  344. [9.234]
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. Rahman: Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127 (1979)ADSCrossRefGoogle Scholar
  345. [9.235]
    J.H. Eberly, J. Javanainen, K. Rzazewski: Above-threshold ionization. Phys. Rep. 204, 331 (1991)ADSCrossRefGoogle Scholar
  346. [9.236]
    L.F. DiMauro, P. Agostini: Ionization dynamics in strong laser fields. Adv. At. Mol. Opt. Phys. 35, 79 (1995)ADSCrossRefGoogle Scholar
  347. [9.237]
    H.G. Muller, P. Agostini, G. Petite: Multiphoton Ionization. In: [9.217] p.1.Google Scholar
  348. [9.238]
    H.M. van Linden van den Heuvel, H.G. Muller: In: Multiphoton Processes, Studies in Modern Optics, Vol.8, ed. by S.J. Smith, P.L. Knight (Cambridge University Press, Cambridge 1988)Google Scholar
  349. [9.239]
    P.B. Corkum, N.H. Burnett, F. Brunel: Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259 (1989)ADSCrossRefGoogle Scholar
  350. [9.240]
    K.C. Kulander: Time-dependent theory of multiphoton ionization of xenon. Phys. Rev. A 38, 778 (1988)ADSCrossRefGoogle Scholar
  351. [9.241]
    R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. Geusic: Above-threshold ionization with subpicosecond laser pulses. Phys. Rev. Lett. 59, 1092 (1987)ADSCrossRefGoogle Scholar
  352. [9.242]
    L.J. Fransinski, K. Codling, P.A. Hatherly: Science 246, 973 (1989)Google Scholar
  353. [9.243]
    R. Schinke: Photodissociation Dynamics (Cambridge University Press, Cambridge 1993)Google Scholar
  354. [9.244]
    K. Codling, L.J. Frasinski: Coulomb explosion of simple molecules in intense laser fields. Contemp. Phys. 35, 243 (1994)ADSCrossRefGoogle Scholar
  355. [9.245]
    L.J. Fransinski, P.A. Hatherly, K. Codling, M. Larsson, A. Persson, C.-G. Wahlström: Multielectron dissociative ionization of CO2 in intense laser fields. J. Phys. B 27, L109 (1994)ADSCrossRefGoogle Scholar
  356. [9.246]
    S. Hunsche, T. Starczewski, A. L’Huillier, A. Persson, C.-G. Wahlström, B. van Linden van den Heuvell, S. Svanberg: Ionization and fragmentation of C60 via multiphoton-multiplasmon excitation. Phys. Rev. Lett. 77, 1966 (1996)ADSCrossRefGoogle Scholar
  357. [9.247]
    A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes: Studies of multi-photon production of vacuumultraviolet radiation in rare gases. J. Opt. Soc. Am. B 4, 595 (1987)ADSCrossRefGoogle Scholar
  358. [9.248]
    M. Ferrey, A. L’Huillier, X.F. Li, L.A. Lompré, G. Mainfray, C. Manus: Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31 (1988)ADSCrossRefGoogle Scholar
  359. [9.249]
    J.L. Krause, K.J. Schaefer, K.C. Kulander: High-harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535 (1992)ADSCrossRefGoogle Scholar
  360. [9.250]
    A. L’Huillier, T. Auguste, Ph. Balcou, B. Carré, P. Monot, P. Salières, C. Altucci, M. Gaarde, J. Larsson, E. Mevel, T. Starczewski, S. Svanberg, C.-G. Wahlström, R. Zerne, K.S. Budil, T. Ditmire, M.D. Perry: Highorder harmonics: a coherent source in the XUV range, J. Nonlinear Opt. Phys. Mater. 4, 647 (1995)ADSCrossRefGoogle Scholar
  361. [9.251]
    A. L’Huillier: Generation and application of high-order harmonics: ‘An alternative coherent short-pulse XUV source.’ In: X-Ray Lasers 1996, IOP Conference Series 151, ed. by. S. Svanberg, C.-G. Wahlström (IOP Publishing, Bristol 1996)Google Scholar
  362. [9.252]
    C. Lyngå: PhD Dissertation (Lund Institute of Technology, Lund 1999)Google Scholar
  363. [9.253]
    C.-G. Wahlström, J. Larsson, A. Persson, T. Starczewski, S. Svanberg, P. Salières, P. Balcou, A. L’Huillier: High-order harmonic generation in rare gases with an intense short-pulse low-frequency laser. Phys. Rev. A 48, 4709 (1993)ADSCrossRefGoogle Scholar
  364. [9.254]
    J.J. Macklin, J.M. Kmetec, C.L. Gordon III: High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766 (1993)ADSCrossRefGoogle Scholar
  365. [9.255]
    A. L’H uillier, Ph. Balcou: High-order harmonic generation in rare gases with a 1ps 1053 nm laser. Phys. Rev. Lett. 70, 774 (1993)ADSCrossRefGoogle Scholar
  366. [9.256]
    S.G. Preston, A. Sanpera, M. Zepf, W.J. Blyth, C.G. Smith, J.S. Wark, M.H. Key, K. Burnett, M. Nakai, D. Neely, A.A. Offenberger: High-order harmonics of 248.6 nm KrF laser from helium and neon ions. Phys. Rev. A 53, 31 (1996)ADSCrossRefGoogle Scholar
  367. [9.257]
    Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, H. Kapteyn: Generation of coherent soft X-rays at 2.7 nm using high harmonics. Phys. Rev. Lett. 79, 2967 (1997)ADSCrossRefGoogle Scholar
  368. [9.258]
    Ch. Spielmann, N.H. Burnett, S. Sartarnia, R. Koppnitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz: Generation of coherent X-rays in the water window using 5 femtosecond laser pulses. Science 278, 661 (1997)ADSCrossRefGoogle Scholar
  369. [9.259]
    T. Starczewski, J. Larsson, C.-G. Wahlström, M.H.R. Hutchinson, J.E. Muffett, R.A. Smith, J.W.G. Tisch: Time-resolved harmonic generation in an ionizing gas. J. Phys. B 27, 3291 (1994)ADSCrossRefGoogle Scholar
  370. C. Altucci, T. Starczewski, C.-G. Wahlström, E. Mevel, B. Carré, A. L’Huillier: Influence of atomic density in high-order harmonic generation. J. Opt. Soc. Am. B 13, 148 (1996)ADSCrossRefGoogle Scholar
  371. [9.260]
    J.M. Schins, P. Breger, P. Agostini, R.C. Constantinescu, H.G. Muller, A. Bouhal, G. Grillon, A. Antonetti, A. Mysyrowicz: Cross-correlation measurements of femtosecond extreme-ultraviolet high-order harmonics. J. Opt. Soc. Am. B 13, 197 (1996)ADSCrossRefGoogle Scholar
  372. [9.261]
    P. Salières, A. L’Huillier, Ph. Antoine, M. Lewenstein: ‘Study of the spatial and temporal coherence of high-order harmonics.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.41, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1999) p. 84Google Scholar
  373. L. Roos, M.B. Gaarde, A. L’Huillier: Tailoring harmonic radiation to different applications using a genetic algorithm. J. Phys. B. 34, 5041 (2001)ADSCrossRefGoogle Scholar
  374. R. L’opez-Martens, J. Mauritsson, A. Johansson, J. Norin, A. L’Huillier: Time-frequency characterization of high-order harmonic pulses. Eur. Phys. J. D (2003), to appearGoogle Scholar
  375. [9.262]
    R. Bonifacio, C. Pellegrini, I.M. Narducci: Collective instabilities and highgain regime in a free electron laser. Opt. Commun. 50, 373 (1984)ADSCrossRefGoogle Scholar
  376. B.H. Wiik: The TESLA project: an accelerator facility for basic science. Nucl. Instrum. Methods Phys. Res. A 398, 1 (1997)ADSCrossRefGoogle Scholar
  377. [9.263]
    C. Lyngå, F. Ossler, T. Metz, J. Larsson: A laser system providing radiation tunable from 35 nm to 2 μm. Appl. Phys. B 72, 913 (2001)ADSCrossRefGoogle Scholar
  378. [9.264]
    J. Larsson, E. Mevel, R. Zerne, A. L’Huillier, C.-G. Wahlström, S. Svanberg: Two-colour time-resolved spectroscopy of helium using high-order harmonics. J. Phys. B 28, L53 (1995)ADSCrossRefGoogle Scholar
  379. [9.265]
    C.V. Shank, J.E. Bjorkholm, H. Kogelnik: Distributed feedback dye laser. Appl. Phys. Lett. 18, 395 (1972)ADSCrossRefGoogle Scholar
  380. F. Schäfer, W. Schade, B. Garbe, V. Helbig: Temperature-tuned distributed feedback dye laser with high repetition rate. Appl. Opt. 29, 3950 (1990)ADSCrossRefGoogle Scholar
  381. G.J. Bengtsson, K. Hansen, J. Larsson, W. Schade, S. Svanberg: Determination of radiative lifetimes in neutral nitrogen using short laser pulses from a distributed feedback dye laser. Z. Physik D 22, 397 (1991)ADSCrossRefGoogle Scholar
  382. [9.266]
    P. Cacchiani, W. Ubachs, P.C. Hinnen, C. Lyngå, A. L’Huillier, C.-G. Wahlström: Lifetime measurements of the E1∏, ν = 0 and ν = 1 states of 12C16O, 13C16O and 13C18O. Astrophys. J. 499, L223 (1998)ADSCrossRefGoogle Scholar
  383. D. Dechamps, L. Roos, C. Delfin, A. L’Huillier, C.-G. Wahlström: Twoand three-photon ionization of rare gases using femtosecond harmonic pulses generated in a gas medium. Phys. Rev. A 64, 031404/1–4 (2001)ADSGoogle Scholar
  384. [9.267]
    P. Erman, A. Karawajcyk, E. Rachlew-Källne, E. Mevel, R. Zerne, A. L’Huillier, C.-G. Wahlström: Autoionization width of the NO Rydbergvalence state complex in the 11-12 eV region. Chem. Phys. Lett. 239, 6 (1995)ADSCrossRefGoogle Scholar
  385. [9.268]
    K.S.E. Eikema, W. Ubachs, W. Wassen, W. Hogervorst: First laser excitation of the 4He 1 1 S-2 1 P resonance line at 58 nm. Phys. Rev. Lett. 71, 1690 (1993)ADSCrossRefGoogle Scholar
  386. W. Hogervorst, K.S.E. Eikema, W. Ubachs, W. Wassen: In: Laser Spectroscopy, ed. by M. Inguscio, M. Allegrini, A. Sasso (World Scientific, Singapore, 1996) p. 92Google Scholar
  387. K.S.E. Eikema, W. Ubachs, W. Vassen, W. Hogervorst: Precision spectroscopy on the Lyman-α transitions of H and He. In Laser Physics at the limit; eds. H. Figger, D. Meschede, C. Zimmerman (Springer Verlag, Berlin, Heidelberg 2002) p. 107Google Scholar
  388. [9.269]
    R. Haight, J. Bokor, J. Stark, R.H. Storz, R.R. Freeman, P.H. Bucksbaum: Picosecond time-resolved photoemission study of the InP (110) surface. Phys. Rev. Lett. 54, 1302 (1985)ADSCrossRefGoogle Scholar
  389. R. Haight, D.R. Peale: Antibonding state on the Ge(111)As surface: spectroscopy and dynamics. Phys. Rev. Lett. 70, 3979 (1993); Rev. Sci. Instrum. 65, 1853 (1994ADSCrossRefGoogle Scholar
  390. R. Haight: Electron dynamics at surfaces. Surf. Sci. Rep. 21, 275 (1995)ADSCrossRefGoogle Scholar
  391. R. Haight, P.F. Seidler: High resolution atomic core level spectroscopy with laser harmonics. Appl. Phys. Lett. 65, 517 (1994)Google Scholar
  392. H.S. Karlsson, G. Ghiaia, U.O. Karlsson: A system for time-and angle-resolved photo-electron spectroscopy based on an amplified titanium:sapphire laser system. Rev. Sci. Instrum. 67, 3610 (1996)ADSCrossRefGoogle Scholar
  393. S. Sorensen, O. Björneholm, S. Buil, D. Deschamps, T. Kihlgren, A. L’Huillier, J. Norin, G. Ohrwall, S. Sundin, S. Svensson, C.-G. Wahlström: Femtosecond pump-probe photoelectron spectroscopy of predissociative Rydberg states in acetylene. J. Chem. Phys. 112, 8038 (2000)ADSCrossRefGoogle Scholar
  394. [9.270]
    R. Zerne, C. Altucci, M. Bellini, M.B. Gaarde, T.W. Hänsch, A. L’Huillier, C.-G. Wahlström: Phase-locked high-order harmonic sources. Phys. Rev. Lett. 79, 1006 (1997)ADSCrossRefGoogle Scholar
  395. M. Bellini, C. Lyngå, A. Tozzi, M.B. Gaarde, T.W. Hänsch, A. L’Huillier, C.-G. Wahlström: Temporal coherence of ultrashort high-order harmonic pulses. Phys. Rev. Lett. 81, 297 (1998)ADSCrossRefGoogle Scholar
  396. D. Deschamps, C. Lyngå, J. Norin, A. L’Huillier, C.-G. Wahlström, J.-F. Hergott, H. Merdji, P. Salières, M. Bellini, T.W. Hänsch: Extreme ultraviolet interferometry measurements with high-order harmonics. Opt. Lett. 25, 135 (2000)Google Scholar
  397. [9.271]
    G. Farkas, C. Toth: Proposal for attosecond light pulse generation using laser-induced multiple-harmonic conversion processes in rare gases. Phys. Lett. A 168, 447 (1992)ADSCrossRefGoogle Scholar
  398. [9.272]
    S.E. Harris, J.J. Macklin, T.W. Hänsch: Atomic scale temporal structure inherent to high-order harmonic generation. Opt. Commun. 100, 487 (1993)ADSCrossRefGoogle Scholar
  399. P.B. Corkum, N.H. Burnett, M.Y. Ivanov: Subfemtosecond pulses. Opt. Lett. 19, 1870 (1994)ADSCrossRefGoogle Scholar
  400. P. Antoine, A. L’Huillier, M. Lewenstein: Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234 (1996)ADSCrossRefGoogle Scholar
  401. I.P. Christov, N.H. Murnane, H.C. Kapteyn: High-harmonic generation of attosecond pulses in the ”single-cycle” regime. Phys. Rev. Lett. 78, 1251 (1997)ADSCrossRefGoogle Scholar
  402. E. Constant, V.D. Tatanukhin, A. Stolow, P.B. Corkum: Methods for the measurement of the duration of high-harmonic pulses. Phys. Rev. A 56, 3870 (1997)ADSCrossRefGoogle Scholar
  403. N.A. Papadogiannis, B. Witzel, C. Kalpouzos, D. Charalambidis: Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83, 4289 (1999)ADSCrossRefGoogle Scholar
  404. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H.G. Muller, and P. Agostini: Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689 (2001)ADSCrossRefGoogle Scholar
  405. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G.A. Reider, P.B. Corkum, F. Krausz: X-ray pulses approaching the attosecond frontier. Science 291, 1923 (2001)ADSCrossRefGoogle Scholar
  406. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P.B. Corkum, U. Heinzmann, M. Drescher, F. Krausz: Attosecond metrology. Nature 414, 511 (2001)ADSCrossRefGoogle Scholar
  407. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz: Time resolved atomic inner-shell spectroscopy. Nature 419, 803 (2002)ADSCrossRefGoogle Scholar
  408. D. Charalambidis, N.A. Papadogiannis, P. Tzallas, G.D. Tsakiris, K. Witte: Recent developments in attosecond pulse train metrology. Phys. Scr. T 105, 23 (2003)ADSCrossRefGoogle Scholar
  409. A. Baltuska, Th. Udem, M. Uiberacher, H. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz: Attosecond control of electronic processes by intense light fields. Nature 421, 611 (2003)ADSCrossRefGoogle Scholar
  410. P.H. Bucksbaum: Attophysics: Ultrafast control. Nature 421, 593 (2003)ADSCrossRefGoogle Scholar
  411. [9.273]
    D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.M. Ceglio, A.U. Hazi, H. Medecki, B.J. MacGowan, J.E. Trebes, B.L. Whitten, E.M. Campbell, C.W. Hatcher, A.M. Hawryluk, R.L. Kauffman, L.D. Pleasance, G. Rambach, J.H. Scofield, G. Stone, T.A. Weaver: Demonstration of a soft X-ray amplifier. Phys. Rev. Lett. 54, 110 (1985)ADSCrossRefGoogle Scholar
  412. [9.274]
    R.C. Elton: The Physics of X-Ray Lasers (Academic Press, New York 1990)Google Scholar
  413. J.J. Rocca, P.L. Hagelstein (eds.): Soft X-ray Lasers and Applications, Proc. SPIE Int. Soc. Opt. Eng. 2520 (SPIE, Bellingham 1995)Google Scholar
  414. J.J. Rocca, L.B. Da Silva (eds.): Soft X-Ray Lasers and Applications II, Proc. SPIE Int. Soc. Opt. Eng. 3156 (SPIE, Bellingham 1997)Google Scholar
  415. [9.275]
    B.J. MacGowan, L.B. Da Silva, D.J. Fields, C.J. Keane, J.A. Koch, R.A. London, D.L. Matthews, S. Maxon, S. Mrowka, A.L. Osterheld, J.H. Scofield, G. Smimkaveg, J.E. Trebes, R.S. Walling: Phys. Fluids B 4, 2326 (1992)ADSCrossRefGoogle Scholar
  416. [9.276]
    B. Rus, A. Clarillon, B. Gauthé, P. Goedtkindt, P. Jaeglé, G. Jamelot, A. Klisnick, A. Sureau, P. Zeitoun: Observation of intense soft-X-ray lasing at the J = 0 to J = 1 transition in neonlike zinc. J. Opt. Soc. Am. B 11, 564 (1994)ADSCrossRefGoogle Scholar
  417. F. Albert, Ph. Zeitoun, P. Jaeglé, D. Joyeux, M. Boussoukaya, A. Clarillon, S. Hubert, G. Jamelot, A. Klisnick, D. Phalippou, D. Ros, A. Zeitoun-Fakiris: Metal-surface mapping by means of soft-x-ray interferometry. Phys. Rev. B 60, 11 089 (1999)CrossRefGoogle Scholar
  418. [9.277]
    Y. Nagata, K. Midorikawa, M. Obara, H. Tashiro, K. Toyoda: Soft-X-ray amplification of the Lyman-α transition by optical-field-induced ionization. Phys. Rev. Lett. 71, 3774 (1993)ADSCrossRefGoogle Scholar
  419. [9.278]
    B.N. Chichkov, A. Egbert, H. Eichmann, C. Momma, S. Nolte, B. Wellegehausen: Soft-x-ray lasing to the ground states in low-charged oxygen ions. Phys. Rev. A 52, 1629 (1995)ADSCrossRefGoogle Scholar
  420. [9.279]
    E. Fill, S. Borgström, J. Larsson, T. Starczewski, C.-G. Wahlström, S. Svanberg: XUV spectra of optical-field ionized plasmas. Phys. Rev. E 51, 6016 (1995)ADSCrossRefGoogle Scholar
  421. S. Borgström, E. Fill, T. Starczewski, J. Steingruber, S. Svanberg, C.-G. Wahlström: Time-resolved X-ray spectroscopy of optical-fieldionized plasmas. Laser Part. Beams 13, 459 (1995)ADSCrossRefGoogle Scholar
  422. [9.280]
    B.E. Lemoff, G.Y. Yin, C.L. Gordon III, C.P.J. Barty, S.E. Harris: Demonstration of a 10 Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574 (1995)ADSCrossRefGoogle Scholar
  423. [9.281]
    J.J. Rocha, V.N. Shlyapstev, F.G. Tomasel, O.D. Cortazar, D. Hartshorn, J.L.A. Chilla: Demonstration of a discharge-pumped table-top soft-X-ray laser. Phys. Rev. Lett. 73, 2192 (1994)ADSCrossRefGoogle Scholar
  424. [9.282]
    G. Tallents (ed.): X-Ray Lasers, IOP Conf. Ser. Vol.116 (Institute of Physics Publ., Bristol 1990)Google Scholar
  425. [9.283]
    E.E. Fill (ed.): X-Ray Lasers 1992, IOP Conf. Ser. Vol.125 (Institute of Physics Publ., Bristol 1992)Google Scholar
  426. [9.284]
    D.C. Eder, D.L. Matthews (eds.): X-Ray Lasers 1994, AIP Conf. Proc. Vol. 332 (AIP Press, New York 1994)Google Scholar
  427. [9.285]
    S. Svanberg, C.-G. Wahlström (eds.): X-Ray Lasers 1996, IOP Conf. Ser. Vol. 151 (Institute of Physics Publ., Bristol 1996)Google Scholar
  428. [9.286]
    Y. Kato, H. Takuma, H. Daido (eds.): X-Ray Lasers 1998, IOP Conf. Ser. Vol. 159 (Institute of Physics Publ., Bristol 1999)Google Scholar
  429. G. Jamelot, C. Möller, A. Klisnick (eds.): X-Ray Lasers 2000 (EDP Sciences, Les Ulis 2001)Google Scholar
  430. J.J. Rocca, J. Dunn, S. Suckewer (eds.): X-Ray Lasers 2002, AIP Conf. Proc. Vol. 641 (AIP Press, New York 2002)Google Scholar
  431. [9.287]
    J.D. Kmetec, C.L. Gordon III, J.J. Macklin, B.E. Lemoff, G.S. Brown, S.E. Harris: MeV X-ray generation with a femtosecond laser. Phys. Rev. Lett. 68, 1527 (1992)ADSCrossRefGoogle Scholar
  432. [9.288]
    K. Herrlin, G. Svahn, C. Olsson, H. Pettersson, C. Tillman, A. Persson, C.-G. Wahlström, S. Svanberg: Generation of X-rays for medical imaging by high-power lasers: Preliminary results. Radiology 189, 65 (1993)Google Scholar
  433. [9.289]
    C. Tillman, S. Johansson, B. Erlandsson, M. Grätz, B. Hemdal, A. Almén, S. Mattson, S. Svanberg: High-resolution spectroscopy of laser-produced plasmas in the photon energy range above 10 keV. Nucl. Instrum. Methods A 394, 387 (1997)ADSCrossRefGoogle Scholar
  434. [9.290]
    G. Hölzer, E. Förster, M. Grätz, C. Tillman, S. Svanberg: X-ray crystal spectroscopy of sub-picosecond laser-produced plasmas beyond 50 keV. J. X-Ray Sci. Technol. 7, 50 (1997)CrossRefGoogle Scholar
  435. [9.291]
    C. Tillman, A. Persson, C.-G. Wahlström, S. Svanberg, K. Herrlin: Imaging using hard X-rays from a laser-produced plasma. Appl. Phys. B 61, 333 (1995)ADSCrossRefGoogle Scholar
  436. A. Sjögren, M. Harbst, C.-G. Wahlström, S. Svanberg, C. Olsson: Highrepetition-rate, hard x-ray radiation from a laser-produced plasma: Photon yield and application considerations. Rev. Sci. Instr. 74, 2300 (2003)ADSCrossRefGoogle Scholar
  437. [9.292]
    R. Lewis: Medical applications of synchrotron radiation X-rays. Phys. Med. Biol. 42, 1213 (1997)CrossRefGoogle Scholar
  438. F.A. Dilmanian, X.Y. Wu, E.C. Parsons, B. Ren, J. Kress, T.M. Button, L.D. Chapman, J.A. Coderre, P. Giron, D. Greenberg, D.J. Krus, Z. Liang, D. Marcovici, M.J. Petersen, C.T. Roque, M. Shleifer, D.N. Slatkin, W.C. Tomlinson, K. Yamamoto, J. Zhou: Single-and dual-energy CT with monochromatic synchrotron X-rays. Phys. Med. Biol. 42, 371 (1997)CrossRefGoogle Scholar
  439. [9.293]
    C. Tillman, I. Mercer, S. Svanberg, K. Herrlin: Elemental biological imaging by differential absorption using a laser-produced X-ray source. J. Opt. Soc. Am. B 13, 209 (1996)ADSCrossRefGoogle Scholar
  440. [9.294]
    C.L. Gordon III, G.Y. Yin, B.E. Lemoff, P.E. Bell, C.P.J. Barty: Timegated imaging with an ultrashort-pulse laser-produced-plasma X-ray source. Opt. Lett. 20, 1056 (1995)ADSCrossRefGoogle Scholar
  441. [9.295]
    M. Grätz, A. Pifferi, C.-G. Wahlström, S. Svanberg: Time-gated imaging in radiology: Theoretical and experimental studies. IEEE J. Sel. Topics Quantum Electron. 2, 1041 (1996)Google Scholar
  442. [9.296]
    M. Grätz, L. Kiernan, C.-G. Wahlström, S. Svanberg: Time-gated X-ray tomography. Appl. Phys. Lett. 73, 2899 (1998)ADSCrossRefGoogle Scholar
  443. M. Grätz, L. Kiernan, K. Herrlin: Time-gated imaging in planar and tomographic X-ray imaging. Med. Phys. 26, 438 (1999)CrossRefGoogle Scholar
  444. [9.297]
    C. Tillman, G. Grafström, A.-Ch. Jonsson, B.-A. Jönsson, I. Mercer, S. Mattson, S.-E. Strandh, S. Svanberg: Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma X-ray source. Radiology 213, 860 (1999)Google Scholar
  445. [9.298]
    P.M. Renzepis, J.R. Helliwell (eds.): Time-Resolved Diffraction (Oxford University Press, Oxford 1997)Google Scholar
  446. J. Wark: Time-resolved X-ray diffraction. Contemp. Phys. 37, 205 (1996)ADSCrossRefGoogle Scholar
  447. [9.299]
    C. Rischel, A. Rousse, I. Uschmann, O.-A. Albouy, J.-P. Geindre, P. Audebert, J.C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti: Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 370, 480 (1997)Google Scholar
  448. R. Jimenez, C. Rose-Petruck, T. Guo, K.R. Wilson, C.P.J. Barty: ‘Timeresolved X-ray diffraction of GaAs with a 30 fs laser driven plasma source.’ In: Ultrafast Phenomena XI, ed. by W. Zinth, J.G. Fujimoto, T. Elsaesser, D. Wiersma (Springer, Berlin, Heidelberg 1998)Google Scholar
  449. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin: Nature 410, 65 (2001)ADSCrossRefGoogle Scholar
  450. O. Synnergren, M. Harbst, T. Missalla, J. Larsson, G. Katona, R. Neutze, R. Wouts: Projecting picosecond lattice dynamics through X-ray topography. Appl. Phys. Lett. 80, 3727 (2002)ADSCrossRefGoogle Scholar
  451. [9.300]
    L. Larsson, Z. Chang, E. Judd, P.J. Schuck, P.H. Bucksbaum, R.W. Lee, H.A. Padmore, R.W. Falcone: Ultrafast structural changes measured by time-resolved X-ray diffraction. Appl. Phys. A 66, 587 (1998)ADSCrossRefGoogle Scholar
  452. M. Wulff, F. Schotte, G. Naylor, D. Bourgeois, K. Moffat, G. Mourou: Time-resolved structures of macromolecules at the ESRF: Single-pulse Laue diffraction, stroboscopic data collection and femtosecond flash photolysis. Nucl. Instrum. Methods Phys. Res. A 398, 69 (1997)Google Scholar
  453. D.A. Reis, M.F. DeCamp, P.H. Bucksbaum, R. Clarke, E. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M.M. Murnane, J. Larsson, Th. Missalla, J.S. Wark: Probing impulsive strain propagation with X-ray pulses. Phys. Rev. Lett. 86, 3072 (2001)ADSCrossRefGoogle Scholar
  454. J. Larsson, A. Allen, P.H. Bucksbaum, R.W. Falcone, A. Lindenberg, G. Naylor, T. Misalla, D.A. Reis, K. Scheidt, A. Sjögren, P. Sondhauss, M. Wulff, J.S. Wark: Pico-second X-ray diffraction studies in laser-excited acoustic phonons in InSb. App. Phys. A75, 467 (2002)ADSGoogle Scholar
  455. [9.301]
    D. Umstadter, T.B. Norris (eds.): Feature Issue on Optics of Relativistic Electrons. IEEE J. Quantum Electron. 33, 1877 (1997)Google Scholar
  456. D. Umstadter, S.-Y. Chen, R. Wagner, A. Maksimchuk, G. Sarkisov: Nonlinear optics in relativistic plasmas. Opt. Express 2, 282 (1998)ADSCrossRefGoogle Scholar
  457. [9.302]
    J. Fan, T.R. Clark, H.M. Milchberg: Generation of a plasma waveguide in an elongated, high repetition rate gas jet. Appl. Phys. Lett. 73, 3064 (1998)Google Scholar
  458. [9.303]
    E. Esarey, P. Sprangle, J. Krall, A. Ting: Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. PS-24, 252 (1996)ADSCrossRefGoogle Scholar
  459. R. Wagner, S.-Y. Chen, A. Maksimchuk, D. Umstadter: Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 3125 (1997)ADSCrossRefGoogle Scholar
  460. A. Maksimchuk, S. Gu, K. Filippo, G. Mourou, D. Umstadter: Observation of high-energy proton beam in interaction of high-intensity subpicosecond laser pulse with thin foil. APS Div. of Plasma Physics Meeting, Seattle 1999 (AIP News Update 457, Nov. 15 1999)Google Scholar
  461. S. Karsch, S. Düsterer, H. Schwoerer, F. Ewald, D. Habs, M. Hegelich, G. Pretzler, A. Pukhov, K. Witte, R. Sauerbrey: High-intensity laser induced ion acceleration from heavy water droplets. Phys. Rev. Lett. 91, 015001 (2003)ADSCrossRefGoogle Scholar
  462. [9.304]
    S. Matinyan: Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199 (1998)ADSCrossRefGoogle Scholar
  463. G. Pretzler, A. Saemann, A. Pukov, D. Rudolph, T. Schätz, U. Schramm, P. Thirolf, D. Habs, K. Eidmann, G.D. Tsakiris, J. Meyer-ter-Vehn, K.J. Witte: Neutron production by 200 mJ ultrashort laser pulses. Phys. Rev. E 58, 2 (1998)CrossRefGoogle Scholar
  464. K. Ledingham, P.A. Norreys: Nuclear physics merely using a light source. Contemp. Phys. 40, 367 (1999)ADSCrossRefGoogle Scholar
  465. G. Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, C. Delfin, C.-G. Wahlström, D. Habs: Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77, 2662 (2000)ADSCrossRefGoogle Scholar
  466. A. Andreev et al.: Excitation and decay of low-lying nuclear states in a dense plasma produced by a subpicosecond laser pulse. J. Exp. Theor. Phys. 91, 1163 (2000)ADSCrossRefGoogle Scholar
  467. H. Schwoerer, F. Ewald, R. Sauerbrey, J. Galy, J. Magill, V. Rondinella, R. Schenkel, T. Butz: Fission of actinides using a tabletop laser. Europhys. Lett. 66, 47 (2003)ADSCrossRefGoogle Scholar
  468. [9.305]
    P.A. Norreys et al.: Phys. Plasmas 6, 2150 (1999)ADSCrossRefGoogle Scholar
  469. M. Chown: A cheap proton source could transform radiotherapy. New Scientist, Dec. 4, 1999Google Scholar
  470. [9.306]
    G.C. Baldwin, J.C. Solem: Rev. Mod. Phys. 69 1085 (1997)ADSCrossRefGoogle Scholar
  471. V.S. Letokhov: in Frontiers in Laser Spectroscopy, Proceedings of the Les Houches Summer Schools, Vol.2, ed. by R. Ballian, S. Haroche, S. Liberman (North-Holland, Amsterdam 1977)Google Scholar
  472. C.B. Collins, F. Davanloo, M.C. Yosif, R. Dussart, J.M. Hicks, S.A. Karamian, C.A. Ur, I.I. Popescu, V.I. Kirischuk, J.J. Carroll, H.E. Roberts, P. McDaniel, C.E. Crist: Accelerated emission of gamma rays from the 31 yr isomer 178-Hf induced by X-ray irradiation. Phys. Rev. Lett. 82, 695 (1999)ADSCrossRefGoogle Scholar
  473. O. Kocharovskaya, R. Kolesov, Yu. Rostovtsev: Lasing without inversion: a new path to gamma-ray laser. Laser Physics 9, 745 (1999)Google Scholar
  474. [9.307]
    W.J. Hogan (ed.): Energy from Inertial Fusion (IAEA, Vienna 1995)Google Scholar
  475. [9.308]
    M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodsworth, E.M. Campbell, M.D. Perry: Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626 (1994)ADSCrossRefGoogle Scholar
  476. M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, V. Yanovsky: Petawatt laser pulses. Opt. Lett. 24, 160 (1999)ADSCrossRefGoogle Scholar
  477. [9.309]
    K. Fredriksson, H. Lundberg, S. Svanberg: Fine-and hyperfine structure investigation in the 5D-nF series of cesium. Phys. Rev. A 21, 241 (1980)ADSCrossRefGoogle Scholar
  478. [9.310]
    K. Fredriksson, L. Nilsson, S. Svanberg: Stark interaction for alkali atoms (unpublished report, 1980)Google Scholar
  479. [9.311]
    M.A. Zaki Ewiss, W. Hogervorst, W. Vassen, B.H. Post: The Stark effect in the 6snf Rydberg series of barium. Z. Phys. A 322, 211 (1985)ADSCrossRefGoogle Scholar
  480. [9.312]
    R. Frisch: Experimenteller Nachweis des Einsteinschen Strahlungsruckstosses. Z. Physik 86, 42 (1933)ADSCrossRefGoogle Scholar
  481. [9.313]
    J.-L. Piqué, J.-L. Vialle: Atomic-beam deflection and broadening by recoils due to photon absorption or emission. Opt. Commun. 5, 402 (1972)ADSCrossRefGoogle Scholar
  482. R. Schieder, H. Walther, L. Wöste: Atomic beam deflection by the light of a tunable dye laser. Opt. Commun. 5, 337 (1972)ADSCrossRefGoogle Scholar
  483. [9.314]
    A.P. Kazantzev: Acceleration of atoms by a resonant field. Sov. Phys. JETP 36, 1628 (1973)Google Scholar
  484. [9.315]
    F. Touchard, J.M. Serre, S. Büttgenbach, P. Guimbal, R. Klapisch, M. de Saint Simon, C. Thibault, H.T. Duong, P. Juncar, S. Liberman, J. Pinard, J.-L. Vialle: Electric quadrupole moments and isotopic shifts of radioactive sodium isotopes. Phys. Rev. C 25, 2756 (1982)ADSCrossRefGoogle Scholar
  485. [9.316]
    S. Liberman: High resolution laser spectroscopy of radioactive atoms. In: [9.30] p. 162Google Scholar
  486. [9.317]
    H.T. Duong, P. Juncar, S. Liberman et al.: First observation of the blue optical lines of francium. Europhys. Lett. 3, 175 (1987)ADSCrossRefGoogle Scholar
  487. S.V. Andreev, V.S. Letokhov, V.I. Mishin: Laser resonance photoionization spectroscopy of Rydberg levels in Fr. Phys. Rev. Lett. 59, 1274 (1987)ADSCrossRefGoogle Scholar
  488. [9.318]
    W. Ertmer, B. Hofer: Zero-field hyperfine structure measurements of metastable states 3d 2 4s 4 F 3/2,9/2 of 45Sc using laser fluorescence atomicbeam-magnetic-resonance technique. Z. Phys. A 276, 9 (1976)ADSCrossRefGoogle Scholar
  489. S.D. Rosner, R.A. Holt, T.D. Gaily: Measurement of the zero-field hyperfine structure of a single vibration-rotation level of Na2 by a laserfluorescence molecular-beam-resonance technique. Phys. Rev. Lett. 35, 785 (1975)ADSCrossRefGoogle Scholar
  490. [9.319]
    P. Grundevik, M. Gustavsson, I. Lindgren, G. Olsson, L. Robertsson, A. Rosén, S. Svanberg: Precision method for hyperfine structure studies in low-abundance isotopes: The quadrupole moment of 43Ca. Phys. Rev. Lett. 42, 1528 (1979)ADSCrossRefGoogle Scholar
  491. [9.320]
    W.H. Wing, G.A. Ruff, W.E. Lamb, J.J. Spezeski: Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett. 36, 1488 (1976)ADSCrossRefGoogle Scholar
  492. [9.321]
    S.L. Kaufmann: High resolution laser spectroscopy in fast beams. Opt. Commun. 17, 309 (1976)ADSCrossRefGoogle Scholar
  493. [9.322]
    E.W. Otten: ‘Hyperfine and isotope shift measurements.’ In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977)Google Scholar
  494. [9.323]
    P. Jaquinot, R. Klapisch: Hyperfine spectroscopy of radioactive atoms. Rep. Prog. Phys. 42, 773 (1979)ADSCrossRefGoogle Scholar
  495. [9.324]
    R. Neugart, S.L. Kaufman, W. Klempt, G. Moruzzi: High resolution spectroscopy in fast beams. In: [9.25] p. 446Google Scholar
  496. R. Neugart: ‘Collinear fast-beam laser spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 75Google Scholar
  497. [9.325]
    H.J. Kluge: ‘Optical spectroscopy of shortlived isotopes.’ In: Progress in Atomic Spectroscopy, Pt. B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 727Google Scholar
  498. H.J. Kluge: Hyperfine Interact. 24-26, 69 (1985)ADSCrossRefGoogle Scholar
  499. [9.326]
    H. H Stroke: ‘Isotopic shifts.’ In: Atomic Physics 8, ed. by I. Lindgren, A. Rosen, S. Svanberg (Plenum, New York 1983) p. 509Google Scholar
  500. [9.327]
    S. Svanberg: Laser spectroscopy applied to the study of hyperfine interactions. Hyperfine Interact. 15/16, 111 (1983)ADSCrossRefGoogle Scholar
  501. [9.328]
    H.T. Schmidt, P. Forck, M. Grieser, D. Habs, J. Kenntner, G. Miersch, R. Repnow, U. Schramm, T. Schussler, D. Schwam, A. Wolf: Phys. Rev. Lett. 72, 1616 (1994)ADSCrossRefGoogle Scholar
  502. S. Mannervik, L. Broström, J. Lidberg, L.O. Norlin, P. Royen: Strong hyperfine induced quenching of a metastable state in Xe+ observed by hyperfine selective laser probing of a stored ion beam. Phys. Rev. Lett. 76, 3675 (1996)ADSCrossRefGoogle Scholar
  503. J. Lidberg, A. Al-Khalidi, L.-O. Norlin, P. Royen, X. Tordoir, S. Mannervik: Lifetime of the metastable 3d 2 D 3/2 and 3d 2 D 5/2 levels in Ca+ measured by laser probing of a stored ion beam. J. Phys. B 32, 757 (1999)ADSCrossRefGoogle Scholar
  504. [9.329]
    M. Larsson: Atomic and molecular physics with ion storage rings. Rep. Prog. Phys. 58, 1267 (1995)ADSCrossRefGoogle Scholar
  505. Th.U. Kühl: ‘Storage ring laser spectroscopy.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 40, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1999) p. 114Google Scholar
  506. P.H. Mokler, Th. Stöhlker: ‘The physics of highly charged heavy ions revealed by storage/cooler rings.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.37, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1996) p. 297Google Scholar
  507. [9.330]
    M. Larsson, H. Danared, J.R. Mowat, P. Sigray, G. Sundström, L. Broström, A. Filevich, A. Källberg, S. Mannervik, K.G. Rensfelt, S. Datz: Direct high-energy neutral-channel dissociative recombination of cold H3 + in an ion storage ring. Phys. Rev. Lett. 70, 430 (1993)ADSCrossRefGoogle Scholar
  508. S. Datz, G. Sundström, Ch. Biedermann, L. Broström, H. Danared, S. Mannervik, J.R. Mowat, M. Larsson: Branching processes in the dissociative recombination of H3 +. Phys. Rev. Lett. 74, 896 (1995)ADSCrossRefGoogle Scholar
  509. [9.331]
    G. Budker: In: Proc. Int. Symp. on Electron and Positron Storage Rings, ed. by H. Zyngier, E. Cremieux-Alcan (Presses Universitaire, Saclay 1966)Google Scholar
  510. G. Budker et al.: in Proc. IV All-Union Meeting on Accelerators of Charged Particles, IEEE Trans. Nucl. Sci. VS-22, 2093 (1975)Google Scholar
  511. H. Danared, G. Andler, L. Bagge, C.J. Herrlander, J. Hilke, J. Jeansson, A. Källberg, A. Nilsson, A. Paál, K.-G. Rensfelt, U. Rosengård, J. Starker, M. af Ugglas: Electron cooling with an ultracold electron beam. Phys. Rev. Lett. 72, 3775 (1994)ADSCrossRefGoogle Scholar
  512. S. Schröder, R. Klein, N. Roos, M. Gerhard, R. Grieser, G. Huber, A. Karafillides, M. Krieg, N. Schmidt, T. Kuhl, R. Neumann, V. Balykin et al.: First laser cooling of relativistic ions in a storage ring. Phys. Rev. Lett. 64, 2901 (1990)ADSCrossRefGoogle Scholar
  513. J.S. Hangst, M. Kristensen, J.S. Nielsen, O. Poulsen, J.P. Schiffer, P. Shi: Laser cooling of a stored ion beam to 1mK. Phys. Rev. Lett. 67, 1238 (1991)ADSCrossRefGoogle Scholar
  514. [9.332]
    D.M. Maletic, A.G. Ruggiero (eds.): Crystalline Beams and Related Issues (World Scientific, Singapore 1996)Google Scholar
  515. [9.333]
    L.H. Andersen, T. Andersen, P. Hvelplund: Studies of negative ions in storage rings. Adv. At. Mol. Opt. Phys. 38, 155 (1998)ADSCrossRefGoogle Scholar
  516. D. Hanstorp: An ion beam apparatus for collinear photodetachment experiments. Nucl. Instrum. Methods B 100, 165 (1995)ADSCrossRefGoogle Scholar
  517. D. Hanstorp. G. Haeffler, A.E. Klinkmüller, U. Ljungblad, U. Berzinsh, I.Yu. Kiyan, D.J. Pegg: ‘Two-electron dynamics in photodetachment.’ In: Modern Trends in Atomic Physics, Adv. Quantum Chem. 30, 311 (1998)Google Scholar
  518. [9.334]
    D. Hanstorp, P. Devynck, W.G. Graham, J.R. Peterson: Observation of metastable autodetaching Ca-. Phys. Rev. Lett. 63, 368 (1989)ADSCrossRefGoogle Scholar
  519. [9.335]
    V.V. Petrunin, J.D. Voldstad, P. Balling, P. Kristensen, T. Andersen, H.K. Haugen: Resonant ionization spectroscopy of Ba- metastable and stable ions. Phys. Rev. Lett. 75, 1911 (1995)ADSCrossRefGoogle Scholar
  520. [9.336]
    P.H. Lee, M.L. Skolnick: Saturated neon absorption inside a 6328 Å laser. Appl. Phys. Lett. 10, 303 (1967)ADSCrossRefGoogle Scholar
  521. [9.337]
    W.E. Lamb Jr.: Theory of the optical laser. Phys. Rev. A 134, 1429 (1964)ADSCrossRefGoogle Scholar
  522. [9.338]
    W.R. Rowley, B.W. Jolliffe, K.C. Schotton, A.J. Wallard, P.T. Woods: Laser wavelength measurements and the speed of light. Opt. Quantum Electron. 8, 1 (1976)ADSCrossRefGoogle Scholar
  523. J.L. Hall: Stabilized lasers and precision measurements. Science 202, 147 (1978)ADSCrossRefGoogle Scholar
  524. [9.339]
    K.M. Evenson, D.A. Jennings, F.R. Peterson, J.S. Wells: Laser frequency measurements: A review, limitations, extension to 197 THz (1.5 mm). In: [9.25] p. 57Google Scholar
  525. D.A. Jennings, F.R. Petersen, K.M. Evenson: Direct frequency measurement of the 260 THz (1.15 μ) 20Ne laser: And beyond. In: [9.26] p. 31Google Scholar
  526. [9.340]
    D.A. Jennings, C.R. Pollock, F.R. Petersen, R.E. Drullinger, K.M. Evenson, J.S. Wells: Direct frequency measurement of the I2 stabilized He-Ne 473 THz (633 nm) laser. Opt. Lett. 8, 136 (1983)ADSCrossRefGoogle Scholar
  527. [9.341]
    R.G. DeVoe, R.G. Brewer: Laser frequency division and frequency stabilization. Phys. Rev. A 30, 2827 (1984)ADSCrossRefGoogle Scholar
  528. R.G.
    DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, R.G. Brewer: Precision optical-frequency difference measurements. Phys. Rev. A 37, 1802 (1988)ADSCrossRefGoogle Scholar
  529. [9.342]
    T. Wilkie: Time to remeasure the metre. New Scientist (Oct. 27, 1983)Google Scholar
  530. [9.343]
    Documents concerning the new definition of the metre. Metrologia 19, 163 (1984)Google Scholar
  531. [9.344]
    M.D. Levenson, A.L. Schawlow: Hyperfine interactions in molecular iodine. Phys. Rev. A 6, 10 (1972)ADSCrossRefGoogle Scholar
  532. [9.345]
    T.W. Hänsch, I.S. Shahin, A.L. Schawlow: High resolution saturation spectroscopy of the sodium D line with a pulsed tunable dye laser. Phys. Rev. Lett. 27, 707 (1971)ADSCrossRefGoogle Scholar
  533. [9.346]
    C. Bordé: Spectroscopie d’absorption saturée de diverses molécules au moyen des lasers á gas carbonique et á prooxyde d’azote. C. R. Acad. Sci. B 271, 371 (1970)Google Scholar
  534. [9.347]
    S. Svanberg, G.-Y. Yan, T.P. Duffey, A.L. Schawlow: High-contrast Doppler-free transmission spectroscopy. Opt. Lett. 11, 138 (1986)ADSCrossRefGoogle Scholar
  535. S. Svanberg, G.-Y. Yan, T.P. Duffey, W.-M. Du, T.W. Hänsch, A.L. Schawlow: Saturation spectroscopy for optically thick atomic samples. J. Opt. Soc. Am. B 4, 462 (1987)ADSCrossRefGoogle Scholar
  536. [9.348]
    C. Wieman, T.W. Hänsch: Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170 (1976)ADSCrossRefGoogle Scholar
  537. [9.349]
    T.W. Hänsch, I.S. Shahin, A.L. Schawlow: Optical resolution of the Lamb shift in atomic hydrogen. Nature 235, 56 (1972)Google Scholar
  538. T.W. Hänsch, M.H. Nayfeh, S.A. Lee, S.M. Curry, I.S. Shahin: Precision measurement of the Rydberg constant by laser saturation spectroscopy of the Balmer-α line in hydrogen and deuterium. Phys. Rev. Lett. 32, 1336 (1974)ADSCrossRefGoogle Scholar
  539. [9.350]
    J.E.M. Goldsmith, E.W. Weber, T.W. Hänsch: New measurement of the Rydberg constant using polarization spectroscopy of H. Phys. Rev. Lett. 41, 1525 (1978)ADSCrossRefGoogle Scholar
  540. [9.351]
    K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. Kön ig, T.W. Hänsch: Theory of the energy levels and precise two-photon spectroscopy of atomic hydrogen and deuterium. J. Phys. B 29, 177 (1996)ADSCrossRefGoogle Scholar
  541. [9.352]
    P. Zhao, W. Lichten, J.C. Bergquist, H.P. Layer: Remeasurement of the Rydberg constant. Phys. Rev. A 34, 5138 (1986)ADSCrossRefGoogle Scholar
  542. [9.353]
    P. Zhao, W. Lichten, H. Layer, J. Bergquist: New value for the Rydberg constant from the hydrogen Balmer-β transition. Phys. Rev. Lett. 58, 1293 (1987)ADSCrossRefGoogle Scholar
  543. [9.354]
    F. Biraben, J.C. Garreau, L. Julien: Determination of the Rydberg constant by Doppler-free two-photon spectroscopy of hydrogen Rydberg states. Europhys. Lett. 2, 925 (1986); and in [9.30] p.8ADSCrossRefGoogle Scholar
  544. [9.355]
    T.W. Hänsch, A.L. Schawlow, G.W. Series: The spectrum of atomic hydrogen. Sci. Am. 240(3) 72 (1979)ADSCrossRefGoogle Scholar
  545. G.W. Series (ed.): The Spectrum of Atomic Hydrogen: Advances (World, Scientific, Singapore 1988)Google Scholar
  546. G.F. Bassani, M. Inguscio, T.W. Hänsch (eds.): The Hydrogen Atom (Springer, Berlin, Heidelberg 1989)Google Scholar
  547. B. Cagnac, M.D. Plimmer. L. Julien, F. Biraben: The hydrogen atom, a tool for metrology. Rep. Prog. Phys. 57, 853 (1995)ADSCrossRefGoogle Scholar
  548. B. Cagnac: ‘Two-photon method for metrology in hydrogen.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer Verlag, Heidelberg, Berlin 1997)Google Scholar
  549. [9.356]
    A.I. Ferguson, J.M. Tolchard: Laser spectroscopy of atomic hydrogen. Contemp. Phys. 28, 383 (1987)ADSCrossRefGoogle Scholar
  550. [9.357]
    H.R. Schlossberg, A. Javan: Saturation behaviour of a Doppler-broadened transition involving levels with closely spaced structure. Phys. Rev. 150, 267 (1966)ADSCrossRefGoogle Scholar
  551. [9.358]
    T.W. Hänsch, P. Toschek: Theory of a three-level gas laser amplifier. Z. Physik 236, 213 (1970)ADSCrossRefGoogle Scholar
  552. [9.359]
    M.A. Bouchiat, L. Pottier: An atomic preference between left and right. Sci. Am. 250(6), 76 (1984)CrossRefGoogle Scholar
  553. M.-A. Bouchiat, L. Pottier: Optical experiments and weak interactions. Nature 234, 1203 (1986)Google Scholar
  554. M.-A. Bouchiat, C. Bouchiat: Parity violation in atoms. Rep. Prog. Phys. 60, 1352 (1997)ADSCrossRefGoogle Scholar
  555. [9.360]
    E.D. Commins: Parity violation in atoms. In: [9.30] p. 43Google Scholar
  556. [9.361]
    T.P. Emmons, E.N. Fortson: ‘Parity conservation in atoms.’ In: Progress in Atomic Spectroscopy, Pt. D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 237Google Scholar
  557. D.N. Stacey: ‘Parity non-conservation in atoms.’ In: Atomic Physics 13, ed. by H. Walther, T.W. Hänsch, B. Neizert (AIP Publishing, New York 1993) p. 46Google Scholar
  558. [9.362]
    P.A. Vetter, D.M. Meekhof, P.K. Majumder, S.K. Lamoreaus, E.N. Fortson: Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium. Phys. Rev. Lett. 74, 2658 (1995)ADSCrossRefGoogle Scholar
  559. [9.363]
    M.J.D. MacPherson, K.P. Zetie, R.B. Warrington, D.N. Stacey, J.P. Hoare: Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth. Phys. Rev. Lett. 67, 2784 (1991)ADSCrossRefGoogle Scholar
  560. [9.364]
    M.C. Noecker, B.P. Masterson, C.E. Wieman: Precision measurement of parity nonconservation in atomic cesium: A low-energy test of the electroweak theory. Phys. Rev. Lett. 61, 310 (1988)ADSCrossRefGoogle Scholar
  561. C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J. L Roberts, C.E. Tanner, C.E. Wieman: Measuerement of parity nonconservation and an anapole moment in cesium. Science 275, 1759 (1997)CrossRefGoogle Scholar
  562. S.C. Bennett, C.E. Wieman: Phys. Rev. Lett. 82, 2484 (1999); ibid. 83, 889 (1999ADSCrossRefGoogle Scholar
  563. [9.365]
    S.A. Blundell, W.R. Johnson, J. Sapirstein: High-accuracy calculation of the 6 S1/2-7 S1/2 parity-nonconserving transition in atomic cesium and implications for the standard model. Phys. Rev. Lett. 65, 1411 (1990); Phys. Rev. A 43, 3407 (1991ADSCrossRefGoogle Scholar
  564. A.C. Hartley, E. Lindroth, A. Mårtensson-Pendrill: Parity nonconservation and electric dipole moments in caesium and thallium. J. Phys. B 23, 3417 (1990)ADSCrossRefGoogle Scholar
  565. [9.366]
    Ya.B. Zel′Dovich: Electromagnetic interaction with parity violation. Sov. Phys. JETP 6, 1184 (1968)Google Scholar
  566. V.F. Dimitriev, I.B. Kriplovich, V.B. Telitsin: Nuclear anapole moments in single-particle approximation. Nucl. Phys. A 577, 691 (1994)ADSCrossRefGoogle Scholar
  567. C. Bouchiat, C.A. Piketty: Nuclear spin dependent parity violating electron-nucleus interaction in heavy atoms. The anapole moment and the perturbation of the hadronic vector neutral current by the hyperfine interaction. Phys. Lett. B 269, 195 (1991)ADSCrossRefGoogle Scholar
  568. W.C. Haxton, C.E. Wieman: Atomic parity nonconservation and nuclear anapole moments. Ann. Rev. Nucl. Part. Sci.; Annual Reviews 2001, 261 (2001)Google Scholar
  569. [9.367]
    V.W. Hughes: ‘High precision atomic spectroscopy of muonium and simple muonic atoms.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann, J. Kowalski, I. Reinhard, F. Träger (Springer Verlag, Heidelberg, Berlin 1997)Google Scholar
  570. V.W. Hughes: High-precision spectroscopy of positronium and muonium. Adv. Quantum Chem. 30, 99 (1998)ADSCrossRefGoogle Scholar
  571. D. Taqqu, F. Biraben, C.A.N. Conde, T.W. Hänsch, F.J. Hartmann, P. Hauser, P. Indelicato, P. Knowles, F. Kottmann, F. Mulhauser, C. Petitjean, R. Pohl, P. Rabinowitz, R. Rosenfelder, J.M.F. Santos, W. Scott, L.M. Simons, J.F.C.A. Veloso: Laser spectroscopy of the Lamb shift in muonic hydrogen. Hyperfine Interact. 119, 317 (1999)ADSCrossRefGoogle Scholar
  572. [9.368]
    J. Eades (ed.): Proceedings of the Antihydrogen Workshop, July 1992, Hyperfine Interact. 76 (1993)Google Scholar
  573. G. Gabrielse, D.S. Hall, A. Khabbaz, T. Roach, P. Yesley, C. Heimann, H. Kalinowsky, W. Jhe: ‘Comparing the antiproton and the proton and progress towards antihydrogen.’ In: Atomic Physics 15, ed. by H.B. van Linden van den Heuvell, J.T.M. Walraven, M.W. Reynolds (World Scientific, Singapore 1997) p. 446Google Scholar
  574. K.S.E. Eikema, J. Walt, T.W. Hänsch: Continuous wave coherent Lymanalpha radiation. Phys. Rev. Lett. 83, 3828 (1999)ADSCrossRefGoogle Scholar
  575. M. Amoretti et al.: Production and detection of cold antihydrogen atoms. Nature 419, 456 (2002)ADSCrossRefGoogle Scholar
  576. G. Gabrielse, N.S. Bowen, P. Oxley, A. Speck, C.H. Storry, J.N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefxick, J. Walz, H. Pittner, T.W. Hänsch, E.A. Hessels: Background-free observation of cold antihydrogen with field-ionization analysis of its states. Phys. Rev. Lett. 89, 213 401 (2002)Google Scholar
  577. [9.369]
    M.S. Sorem, A.L. Schawlow: Saturation spectroscopy in molecular iodine by intermodulated fluorescence. Opt. Commun. 5, 148 (1972)ADSCrossRefGoogle Scholar
  578. [9.370]
    J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow: Doppler-free intermodulated optogalvanic spectroscopy. Phys. Rev. Lett. 42, 1046 (1979)ADSCrossRefGoogle Scholar
  579. [9.371]
    D.R. Lyons, A.L. Schawlow, G.-Y. Yan: Doppler-free radiofrequency optogalvanic spectroscopy. Opt. Commun. 38, 35 (1981)ADSCrossRefGoogle Scholar
  580. [9.372]
    E.E. Marinero, M. Stuke: Doppler-free optoacoustic spectroscopy. Opt. Commun. 30, 349 (1979)ADSCrossRefGoogle Scholar
  581. [9.373]
    T.P. Duffey, D. Kammen, A.L. Schawlow, S. Svanberg, H.-R. Xia, G.-G. Xiao, G.-Y. Yan: Laser spectroscopy using beam overlap modulation. Opt. Lett. 10, 597 (1986)ADSCrossRefGoogle Scholar
  582. [9.374]
    T.W. Hänsch, D.R. Lyons, A.L. Schawlow, A. Siegel, Z.-Y. Wang, G.-Y. Yan: Polarization intermodulated excitation (POLINEX) spectroscopy of helium and neon. Opt. Commun. 37, 87 (1981)ADSCrossRefGoogle Scholar
  583. [9.375]
    M. Goeppert-Mayer: Uber Elementarakte mit zwei Quantensprüngen. Ann. Phys. 9, 273 (1931)CrossRefGoogle Scholar
  584. [9.376]
    L.S. Vasilenko, V.P. Chebotayev, A.V. Shishaev: Line shape of a twophoton absorption in a standing-wave field in a gas. JETP Lett. 12, 113 (1970)ADSGoogle Scholar
  585. [9.377]
    F. Biraben, B. Cagnac, G. Grynberg: Experimental evidence of two-photon transition without Doppler broadening. Phys. Rev. Lett. 32, 643 (1974)ADSCrossRefGoogle Scholar
  586. [9.378]
    G. Grynberg, B. Cagnac: Doppler-free multiphoton spectroscopy. Rep. Prog. Phys. 40, 791 (1977)ADSCrossRefGoogle Scholar
  587. N. Bloembergen, M.D. Levenson: Dopplerfree two-photon absorption spectroscopy. Phys. Rev. Lett. 31, 645 (1974)Google Scholar
  588. [9.379]
    T.W. Hänsch, K.C. Harvey, G. Meisel, A.L. Schawlow: Two-photon spectroscopy of Na 3s — 4d without Doppler broadening using a cw dye laser. Opt. Commun. 11, 50 (1974)ADSCrossRefGoogle Scholar
  589. [9.380]
    H. Rinneberg, J. Neukammer, G. Jönsson, H. Hieronymus, A. König, K. Vietzke: High-n Rydberg atoms and external fields. Phys. Rev. Lett. 55, 382 (1985)ADSCrossRefGoogle Scholar
  590. J. Neukammer, H. Rinneberg, K. Vietzke, A. König, H. Hieronymus, M. Kohl, H.-J. Grabka: Spectroscopy of Rydberg atoms at n ≃ 500: Observation of quasi-Landau resonances in low magnetic fields. Phys. Rev. Lett. 59, 2947 (1987)ADSCrossRefGoogle Scholar
  591. [9.381]
    B.P. Stoicheff, E. Wineberger: Doppler-free two-photon absorption spectrum of rubidium. Can. J. Phys. 57, 2143 (1979)ADSCrossRefGoogle Scholar
  592. [9.382]
    C.-J. Lorenzen, K. Niemax, L.R. Pendrill: Precise measurements of 39K nS and nD energy levels with an evacuated wavemeter. Opt. Commun. 39, 370 (1981)ADSCrossRefGoogle Scholar
  593. [9.383]
    K.-H. Weber, C.J. Sansonetti: Accurate energies of nS, nP, nF and nG levels of neutral cesium. Phys. Rev. A 35, 4650 (1987)ADSCrossRefGoogle Scholar
  594. [9.384]
    M.J. Seaton: Quantum defect theory. Rep. Prog. Phys. 46, 167 (1983)ADSCrossRefGoogle Scholar
  595. [9.385]
    E. Matthias, H. Rinneberg, R. Beigang, A. Timmermann, J. Neukammer, K. Lücke: ‘Hyperfine structure and isotope shifts in alkaline earth atoms.’ In: Atomic Physics 8, ed. by I. Lindgren, A. Rosén, S. Svanberg (Plenum, New York 1983) p. 543Google Scholar
  596. H. Rinneberg: ‘Rydberg series of two-electron systems studied by hyperfine interactions.’ In: Progress in Atomic Spectroscopy, Pt.D, ed. by H.K. Beyer, H. Kleinpoppen (Plenum, New York 1987) p. 157Google Scholar
  597. [9.386]
    M. Aymar: Rydberg series of alkaline-earth atoms Ca through Ba. The interplay of laser spectroscopy and multi-channel quantum defect theory. Phys. Rep. 110, 163 (1984)ADSCrossRefGoogle Scholar
  598. [9.387]
    W. Hogervorst: Laser spectroscopy of Rydberg states of two-electron atoms. Comments At. Mol. Phys. 13, 69 (1983)Google Scholar
  599. [9.388]
    C. Wieman, T.W. Hänsch: Precision measurement of the 1S Lamb shift and the 1S-2S isotope shift of hydrogen and deuterium. Phys. Rev. A 22, 192 (1980)ADSCrossRefGoogle Scholar
  600. [9.389]
    E.A. Hildum, U. Boesl, D.H. McIntyre, R.G. Beausoleil, T.W. Hänsch: Measurements of the 1s — 2s frequency in atomic hydrogen. Phys. Rev. Lett. 56, 576 (1986)ADSCrossRefGoogle Scholar
  601. [9.390]
    R.G. Beausoleil, D.H. McIntyre, C.J. Foot, E.A. Hildum, B. Couillaud, T.W. Hänsch: Continous wave measurement of the 1S Lamb shift in atomic hydrogen. Phys. Rev. A 35, 4878 (1987); ibid. A 39, 4591 (1989ADSCrossRefGoogle Scholar
  602. C. Zimmermann, R. Kallenback, T.W. Hänsch: High-resolution spectroscopy of the hydrogen 1s — 2s transition in an atomic beam. Phys. Rev. Lett. 65, 571 (1990)ADSCrossRefGoogle Scholar
  603. [9.391]
    T.W. Hänsch, R.G. Beausoleil, B. Couillaud, C. Foot, E.A. Hildum, D.H. McIntyre: High resolution laser spectroscopy of atomic hydrogen. In: [9.30] p. 2Google Scholar
  604. F. Schmidt-Kaler, D. Leibfried, S. Seel, C. Zimmermann, W. König, M. Weitz, T.W. Hänsch: High-resolution spectroscopy of the hydrogen 1s — 2s transition in an atomic hydrogen and deuterium. Phys. Rev. A 51, 2789 (1995)ADSCrossRefGoogle Scholar
  605. A. Huber, B. Gross, M. Weitz, T.W. Hänsch: High-resolution spectroscopy of the 1S-2S transition in atomic hydrogen. Phys. Rev. A 59, 1844 (1999)ADSCrossRefGoogle Scholar
  606. M. Niering, R. Holzwarth, R. Reichert, P. Pokasov, Th. Udem, M. Weitz, T.W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon: Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496 (2000)ADSCrossRefGoogle Scholar
  607. [9.392]
    J. Cariou, P. Luc: Atlas du Spectre d’Absorption de la Molécule de Tellure (Laboratoire Aime’ Cotton, CNRS II, Orsay 1980)Google Scholar
  608. [9.393]
    S. Gersternkorn, P. Luc: Atlas du Spectre d’Absorption de la Molecule d’Iode 14 800-20 000 cm-1 (Editions du CNRS, Paris 1978)Google Scholar
  609. [9.394]
    C.J. Foot, B. Couillaud, R.G. Beausoleil, T.W. Hänsch: Continous twophoton spectroscopy of hydrogen 1s — 2s. Phys. Rev. Lett. 54, 1913 (1985)ADSCrossRefGoogle Scholar
  610. [9.395]
    M.G. Boshier, P.E.G. Baird, C.J. Foot, E.A. Hinds, M.D. Plimmer, D.N. Stacey, J.B. Swan, D.A. Tate, D.M. Warrington, G.K. Woodgate: Precision cw laser spectroscopy of hydrogen and deuterium. In: [9.30] p. 18Google Scholar
  611. [9.396]
    Th. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, T.W. Hänsch: Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett. 79, 2646 (1997)ADSCrossRefGoogle Scholar
  612. [9.397]
    B. de Beauvoir, F. Nez, L. Juilien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clarion, J.J. Zondy: Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: New determination of the Rydberg constant. Phys. Rev. Lett. 78, 440 (1997)ADSCrossRefGoogle Scholar
  613. [9.398]
    P. Zhao, W. Lichten, H.P. Layer, J.C. Bergquist: Absolute wavelength measurements and fundamental atomic physics. In: [9.30] p. 12Google Scholar
  614. [9.399]
    S. Bourzeix, B. de Beauvoir, F. Nez, M.D. Plimmer, F. de Tomasi, L. Julien, F. Biraben: High resolution spectroscopy of the hydrogen atom: Determination of the 1S Lamb shift. Phys. Rev. Lett. 76, 384 (1996)ADSCrossRefGoogle Scholar
  615. [9.400]
    M. Kourogi, B. Widiyatomoko, Y. Takeuchi, M. Ohtsu: Limit of opticalfrequency comb generation due to material dispersion. IEEE J. Quantum Electron. QE-31, 2120 (1995)ADSCrossRefGoogle Scholar
  616. S.A. Diddams, L.S. Ma, J. Ye, J.L. Hall: Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Opt. Lett. 24, 1747 (1999)ADSCrossRefGoogle Scholar
  617. Th. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch: Absolute optical frequency measurement of the Cs D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568 (1999)ADSCrossRefGoogle Scholar
  618. R. Holzwarth, Th. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.St.J. Russel: Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000)ADSCrossRefGoogle Scholar
  619. Th. Udem, S.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg: Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett. 86, 4996 (2001)ADSCrossRefGoogle Scholar
  620. S. Bize, S.A. Diddams, U. Tanaka, C.E. Tanner, W.H. Oskay, R.E. Drullinger, T.E. Parker, T.P. Heavner, S.R. Jefferts, L. Hollberg, W.H. Itano, J.C. Bergquist: Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. Phys. Rev. Lett. 90, 150 802 (2003)CrossRefGoogle Scholar
  621. T.W. Hän sch: Laser frequency combs and ultraprecise spectroscopy. In P. Hannaford, A. Siderov, H. Bachor, K. Baldwin (eds.): Laser Spectroscopy 16 (World Scientific, Singapore 2004)Google Scholar
  622. [9.401]
    M.M. Salour, C. Cohen-Tannoudji: Observation of Ramsey’s interference fringes in the profile of Doppler-free two-photon resonances. Phys. Rev. Lett. 38, 757 (1977)ADSCrossRefGoogle Scholar
  623. [9.402]
    R. Teets, J. Eckstein, T.W. Hänsch: Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett. 38, 760 (1977)ADSCrossRefGoogle Scholar
  624. [9.403]
    M. Bellini, A. Bartoli, T.W. Hänsch: Two-photon Fourier spectroscopy with femtosecond light pulses. Opt. Lett. 22, 540 (1997)ADSCrossRefGoogle Scholar
  625. [9.404]
    J.C. Bergquist, S.A. Lee, J.L. Hall: Saturated absorption with spatially separated laser fields: Observation of optical ”Ramsey” fringes. Phys. Rev. Lett. 38, 159 (1977); and in [9.25] p. 142ADSCrossRefGoogle Scholar
  626. [9.405]
    R.G. Beausoleil, T.W. Hänsch: Two-photon optical Ramsey spectroscopy of freely falling atoms. Opt. Lett. 10, 547 (1985)ADSCrossRefGoogle Scholar
  627. R.G. Beausoleil, T.W. Hänsch: Ultra-high-resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 33, 1661 (1986)ADSCrossRefGoogle Scholar
  628. M.A. Kasevich, E. Riis, S. Chu, R.G. DeVoe: RF spectroscopy in an atomic fountain. Phys. Rev. Lett. 63, 612 (1989)ADSCrossRefGoogle Scholar
  629. B. Gross, A. Huber, M. Niering, M. Weitz, T.W. Hänsch: Optical Ramsey spectroscopy of atomic hydrogen. Europhys. Lett. 44, 186 (1998)ADSCrossRefGoogle Scholar
  630. [9.406]
    T.W. Hänsch, A.L. Schawlow: Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)ADSCrossRefGoogle Scholar
  631. [9.407]
    D. Wineland, H. Dehmelt: Proposed 1014 Δν ≪ ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator III. Bull. Am. Phys. Soc. 20, 637 (1975)Google Scholar
  632. [9.408]
    V.S. Letokhov, V.G. Minogin, B.D. Pavlik: Cooling and trapping of atoms and molecules by a resonant laser field. Opt. Commun. 19, 72 (1976)ADSCrossRefGoogle Scholar
  633. V.S. Letokhov: Laser control of atomic motion: Velocity selection, cooling and trapping. Comments At. Mol. Phys. 6, 119 (1977)Google Scholar
  634. V.S. Letokhov, V.G. Minogin, B.D. Pavlik: Cooling and capture of atoms and molecules by a resonant light field. Sov. Phys. JETP 45, 698 (1977)ADSGoogle Scholar
  635. [9.409]
    V.I. Balykin, V.S. Letokhov, V.I. Mishin: Cooling of sodium atoms by resonant laser emission. JETP Lett. 29, 560 (1979)ADSGoogle Scholar
  636. V.I. Balykin, V.S. Letokhov, V.I. Mishin: Cooling of sodium atoms by resonant laser emission. Sov. Phys. JETP 51, 692 (1980)ADSGoogle Scholar
  637. S.V. Andreev, V.I. Balykin, V.S. Letokhov, V.G. Minogin: Radiative slowing and reduction of the energy spread of a beam of sodium atoms to 1.5 K in an oppositely directed laser beam. JETP Lett. 34, 442 (1982)ADSGoogle Scholar
  638. [9.410]
    J. Prodan, A. Migdal, W.D. Phillips, I. So, H. Metcalf, J. Dalibard: Stopping atoms with laser light. Phys. Rev. Lett. 54, 992 (1985)ADSCrossRefGoogle Scholar
  639. W. Phillips, J. Prodan, H. Metcalf: Laser cooling and electromagnetic trapping of neutral atoms. J. Opt. Soc. Am. B 2, 1751 (1985)ADSCrossRefGoogle Scholar
  640. H. Metcalf, W.D. Phillips: Laser cooling of atomic beams: Comments. At. Mol. Phys. 16, 79 (1985)Google Scholar
  641. W.D. Phillips, H. Metcalf: Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596 (1982)ADSCrossRefGoogle Scholar
  642. J.V. Prodan, W.D. Phillips, H. Metcalf: Laser production of very slow monoenergetic atomic beam. Phys. Rev. Lett. 49, 1149 (1982)ADSCrossRefGoogle Scholar
  643. [9.411]
    W.D. Phillips, P.L. Gould, P.D. Lett: Cooling, stopping and trapping atoms. Science 239, 877 (1988)ADSCrossRefGoogle Scholar
  644. [9.412]
    F.M. Penning: Physica 3, 873 (1936)CrossRefGoogle Scholar
  645. J.R. Pierce: Theory and Design of Electron Beams (van Nostrand, New York 1949), Chap. 3Google Scholar
  646. [9.413]
    I. Bergström, C. Carlberg, R. Schuch (eds.): Trapped Charged Particles and Related Fundamental Physics. Phys. Scr. T59 (1995)Google Scholar
  647. C. Carlberg et al.: SMILETRAP — A wide range high-precision mass spectrometer. IEEE Trans. Instrum. Meas. 44, 553 (1995)CrossRefGoogle Scholar
  648. F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, D.E. Pritchard: ‘Accurate atomic mass measurements from Penning trap comparisons of individual ions.’ In: Atomic Physics XIV, ed. by D.J. Wineland, C.E. Wieman, S.J. Smith (AIP Publ., New York 1995) p. 149Google Scholar
  649. M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard: Phys. Rev. Lett. 83, 4510 (1999)ADSCrossRefGoogle Scholar
  650. [9.414]
    G. Bollen et al.: ISOLTRAP: A Penning trap system for accurate on-line mass determinations of short-lived isotopes. Nucl. Instrum. Methods A 368, 675 (1996)ADSCrossRefGoogle Scholar
  651. [9.415]
    W. Paul, H.P. Reinhard, U. von Zahn: Das elektrische Massenfilter als Massenspektrometer und Isotopentrenner. Z. Physik 152, 143 (1958)ADSCrossRefGoogle Scholar
  652. [9.416]
    W. Paul: ‘Electromagnetic traps for charged and neutral particles.’ In: Nobel Lectures in Physics 1981-1990, ed. by G. Ekspong (World Scientific, Singapore 1993), p. 601Google Scholar
  653. H.G. Dehmelt: ‘Experiments with an isolated subatomic particle at rest.’ In: Nobel Lectures in Physics 1981-1990, ed. by G. Ekspong (World Scientific, Singapore 1993), p. 583Google Scholar
  654. [9.417]
    D.J. Wineland, R.E. Drullinger, F.L. Walls: Radiation pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1638 (1978)ADSCrossRefGoogle Scholar
  655. W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt: Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233 (1978)ADSCrossRefGoogle Scholar
  656. D.J. Wineland, W.M. Itano: Spectroscopy of a single Mg+ ion. Phys. Lett. A 82, 75 (1981)ADSCrossRefGoogle Scholar
  657. [9.418]
    W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt: Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 22, 1137 (1980)ADSCrossRefGoogle Scholar
  658. [9.419]
    F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther: Observation of a phase transition of stored laser-cooled ions. Phys. Rev. Lett. 59, 2931 (1987); and Phys. Blätter 44, 12 (1988); Nature 334, 309 (198ADSCrossRefGoogle Scholar
  659. [9.420]
    E.P. Wigner: Trans. Faraday Soc. 34, 678 (1938)CrossRefGoogle Scholar
  660. [9.421]
    D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, C.H. Manney: Atomic-ion Coulomb cluster in an ion trap. Phys. Rev. Lett. 59, 2935 (1987)ADSCrossRefGoogle Scholar
  661. J. Hoffnagle, R.V. DeVoe, L. Reyna, R.G. Brewer: Order-chaos transition of two trapped ions. Phys. Rev. Lett. 61, 255 (1988)ADSCrossRefGoogle Scholar
  662. R.G. Brewer, J. Hoffnagle, R.G. DeVoe, L. Reyna, W. Henshaw: Collisioninduced two-ion chaos. Nature 344, 305 (1990)ADSCrossRefGoogle Scholar
  663. [9.422]
    D.J. Wineland, C. Monroe, D.M. Meekhof, B.E. King, D. Leibfried, W.M. Itano, J.C. Bergquist, D. Berkeland, J.J. Bollinger, J. Miller: Coherent quantum state manipulation of trapped atomic ions. Adv. Quantum Chem. 30, 41 (1998)ADSCrossRefGoogle Scholar
  664. A. Steane: Quantum computing. Rep. Prog. Phys. 61, 117 (1998)MathSciNetADSCrossRefGoogle Scholar
  665. H.J. Kimble, C.J. Hood, T.W. Lynn, H. Mabuchi, D.W. Vernooy, J. Ye: The quantum internet, in [9.36] p. 80Google Scholar
  666. [9.423]
    D.A. Church: Collision measurements and excited-level lifetime measurements on ions stored in Paul, Penning and Kingdon ion traps. Phys. Rep. 228, 253 (1993)ADSCrossRefGoogle Scholar
  667. H.A. Klein: ‘Ion Traps.’ In: Experimental Methods in the Physical Sciences, Vol. 29A, ed. by F.B. Dunning, R.G. Hulet (Academic Press, San Diego 1995) p. 349Google Scholar
  668. J.I. Cirac, A.S. Parkins, R. Blatt, P. Zoller: Nonclassical states of motion in ion traps. Adv. At. Mol. Opt. Phys. 37, 238 (1996)ADSGoogle Scholar
  669. J.I. Cirac, A.S. Parkins, R. Blatt, P. Zoller: ‘Nonclassical states of motion in ion traps.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 37, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1996) p. 238Google Scholar
  670. [9.424]
    P.F. Fisk: Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60, 761 (1997)ADSCrossRefGoogle Scholar
  671. K. Gibble, S. Chu: Future slow-atom frequency standards. Metrologia 29, 201 (1992)ADSCrossRefGoogle Scholar
  672. Ch. Monroe, J. Bollinger: Atomic physics in ion traps. Physics World (March 1997) p. 37Google Scholar
  673. M. Roberts, P. Taylor, G.P. Barwood, P. Gill, H.A. Klein, W.R.C. Rowley: Observation of an electric octupole transition in a single ion. Phys. Rev. Lett. 78, 1876 (1997)ADSCrossRefGoogle Scholar
  674. B.E. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist: Visible laser with subhertz linewidths. Phys. Rev. Lett. 82, 3799 (1999)ADSCrossRefGoogle Scholar
  675. [9.425]
    H.G. Dehmelt: Proposed 1014 Δν > ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator II. Bull. Am. Phys. Soc. 20, 60 (1975)Google Scholar
  676. [9.426]
    Th. Sauter, W. Neuhauser, R. Blatt, P.E. Toschek: Observation of quantum jumps. Phys. Rev. Lett. 57, 1696 (1986); see also Phys. Scr. T22, 129 (1988) and [9.30] p. 12ADSCrossRefGoogle Scholar
  677. J.E. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland: Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699 (1986); see also Phys. Scr. T22, 79 (1988) and [9.30] p. 11ADSCrossRefGoogle Scholar
  678. W. Nagourney, J. Sandberg, H. Dehmelt: Shelved optical electron amplifier Observation of quantum jumps. Phys. Rev. Lett. 56, 2797 (1986); see also [9.30] p. 114ADSCrossRefGoogle Scholar
  679. W. Nagourney: The mono-ion oscillator: An approach to an ideal atomic spectrometer. Comments At. Mol. Phys. 21, 321 (1988)CrossRefGoogle Scholar
  680. [9.427]
    J.C. Bergquist, F. Diedrich, W.M. Itano, D.J. Wineland: Hg+ single ion spectroscopy. In: [9.31] p. 274Google Scholar
  681. B.C. Young, R.J. Rafac, J.A. Beall, F.C. Cruz, W.M. Itano, D.J. Wineland, J.C. Bergquist: Hg+ optical frequency standard: Recent progress. In: [9.36] p. 61; Physics Today 3, 37 (2001)Google Scholar
  682. [9.428]
    S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, A. Ashkin: Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 (1985)ADSCrossRefGoogle Scholar
  683. [9.429]
    P.D. Lett, R.N. Walls, Ch.I. Westbrook, W.D. Phillips, P.L. Gould, H.J. Metcalf: Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169 (1988)ADSCrossRefGoogle Scholar
  684. [9.430]
    J. Dalibard, C. Cohen-Tannoudji: Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2, 1707 (1986)ADSCrossRefGoogle Scholar
  685. [9.431]
    J. Dalibard, C. Cohen-Tannoudji: Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989)ADSCrossRefGoogle Scholar
  686. [9.432]
    C. Cohen-Tannoudji: Thesis (Paris 1962); Ann. Phys. 7, 423 and 469 (1962)Google Scholar
  687. C. Cohen-Tannoudji: in Cargese Lectures in Physics, ed. by Levy (Gordon & Breach, 1968)Google Scholar
  688. [9.433]
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg: Atom-Photon Interactions — Basic Processes and Applications, Chap. VI (Wiley, New York 1992)Google Scholar
  689. [9.434]
    P.J. Ungar, D.S. Weiss, E. Riis, S. Chu: Optical molasses and multilevel atoms: Theory. J. Opt. Soc. Am. 6, 2058 (1989)ADSCrossRefGoogle Scholar
  690. [9.435]
    A. Ashkin: Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729 (1978)ADSCrossRefGoogle Scholar
  691. S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable: Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314 (1986)ADSCrossRefGoogle Scholar
  692. [9.436]
    V.S. Letokhov: Narrowing of the Doppler width in a standing light wave. JETP Lett. 7, 272 (1968)ADSGoogle Scholar
  693. [9.437]
    K.-J. Kugler, W. Paul, U. Trinks: A magnetic storage ring for neutrons. Phys. Lett. B 72, 422 (1978)ADSCrossRefGoogle Scholar
  694. [9.438]
    D.E. Pritchard: Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336 (1983)ADSCrossRefGoogle Scholar
  695. A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergemann, H.J. Metcalf: First observation of magnetically trapped neutral atoms. Phys. Rev. Lett. 54, 2596 (1985)ADSCrossRefGoogle Scholar
  696. [9.439]
    E.L. Raab, M.G. Prentiss, A.E. Cable, S. Chu, D.E. Pritchard: Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987)ADSCrossRefGoogle Scholar
  697. [9.440]
    G. Alzetta, A. Gozzini, L. Moi, G. Orriols: Nuovo Cimento B 36, 5 (1976)ADSCrossRefGoogle Scholar
  698. E. Arimondo, G. Orriols: Lett. Nuovo Cimento 17, 333 (1976)Google Scholar
  699. [9.441]
    A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji: Laser cooling below the one-photon recoil energy by velocityselective coherent population trapping. Phys. Rev. Lett. 61, 826 (1988)ADSCrossRefGoogle Scholar
  700. [9.442]
    J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, C. Cohen-Tannoudji: Two-dimensional subrecoil laser cooling. Phys. Rev. Lett. 73, 1915 (1994)ADSCrossRefGoogle Scholar
  701. J. Lawall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc, C. Cohen-Tannoudji: Three-dimensional laser cooling of helium beyond the singlephoton recoil limit. Phys. Rev. Lett. 75, 4194 (1995)ADSCrossRefGoogle Scholar
  702. [9.443]
    M. Kasevich, S. Chu: Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741 (1992)ADSCrossRefGoogle Scholar
  703. N. Davidson, H.J. Lee, M. Kasevich, S. Chu: Raman cooling of atoms in two and three dimensions. Phys. Rev. Lett. 72, 3158 (1994)ADSCrossRefGoogle Scholar
  704. H.J. Lee, C.S. Adams, M. Kasevich, S. Chu: Raman cooling of atoms in an optical dipole trap. Phys. Rev. Lett. 76, 2658 (1996)ADSCrossRefGoogle Scholar
  705. [9.444]
    A. Bárány, A. Kerek, M. Larsson, S. Mannervik, L.-O. Norlin (eds.): Workshop and symposium on the physics of low-energy stored and trapped particles. Phys. Scr. T22, 1 (1988)Google Scholar
  706. P. Meystre, S. Stenholm (eds.): The mechanical effects of light. J. Opt. Soc Am. B 2, 1706–1860 (1985) (special issue)Google Scholar
  707. S. Stenholm: Light forces put a handle on the atom: To cool and trap atoms by laser light. Contemp. Phys. 29, 105 (1988)ADSCrossRefGoogle Scholar
  708. V.G. Minogin, V.S. Letokhov: Laser Light Pressure on Atoms (Harwood, London 1987)Google Scholar
  709. W.D. Phillips, H.J. Metcalf: Cooling and trapping of atoms. Sci. Am. 256(3), 36 (1987)Google Scholar
  710. P.L. Gould, P.D. Lett, W.D. Phillips: New measurements with optical molasses. In: [9.30] p. 64Google Scholar
  711. D.J. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger: Trapped Ions and Laser Cooling, NBS Technical Note 1086 (NBS, Washington, DC 1985)Google Scholar
  712. D.J. Wineland, W.M. Itano, R.S. VanDyck Jr.: ‘High-resolution spectroscopy of stored ions.’ In: Advances in Atomic and Molecular Physics, Vol. 19, ed. by O.R. Bates, B. Bederson (Academic Press, New York 1983)Google Scholar
  713. D.J. Wineland, W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.D. Prestige: ‘Spectroscopy of stored ions.’ In: Atomic Physics 9, ed. by R.S. Van Dyck Jr., E.N. Fortson (World Scientific, Singapore 1985) p. 3Google Scholar
  714. S. Stenholm: The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699 (1986)ADSCrossRefGoogle Scholar
  715. C.J. Foot: Laser cooling and trapping of atoms. Contemp. Phys. 32, 369 (1991)ADSCrossRefGoogle Scholar
  716. S. Chu: Laser trapping of neutral particles. Sci. Am. 266(2), 48 (1992)Google Scholar
  717. C. Cohen-Tannoudji: Laser cooling and trapping of neutral atoms: Theory. Phys. Rep. 219, 153 (1992)ADSCrossRefGoogle Scholar
  718. M. Metcalf, P. van der Straten: Cooling and trapping of neutral atoms. Phys. Rep. 244, 203 (1994)ADSCrossRefGoogle Scholar
  719. H. Walther: Atoms in cavities and traps. Adv. At. Mol. Opt. Phys. 32, 379 (1994)ADSCrossRefGoogle Scholar
  720. N.R. Newbury, C. Wieman: Resource Letter TNA-1: Trapping of neutral atoms. Am. J. Phys. 64, 18 (1996)ADSCrossRefGoogle Scholar
  721. E. Arimondo: ‘Coherent population trapping in laser spectroscopy.’ In: Progress in Optics XXXV, ed. by E. Wolf (Elsevier, Amsterdam 1996) p.259Google Scholar
  722. A. Ashkin: Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94, 4853 (1997)ADSCrossRefGoogle Scholar
  723. M. Metcalf, P. van der Straten: Laser Cooling and Trapping (Springer, Berlin, Heidelberg 1999)Google Scholar
  724. [9.445]
    V.I. Balykin, V.S. Letokhov, Yu.B. Ovchinnikov, A.I. Sidorov: Focusing of an atomic beam and imaging of atomic sources by means of a laser lens based on resonance-radiation pressure. J. Mod. Opt. 35, 17 (1988)ADSCrossRefGoogle Scholar
  725. V.I. Balykin, V.S. Letokhov, V.G. Minogin: Laser control of the motion of neutral atoms and optical atomic traps. Phys. Scr. T22, 119 (1988)ADSCrossRefGoogle Scholar
  726. I. Balykin, V.S. Letokhov: Laser optics on neutral atomic beams. Phys. Today (April 1989) p. 23Google Scholar
  727. [9.446]
    K. Cloppenburg, G. Hennig, A. Mihm, H. Wallis, W. Ertmer: Optical elements for manipulating atoms. In: [9.30] p. 87Google Scholar
  728. [9.447]
    C.S. Adams: Atomic optics. Contemp. Phys. 35, 1 (1994)ADSCrossRefGoogle Scholar
  729. C.S. Adams, M. Sigel, J. Mlynek: Atom optics. Phys. Rep. 240, 143 (1994)ADSCrossRefGoogle Scholar
  730. K. Sengslock, W. Ertmer: Laser manipulation of atoms. Adv. At. Mol. Opt. Phys. 35, 1 (1995)ADSCrossRefGoogle Scholar
  731. V.V. Balykin: ‘Atom waveguides.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol. 41, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1999) p. 182Google Scholar
  732. [9.448]
    P.E. Moskowitz, P.L. Gould, S.R. Atlas, D.E. Pritchard: Diffraction of an atomic beam by standing-wave radiation. Phys. Rev. Lett. 51, 370 (1983)ADSCrossRefGoogle Scholar
  733. P.L. Gould, G.A. Ruff, D.E. Pritchard: Diffraction of atoms by light: The near-resonant Kapitza-Dirac effect. Phys. Rev. Lett. 59, 827 (1986)ADSCrossRefGoogle Scholar
  734. O. Carnal, J. Mlynek: Young’s double-slit experiment with atoms: A simple atom interferometer. Phys. Rev. Lett. 66, 2689 (1991)ADSCrossRefGoogle Scholar
  735. D.K. Keith, C.E. Ekstrom, Q.A. Turchette, D.E. Pritchard: An interferometer for atoms. Phys. Rev. Lett. 66, 2693 (1991)ADSCrossRefGoogle Scholar
  736. F. Riehle, Th. Kisteers, A. White, J. Helmecke, Ch.J. Bordé: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177 (1991)ADSCrossRefGoogle Scholar
  737. M. Kasevich, S. Chu: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181 (1991)ADSCrossRefGoogle Scholar
  738. C.S. Adams, O. Carnal, J. Mlynek: Atom interferometry. Adv. At. Mol. Opt. Phys. 34, 1 (1994)ADSCrossRefGoogle Scholar
  739. P. Berman (ed.): Atom Interferometry (Academic Press, New York 1997)Google Scholar
  740. [9.449]
    I. Percival: Atom interferometry, spacetime and reality. Physics World (March 1997)Google Scholar
  741. T.L. Gustavson, P. Broyer, M.A. Kasevich: Precision rotation measurements with an atomic interferometer gyroscope. Phys. Rev. Lett. 78, 2046 (1997)ADSCrossRefGoogle Scholar
  742. A. Peters, K.Y. Chung, S. Chu: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)ADSCrossRefGoogle Scholar
  743. M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw, A. Zeilinger: Nature 401, 680 (1999)ADSCrossRefGoogle Scholar
  744. [9.450]
    J. Fujita, M. Morinaga, T. Kishimoto, M. Yasuda, S. Matsui, F. Shimizu: Manipulation of an atomic beam by a computer-generated hologram. Nature 380, 691 (1996)ADSCrossRefGoogle Scholar
  745. M. Morinaga, M. Yasuda, T. Kishimoto, F. Shimizu: Holographic manipulation of a cold atomic beam. Phys. Rev. Lett. 77, 802 (1996)ADSCrossRefGoogle Scholar
  746. F. Shimizu, J. Fujita, S. Mitake, T. Kishimoto: Holography with cold atoms. In: [9.36] p. 227Google Scholar
  747. [9.451]
    C.I. Westbrook, R.N. Watts, C.E. Tanner, S.L. Rolston, W.D. Phillips, P.D. Lett, P.L. Gould: Localization of atoms in a three-dimensional standing wave. Phys. Rev. Lett. 65, 33 (1990)ADSCrossRefGoogle Scholar
  748. P.S. Jessen, C. Gerz, P.D. Lett, W.D. Phillips, S.L. Rolston, R.J.C. Spreeuw, C.I. Westbrook: Observation of quantized motion of Rb atoms in an optical field. Phys. Rev. Lett. 69, 49 (1992)ADSCrossRefGoogle Scholar
  749. A. Hemmerich, T.W. Hänsch: Two-dimensional atomic crystal bound by light. Phys. Rev. Lett. 70, 410 (1993)ADSCrossRefGoogle Scholar
  750. D. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon: Quantized motion of cold cesium atoms in two-and three-dimensional optical potentials. Phys. Rev. Lett. 70, 2249 (1993)ADSCrossRefGoogle Scholar
  751. A. Kastberg, W.D. Phillips, W.S.L. Rolston, R.J.C. Spreeuw, P.S. Jessen: Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542 (1995)ADSCrossRefGoogle Scholar
  752. [9.452]
    P.L. Gould, P.D. Lett, P.S. Julienne, W.D. Phillips, H.R. Thorsheim, J. Weiner: Observation of associative ionization of ultracold laser-trapped sodium atoms. Phys. Rev. Lett. 60, 788 (1988)ADSCrossRefGoogle Scholar
  753. P.D. Lett, P.S. Jessen, W.D. Phillips, S.L. Rolston, C.I. Westbrook, P.L. Gould: Laser modification of ultracold collisions: Experiment. Phys. Rev. Lett. 67, 2139 (1991)ADSCrossRefGoogle Scholar
  754. J. Weiner: Advances in ultracold collisions: Experimentation and theory. Adv. At. Mol. Opt. Phys. 35, 45 (1995)ADSCrossRefGoogle Scholar
  755. [9.453]
    J.D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J.M. Doyle: Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148 (1998)ADSCrossRefGoogle Scholar
  756. H.L. Bethlem, G. Berden, G. Meijer: Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558 (1999)ADSCrossRefGoogle Scholar
  757. [9.454]
    S.N. Atutov, S.P. Podjachev, A.M. Shalagin: Diffusion pulling of Na vapor into the light beam. Opt. Commun. 57, 236 (1986)ADSCrossRefGoogle Scholar
  758. [9.455]
    Kh. Gel’mukhanov, A.M. Shalagin: Sov. Phys.-JETP 51, 839 (1980)ADSGoogle Scholar
  759. E.R. Eliel: Light-induced drift. Adv. At. Mol. Opt. Phys. 31, 199 (1993)Google Scholar
  760. H.G.C. Werij, J.P. Woerdman, J.J.M. Beenakker, I. Kuscer: Demonstration of a semipermeable optical piston. Phys. Rev. Lett. 52, 2237 (1984)ADSCrossRefGoogle Scholar
  761. G. Nienhuis: Theory of light-induced drift and the optical piston. Phys. Rev. A 31, 1636 (1985)ADSCrossRefGoogle Scholar
  762. [9.456]
    S.N. Bose: Z. Phys. 26, 178 (1924)ADSzbMATHCrossRefGoogle Scholar
  763. A. Einstein: Sitzungsber. Preuss. Akad. Wiss. 1924, 261 (1924); ibid. 1925, 3 (1925Google Scholar
  764. [9.457]
    H.F. Hess: Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476 (1986)ADSCrossRefGoogle Scholar
  765. H.F. Hess, G.P. Kochanski, J.M. Doyle, N. Masuhara, D. Kleppner, T.J. Greytak: Magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev. Lett. 59, 672 (1987)ADSCrossRefGoogle Scholar
  766. N. Masuhara, J.M. Doyle, J.C. Sandberg, D. Kleppner, T.J. Greytak, H.F. Hess, G.P. Kochanski: Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935 (1988)ADSCrossRefGoogle Scholar
  767. [9.458]
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  768. [9.459]
    K.B. Davies, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.N. Kurn, W. Ketterle: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  769. [9.460]
    Physics Today (August 1995) p. 17Google Scholar
  770. [9.461]
    M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle: Observation of interference between two Bose condensates. Science 275, 637 (1997)CrossRefGoogle Scholar
  771. [9.462]
    M.-O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G. Townsend, W. Ketterle: Output coupler for Bose-Einstein condensed atoms. Phys. Rev. Lett. 78, 582 (1997)ADSCrossRefGoogle Scholar
  772. [9.463]
    I. Bloch, T.W. Hänsch, T. Esslinger: Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008 (1999)ADSCrossRefGoogle Scholar
  773. W. Hagley, L. Deng, M. Kozuma, J. Wen, M.A. Edwards, K. Helmersson, S.L. Rolston, W.D. Phillips: A well-collimated quasi-continuous atom laser. Science 283, 1706 (1999)ADSCrossRefGoogle Scholar
  774. S. Inouye, T. Pfau, S. Gupta, A.P. Chikkatur, A. Gorlitz, D.E. Pritchard, W. Ketterle: Phase-coherent amplification of atomic matter waves. Nature 402, 641 (1999)ADSCrossRefGoogle Scholar
  775. A.P. Chikkatur, Y. Shin, A.E. Leanhardt, D. Kielpinski, E. Tsikata, T.L. Gustavson, D.E. Pritchard, W. Ketterle: A continuous source of Bose-Einstein condensed atoms. Science 296, 2193–2195 (2002)ADSCrossRefGoogle Scholar
  776. [9.464]
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet: Evidence for Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995)ADSCrossRefGoogle Scholar
  777. C.C. Bradley, C.A. Sackett, R.G. Hulet: Bose-Einstein condensation of lithium: Observation of a limited condensate number. Phys. Rev. Lett. 78, 985 (1997)ADSCrossRefGoogle Scholar
  778. A. Griffin, D.W. Snoke, S. Stringari (eds.): Bose-Einstein condensation (Cambridge University Press, Cambridge 1995)Google Scholar
  779. Ch. Towsend, W. Ketterle, S. Stringari: Bose-Einstein condensation. Physics World (March 1997) p. 29Google Scholar
  780. W. Ketterle, M.R. Andrews, K.B. Davies, D.S. Durfee, D.M. Korn, M.-O. Mewes, N.J. van Druten: Bose-Einstein condensation of ultra-cold atomic gases. Phys. Scr. T66, 31 (1996)ADSCrossRefGoogle Scholar
  781. K. Burnett: Bose-Einstein condensation with evaporatively cooled atoms. Contemp. Phys. 37, 1 (1996)MathSciNetADSCrossRefGoogle Scholar
  782. W. Ketterle, N.J. Druten: Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)ADSCrossRefGoogle Scholar
  783. W. Ketterle, N.J. van Druten: ‘Evaporative cooling.’ In: Progress in Atomic, Molecular, and Optical Physics, Vol.37, ed. by B. Bederson, H. Walther (Academic Press, San Diego 1996) p. 181Google Scholar
  784. E.A. Cornell, C.E. Wieman: The Bose-Einstein condensate. Sci. Am. 278(3), 26 (1998)CrossRefGoogle Scholar
  785. A.S. Parkins, D.F. Walls: The physics of trapped dilute-gas Bose-Einstein condensates. Phys. Rep. 303, 1 (1998)ADSCrossRefGoogle Scholar
  786. B.P. Anderson, M.A. Kasevich: Science 282, 1686 (1998)ADSCrossRefGoogle Scholar
  787. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell. Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  788. C. Raman, M. Köhl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle: Phys. Rev. Lett. 83, 2502 (1999)ADSCrossRefGoogle Scholar
  789. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman: Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795 (2000)ADSCrossRefGoogle Scholar
  790. E.A. Cornell, C.E. Wieman: Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875 (2002)ADSCrossRefGoogle Scholar
  791. W. Ketterle: Nobel Lecture: When atoms behave like waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131 (2002)ADSCrossRefGoogle Scholar
  792. G. Modugno, G. Ferrari, G. Roati, R. Brecha, A. Simoni, M. Inguscio: Bose-Einstein condensation of potassium by sympathetic cooling. Science 294, 1320 (2001)ADSCrossRefGoogle Scholar
  793. W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel: Bose-Einstein condensation on a microelectronic chip. Nature 413, 498 (2001)ADSCrossRefGoogle Scholar
  794. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  795. M. Greiner, O. Mandel, T.W. Hänsch and I. Bloch: Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature 419, 51 (2002)ADSCrossRefGoogle Scholar
  796. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle: Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476 (2001)ADSCrossRefGoogle Scholar
  797. E.A. Donley, N.R. Claussen, S.L. Cornish, J.L. Roberts, E.A. Cornell, C.E. Wieman: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295 (2001)ADSCrossRefGoogle Scholar
  798. E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman: Atommolecule coherence in a Bose-Einstein condensate. Nature 417, 529 (2002)ADSCrossRefGoogle Scholar
  799. K. Dieckmann, C.A. Stan, S. Gupta, Z. Hadzibabic, C. Schunck, W. Ketterle: Decay of ultracold fermionic lithium gas near a Feshbach resonance. Phys. Rev. Lett. 89, 203 201 (2002)CrossRefGoogle Scholar
  800. A.E. Leanhardt, A.P. Chikkatur, D. Kielpinski, Y. Shin, T.L. Gustavson, W. Ketterle, D.E. Pritchard: Propagation of Bose-Einstein condensates in a magnetic waveguide. Phys. Rev. Lett. 89, 040401 (2002)ADSCrossRefGoogle Scholar
  801. T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. Görlitz, S. Gupta, D.E. Pritchard, W. Ketterle: Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett. 88, 020401 (2002)ADSCrossRefGoogle Scholar
  802. J.R. Anglin, W. Ketterle: Bose-Einstein condensation of atomic gases. Nature 416, 211 (2002)ADSCrossRefGoogle Scholar
  803. P. Engels, I. Coddington, P.C. Haljan, V. Schweikhard, E.A. Cornell: Observation of long-lived vortex aggregates in rapidly rotating Bose-Einstein condensates. Phys. Rev. Lett. 90, 170 405/1–4 (2003)CrossRefGoogle Scholar
  804. A.E. Leanhardt, Y. Shin, A.P. Chikkatur, D. Kielpinski, W. Ketterle, D.E. Pritchard: Bose-Einstein condensates near a microfabricated surface. Phys. Rev. Lett. 90, 100 404 (2003)Google Scholar
  805. [9.465]
    L. Deng, E.W. Hagley, J. Wen, M. Trippenbach, Y. Band, P.S. Julienne, J.E. Simsarian, K. Helmersson, S.L. Rolston, W.D. Phillips: Four-wave mixing with matter waves. Nature 398, 218 (1999)ADSCrossRefGoogle Scholar
  806. S.L. Rolston: Linear and non-linear atom optics with Bose-Einstein Condensates. In: [9.36] p. 120Google Scholar
  807. [9.466]
    W.C. Stwalley, L.H. Nosanow: Possible ”new” quantum systems. Phys. Rev. Lett. 36, 910 (1976)ADSCrossRefGoogle Scholar
  808. I.F. Silvera, J.T.M. Walraven: Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett. 44, 164 (1980)ADSCrossRefGoogle Scholar
  809. D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis, S.C. Moss, D. Kleppner, T.J. Greytak: Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811 (1999)ADSCrossRefGoogle Scholar
  810. [9.467]
    B. DeMarco, D.S. Jin: Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703 (1999)CrossRefGoogle Scholar
  811. G. Modugno. G. Roati, F. Riboli, F. Ferlaino, R. Brecha, M. Inguscio: Collapse of a degenerate Fermi gas, Science 297, 2240 (2002)ADSCrossRefGoogle Scholar
  812. S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, W. Ketterle: Rf spectroscopy of ultracold fermions. Science 300, 1723 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sune Svanberg
    • 1
  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations