Part of the Advanced Texts in Physics book series (ADTP)


In this chapter we will discuss the general principles of lasers. Since we mainly consider spectroscopic aspects in this book, we will focus on tunable lasers for laser spectroscopy in the frequency (wavelength) domain and short-pulse lasers for spectroscopy in the time domain. Short-pulse lasers are also required for the generation of ultra-intense laser pulses, the use of which has opened up a new field of spectroscopy: ultra-intense laser/matter interaction. In addition to the many types of spectroscopically interesting lasers, we will also cover a number of the fixed-frequency lasers that are used to pump them. For more detailed accounts of the field of laser physics, frequently also referred to as quantum electronics, we refer the reader to standard textbooks [8.18.13].


Stimulate Raman Scattering Saturable Absorber Population Inversion Tunable Laser Stimulate Brillouin Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [8.1]
    A. Yariv: Introduction to Quantum Electronics, 2nd. edn. (Holt, Rinehart and Winston, New York 1976)Google Scholar
  2. [8.2]
    A. Yariv: Quantum Electronics, 3rd edn. (Wiley, New York 1989)Google Scholar
  3. [8.3]
    M. Sargent III, M.O. Scully, W.E. Lamb Jr.: Laser Physics (Addison Wesley, London 1974)Google Scholar
  4. [8.4]
    O. Svelto: Principles of Lasers, 4th edn. (Plenum, New York 1998)Google Scholar
  5. [8.5]
    A.E. Siegman: Lasers (University Science Books, Mill Valley, CA 1986)Google Scholar
  6. [8.6]
    H. Haken: Laser Theory (Springer, Berlin, Heidelberg 1983)Google Scholar
  7. [8.7]
    K. Shimoda: Introduction to Laser Physics, 2nd edn. Springer Ser. Opt. Sci., Vol. 44 (Springer, Berlin, Heidelberg 1984)Google Scholar
  8. [8.8]
    M. Young: Optics and Lasers, 3rd edn. Springer Ser. Opt. Sci., Vol.5 (Springer, Berlin, Heidelberg 1986)Google Scholar
  9. [8.9]
    M.J. Weber (ed.): CRC Handbook of Laser Science and Technology, Vols. 1 and 2 (CRC Press, Boca Raton, FL 1982)Google Scholar
  10. [8.10] Laser Handbook, Vols. 1, 2, ed. by F.T. Arecchi, E.O. Schulz-Dubois (1972); Vol. 3, ed. by M.L. Stitch (1979); Vol. 4, ed. by M.L. Stitch, M. Bass (1985); Vol. 5, ed. by M. Bass, M.L. Stitch (1986) (North-Holland, Amsterdam)Google Scholar
  11. [8.11]
    P. Das: Lasers and Optical Engineering (Springer, Berlin, Heidelberg 1991)Google Scholar
  12. [8.12]
    W.T. Silfvast: Laser Fundamentals (Cambridge University Press, Cambridge 1996)Google Scholar
  13. [8.13]
    Ch.C. Davis: Lasers and Electro-Optics (Cambridge University Press, Cambridge 1996)Google Scholar
  14. [8.14]
    T.H. Maiman: Stimulated optical radiation in ruby. Nature 187, 493 (1960)ADSGoogle Scholar
  15. [8.15]
    A.L. Schawlow, C.H. Townes: Infrared and optical masers. Phys. Rev. 112, 1940 (1958)ADSGoogle Scholar
  16. [8.16]
    J.P. Gordon, H.J. Zeiger, Ch.H. Townes: The maser — new type of microwave amplifier, frequency standard and spectrometer. Phys. Rev. 99, 1264 (1955)ADSGoogle Scholar
  17. [8.17]
    C.H. Townes: In: Nobel Lectures in Physics, Vol.4 (Elsevier, Amsterdam 1972)Google Scholar
  18. [8.18]
    N.G. Basov: In: Nobel Lectures in Physics, Vol.4 (Elsevier, Amsterdam 1972)Google Scholar
  19. [8.19]
    A.M. Prokhorov: In: Nobel Lectures in Physics, Vol.4 (Elsevier, Amsterdam 1972)Google Scholar
  20. [8.20]
    D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.H. Ceglio, A.U. Hazi, H. Medicki, B.J. MacGowan, J.E. Trebes, B.L. Witten, E.M. Campbell, C.W. Hatcher, A.H. Hawryluk, R.L. Kaufmann, L.D. Pleasance, G. Rambach, J.H. Scoefield, G. Stone, T.A. Weaver: Demonstration of a soft X-ray amplifier. Phys. Rev. Lett. 54, 110 (1985); J. Opt. Soc. Am. 4, 575 (1987ADSGoogle Scholar
  21. [8.21]
    D.L. Matthews, R.R. Freeman (eds.): The generation of coherent XUV and soft X-ray radiation. J. Opt. Soc. Am. B 4, 529 (1987) (feature issue) D.L. Matthews, M.D. Rosen: Soft X-ray lasers. Sci. Am. 256(6), 60 (1988Google Scholar
  22. [8.22]
    G. Tallents (ed.): X-Ray Lasers, IOP Conf. Ser. 116 (Institute of Physics Publ., Bristol 1990)Google Scholar
  23. [8.23]
    E.E. Fill (ed.): X-Ray Lasers 1992, IOP Conf. Ser. 125 (Institute of Physics Publ., Bristol 1992)Google Scholar
  24. [8.24]
    D.C. Eder, D.L. Matthews (eds.): X-Ray Lasers 1994, AIP Conf. Proc. Vol. 332 (AIP Press, New York 1994)Google Scholar
  25. [8.25]
    S. Svanberg, C.-G. Wahlström (eds.): X-Ray Lasers 1996, IOP Conf. Ser. Vol. 151 (Institute of Physics Publ., Bristol 1996)Google Scholar
  26. [8.26]
    Y. Kato, H. Takuma, H. Daido (eds.): X-Ray Lasers 1998, IOP Conf. Ser. 159 (Institute of Physics Publ., Bristol 1999)Google Scholar
  27. [8.27]
    H. Kogelnik, T. Li: Laser beams and resonators. Proc. IEEE 54, 1312 (1966)Google Scholar
  28. H.K.V. Lotsch: The confocal resonator system. Optik 30, 1, 181, 217, 563 (1969/70)Google Scholar
  29. [8.28]
    N. Hodgson, H. Weber: Optical Resonators (Springer, Berlin, Heidelberg 1997)Google Scholar
  30. [8.29]
    G.D. Boyd, J.P. Gordon: Bell Syst. Tech. J. 40, 489 (1961)Google Scholar
  31. G.D. Boyd, H. Kogelnik: Bell Syst. Tech. J. 41, 1347 (1962)Google Scholar
  32. [8.30]
    R.W. Hellwarth: ‘Control of fluorescent pulsations.’ In: Advances in Quantum Electronics, ed. by J.R. Singer (Columbia University Press, New York 1961) p. 334Google Scholar
  33. F.J. McClung, R.W. Hellwarth: J. Appl. Phys. 33, 828 (1962)ADSGoogle Scholar
  34. [8.31]
    A. Szabo, R.A. Stein: Therory of laser giant pulsing by a saturable absorber. J. Appl. Phys. 36, 1562 (1965)ADSGoogle Scholar
  35. [8.32]
    S. Svanberg: Lasers as probes for air and sea. Contemp. Phys. 21, 541 (1980)ADSGoogle Scholar
  36. [8.33]
    W. Koechner: Solid-State Laser Engineering, 2nd edn. Springer Ser. Opt. Sci., Vol. 1 (Springer, Berlin, Heidelberg 1988)Google Scholar
  37. [8.34]
    D.C. Brown: High-Peak-Power Nd:Glass Laser Systems, Springer Ser. Opt. Sci., Vol.25 (Springer, Berlin, Heidelberg 1981)Google Scholar
  38. [8.35]
    A.A. Kaminskii: Laser Crystals, 2nd edn. Springer Ser. Opt. Sci., Vol. 14 (Springer, Berlin, Heidelberg 1990)Google Scholar
  39. [8.36]
    D.N. Nikogosyan: Properties of Optical and Laser Related Materials: A Handbook (Wiley, New York 1997)Google Scholar
  40. [8.37]
    N. Hodgeson, R. Wallenstein (eds.): Solid State Lasers — New Developments and Applications (Plenum, New York 1993)Google Scholar
  41. [8.38]
    A.F. Gibson: Lasers for compression and fusion. Contemp. Phys. 23, 285 (1982)ADSGoogle Scholar
  42. [8.39]
    R.S. Craxton, R.L. McCrory, J.M. Sources: Progress in laser fusion. Sci. Am. 255(2), 60 (1986)Google Scholar
  43. [8.40]
    N.G. Basov, Yu.A. Zakharenkov, N.N. Zorev, G.V. Sklizkov, A.A. Rupasov, A.S. Shikanov: Heating and Compression of Thermonuclear Targets by Laser Beams (Cambridge University Press, Cambridge 1986)Google Scholar
  44. [8.41]
    J.E. Eggleston, T.J. Kane, K. Kuhn, J. Unternahrer, R.L. Byer: The slab geometry laser. IEEE J. Quantum Electron. QE-20, 289 (1984)ADSGoogle Scholar
  45. [8.42]
    D. Findlay, D.W. Goodwin: ‘The neodymium in YAG laser.’ In: Advances in Quantum Electronics, Vol. 1, ed. by D.W. Goodwin (Academic Press, London 1970)Google Scholar
  46. [8.43]
    B. Zhou, T.J. Kane, G.J. Dixon, R.L. Byer: Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Opt. Lett. 10, 62 (1985)Google Scholar
  47. A. Owyoung, G.R. Hadley, P. Esherick: Gain switching of a monolithic single-frequency laser-diode-excited Nd:YAG laser. Opt. Lett. 10, 484 (1985)ADSGoogle Scholar
  48. W.R. Trutna, D.K. Donald, M. Nazarathy: Unidirectional diode-laserpumped Nd:YAG ring laser with a small magnetic field. Opt. Lett. 12, 248 (1987)ADSGoogle Scholar
  49. [8.44]
    G.P.A. Malcolm, A.I. Ferguson: Diode-pumped solid-state lasers. Contemp. Phys. 32, 305 (1991)ADSGoogle Scholar
  50. [8.45]
    R.L. Byer, G.J. Dixon, T.J. Kane, W. Kozlovsky, B. Zhou: ‘Frequencydoubled, laser diode pumped, miniature Nd:YAG oscillator — progress toward an all-solid state sub-kilohertz linewidth coherent source.’ In: Laser Spectroscopy VII, ed. by T.W. Hänsch, Y.R. Shen, Springer Ser. Opt. Sci., Vol. 49 (Springer, Berlin, Heidelberg 1985) p. 350Google Scholar
  51. [8.46]
    D. Botez, D.R. Scifres (eds.): Diode Laser Arrays (Cambridge University Press, Cambridge 1994)Google Scholar
  52. [8.47]
    N.W. Carlson: Monolithic Diode-Laser Arrays (Springer, Berlin, Heidelberg 1994)Google Scholar
  53. [8.48]
    N.W. Carlson: Diode Laser Arrays (Springer Verlag, Heidelberg 1998)Google Scholar
  54. [8.49]
    C.K. Rhodes (ed.): Excimer Lasers, 2nd edn. Topics Appl. Phys., Vol.30 (Springer, Berlin, Heidelberg 1984)Google Scholar
  55. [8.50]
    M.H.R. Hutchinson: Excimers and excimer lasers. Appl. Phys. 21, 15 (1980)Google Scholar
  56. [8.51]
    C.K. Rhodes, H. Egger, H. Plummer (eds.): Excimer Lasers, Conf. Proc. Series No. 100 (Am. Inst. Phys., New York 1983)Google Scholar
  57. [8.52]
    Ch.E. Little: Metal Vapour Lasers (Wiley, New York 1998)Google Scholar
  58. I.G. Ivanov, E.L. Latush, M.F. Sem: Metal Vapour Ion Lasers (Wiley, New York 1996)Google Scholar
  59. I. Ivanov: Metal Vapour Ion Lasers: Kinetic Processes and Gas Discharges (Wiley, New York 1996)Google Scholar
  60. [8.53]
    A. Javan, W.R. Bennet Jr., D.R. Herriott: Population inversion and continous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett. 6, 106 (1961)ADSGoogle Scholar
  61. [8.54]
    W.T. Silfvast, J.J. Macklin, O.R. Wood II: High-gain inner-shell photoionization laser in Cd vapor pumped by soft X-ray radiation from a laser produced plasma source. Opt. Lett. 8, 551 (1983)ADSGoogle Scholar
  62. W.T. Silfvast, O.R. Wood II: Photoionization lasers pumped by broadband soft-X-ray flux from laser-produced plasmas. J. Opt. Soc. Am. 4, 609 (1987)ADSGoogle Scholar
  63. [8.55]
    R.A. Lacy, A.C. Nilsson, R.L. Byer, W.T. Silfvast, O.R. Wood II, S. Svanberg: Photoionization-pumped gain at 185 nm in a laser-ablated indium plasma. J. Opt. Soc. Am. B 6, 1209 (1989)ADSGoogle Scholar
  64. [8.56]
    H.C. Kapteyn, R.W. Lee, R.W. Falcone: Observation of a short-wavelength laser pumped by Auger decay. Phys. Rev. Lett. 57, 2939 (1986)ADSGoogle Scholar
  65. M.H. Sher, J.J. Macklin, J.F. Young, S.E. Harris: Saturation of the Xe III 109-nm laser using traveling-wave laser-produced-plasma excitation. Opt. Lett. 12, 891 (1987)ADSGoogle Scholar
  66. [8.57]
    C.C. Davis, T.A. King: ‘Gaseous ion lasers.’ In: Advances in Quantum Electronics, ed. by D.W. Goodwin (Academic Press, London 1975)Google Scholar
  67. [8.58]
    S.D. Smith, R.B. Dennis, R.G. Harrison: The spin-flip Raman laser. Prog. Quantum Electron. 5, 205 (1977)ADSGoogle Scholar
  68. [8.59]
    M.J. Colles, C.R. Pigeon: Tunable lasers. Rep. Prog. Phys. 38, 329 (1975)ADSGoogle Scholar
  69. [8.60]
    A. Mooradian: Tunable infrared lasers. Rep. Prog. Phys. 42, 1533 (1979)ADSGoogle Scholar
  70. [8.61]
    J. White, L. Mollenauer (eds.): Tunable Lasers, Topics Appl. Phys., Vol. 59 (Springer, Berlin, Heidelberg 1986)Google Scholar
  71. [8.62]
    F.J. Duarte: Tunable Lasers Handbook (Academic Press, New York 1996)Google Scholar
  72. [8.63]
    P.P. Sorokin, J.R. Lankard: Stimulated emission observed from an organic dye, chloro-aluminium phthalocyanine. IBM J. Res. Dev. 10, 162 (1966)Google Scholar
  73. [8.64]
    F.P. Schäfer, W. Schmidt, J. Volze: Organic dye solution laser. Appl. Phys. Lett. 9, 306 (1966)ADSGoogle Scholar
  74. [8.65]
    B.H. Soffer, B.B. McFarland: Continously tunable narrow-band organic dye laser. Appl. Phys. Lett. 10, 266 (1967)ADSGoogle Scholar
  75. [8.66]
    T.W. Hänsch: Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Opt. 11, 895 (1972)ADSGoogle Scholar
  76. [8.67]
    M.G. Littman, H.J. Metcalf: Spectrally narrow pulsed dye laser without beam expander. Appl. Opt. 25, 375 (1978)Google Scholar
  77. I. Shoshan, U. Oppenheim: The use of a diffraction grating as a beam expander in a dye laser cavity. Opt. Commun. 25, 375 (1978)ADSGoogle Scholar
  78. M.G. Littman: Single-mode operation of grazing incidence pulsed dye laser. Opt. Lett. 3, 138 (1978) H.S. Saikan: Nitrogen laser pumped single mode dye laser. Appl. Phys. 17, 41 (1978ADSGoogle Scholar
  79. M.G. Littman: Single-mode pulsed tunable dye laser. Appl. Opt. 23, 4465 (1984)ADSGoogle Scholar
  80. [8.68]
    R. Wallenstein, T.W. Hänsch: Powerful dye laser oscillator-amplifier system for high-resolution spectroscopy. Opt. Commun. 14, 353 (1975)ADSGoogle Scholar
  81. R.
    Wallenstein, H. Zacharias: High-power narrowband pulsed dye laser oscillator-amplifier system. Opt. Commun. 32, 429 (1980)ADSGoogle Scholar
  82. [8.69]
    T.F. Johnston: ‘Tunable dye lasers.’ In: Encyclopedia of Physical Science and Technology, Vol. 14 (Academic Press, New York 1987)Google Scholar
  83. T.F. Johnston, R.H. Brady, W. Proffitt: Powerful single-frequency ring dye laser spanning the visible spectrum. Appl. Opt. 21, 2307 (1982)ADSGoogle Scholar
  84. [8.70]
    O.G. Peterson, S.A. Tuccio, B.B. Snavely: CW operation of an organic dye solution laser. Appl. Phys. Lett. 17, 245 (1970)ADSGoogle Scholar
  85. [8.71]
    J. Evans: The birefringent filter. J. Opt. Soc. Am. 39, 229 (1949)ADSGoogle Scholar
  86. [8.72]
    F.P. Schäfer (ed.): Dye Lasers, 3rd edn., Topics Appl. Phys., Vol. 1 (Springer, Berlin, Heidelberg 1990)Google Scholar
  87. [8.73]
    M. Stuke (ed.): Dye Lasers: 25 Years (Springer Verlag, Berlin, Heidelberg 1992)Google Scholar
  88. [8.74]
    M. Maeda: Laser Dyes (Academic Press, Orlando 1984)Google Scholar
  89. K. Brackman: Lambdachrome Laser Dyes (Lambda Physik, Göttingen 1986)Google Scholar
  90. [8.75]
    L.F. Mollenauer: ‘Tunable lasers.’ In: [8.61], Chap.6Google Scholar
  91. L.F. Mollenauer: In: [8.10], Vol.4, Chap. 2Google Scholar
  92. [8.76]
    P.F. Moulton: Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125 (1986)ADSGoogle Scholar
  93. P. Albers, E. Stark, G. Huber: Continous-wave laser operation and quantum efficiency of titanium-doped sapphire. J. Opt. Soc. Am. B 3, 134 (1986)ADSGoogle Scholar
  94. [8.77]
    Courtesy: D.T. Reid and W. Sibbett, University of St. AndrewsGoogle Scholar
  95. [8.78]
    R.L. Byer (ed.): Special issue on tunable solid state lasers. IEEE J. Quantum Electron. QE-21, 1567–1636 (1985)Google Scholar
  96. B. Henderson, G.F. Imbusch: Optical processes in tunable transitionmetal-ion lasers. Contemp. Phys. 29, 235 (1988)ADSGoogle Scholar
  97. [8.79]
    P. Hammerling, A.B. Budgor, A. Pinto (eds.): Tunable Solid-State Lasers, Springer Ser. Opt. Sci., Vol.47 (Springer, Berlin, Heidelberg 1985)Google Scholar
  98. A.B. Budgor, L. Esterowitz, L.G. DeShazer (eds.): Tunable Solid-State Lasers II, Springer Ser. Opt. Sci., Vol. 52 (Springer, Berlin, Heidelberg 1986)Google Scholar
  99. [8.80]
    D.C. Tyle: ‘Carbon dioxide lasers.’ In: Advances in Quantum Electronics, Vol. 1, ed. by D.W. Goodwin (Academic Press, New York 1970)Google Scholar
  100. [8.81]
    W.J. Witteman: The CO 2 Laser, Springer Ser. Opt. Sci., Vol. 53 (Springer, Berlin, Heidelberg 1987)Google Scholar
  101. [8.82]
    F. O’Neill, W.T. Whitney: A high-power tunable laser for the 9-12.5 μm spectral range. Appl. Phys. Lett. 31, 271 (1977)Google Scholar
  102. [8.83]
    R. Beck, W. Englisch, K. Gürs: Table of Laser Lines in Gases and Vapors, 3rd edn., Springer Ser. Opt. Sci., Vol. 2 (Springer, Berlin, Heidelberg 1978)Google Scholar
  103. [8.84]
    M.J. Weber: Handbook of Laser Wavelengths (CRC Press, Boca Raton 1999)Google Scholar
  104. [8.85]
    N.G. Basov, O.N. Krokhin, Y.M. Popov: Production of negative temperature states in p-n junctions of degenerate semiconductors. JETP 13, 1320 (1961)Google Scholar
  105. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.S. Soltys, E.O. Carlson: Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366 (1962)ADSGoogle Scholar
  106. M.I. Nathan, W.P. Dumke, G. Burns, F.D. Hill Jr., G.J. Lasher: Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1, 62 (1962)ADSGoogle Scholar
  107. T.M. Quist, R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter, H.J. Zeiger: Semiconductor maser of GaAs. Appl. Phys. Lett. 1, 91 (1962)ADSGoogle Scholar
  108. [8.86]
    R.M. Measures: Laser Remote Sensing: Fundamentals and Applications (Wiley, New York 1984)Google Scholar
  109. [8.87]
    Zh.I. Alferov, R.F. Kazarinov: Semiconductor laser with electric pumping. Sov. patent appl. 950 840 (1963)Google Scholar
  110. Zh.I. Alferov et al.: AlAs-GaAs heterojunction lasers with a low roomtemperature threshold. Sov. Phys. Semicond. 3, 1107 (1969)Google Scholar
  111. [8.88]
    H. Kroemer: A proposed class of heterojunction injection lasers. Proc. IEEE 51, 1782 (1963)Google Scholar
  112. H.G. Grimmeiss (ed.): Heterostructures in Semiconductors. Phys. Scr. T68, Nr. 4 (1996)Google Scholar
  113. [8.89]
    J. Hecht: Laser Focus World, May 1992Google Scholar
  114. [8.90]
    Courtesy: Fiberguide Industries, Stirling, NJ, USAGoogle Scholar
  115. [8.91]
    E. Desurvire: Erbium-Doped Fiber Amplifiers (Wiley, New York 1994)Google Scholar
  116. [8.92]
    N. Holonyak Jr., S.F. Bevacqua: Coherent visible light emission from Ga(As1-xPx) junctions. Appl. Phys. Lett. 1, 82 (1982)ADSGoogle Scholar
  117. [8.93]
    S. Nakamura, G. Fasol: The Blue Laser Diode (Springer, Heidelberg 1997)Google Scholar
  118. [8.94]
    K. Iga, F. Koyama, S. Kinoshita: Surface emitting semiconductor lasers. IEEE J. Quantum Electron. QE-24, 1845 (1988)ADSGoogle Scholar
  119. M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, K.J. Ebeling: Efficient single-mode oxide-confined GaAs VCSELs emitting in the 850 nm wavelength regime. IEEE Photonics Technol. Lett. 9, 1304 (1997)ADSGoogle Scholar
  120. [8.95]
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho: Quantum cascade laser. Science 264, 553 (1994)ADSGoogle Scholar
  121. F. Capasso, J. Faist, C. Sirtori, A.Y. Cho: Infrared (4-11μm) quantum cascade lasers. Solid State Commun. 102, 231 (1997)ADSGoogle Scholar
  122. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, F. Capasso, C. Gmachl, D.L. Sivco, A.Y. Cho: Sensitive absorption spectroscopy using room temperature distributed-feedback quantum cascade lasers. Opt. Lett. 23, 219 (1998)ADSGoogle Scholar
  123. [8.96]
    H. Kressel, J.K. Butler: Semiconductor Lasers and Hetero junction LEDs (Academic Press, New York 1977)Google Scholar
  124. H.C. Lasey, M.B. Panish: Heterostructure Lasers I and II (Academic Press, New York 1978)Google Scholar
  125. [8.97]
    G.P. Agarwal, N.K. Dutta: Semiconductor Lasers (Van Nostrand Reinhold, New York 1993)Google Scholar
  126. [8.98]
    G.P. Agarwal (ed.): Semiconductor Lasers (AIP Press, Melville, NY 1995)Google Scholar
  127. [8.99]
    W.W. Chow, S.W. Koch, M. Sargent III: Semiconductor Laser Physics (Springer, Berlin, Heidelberg 1994)Google Scholar
  128. [8.100]
    J.C. Camparo: The diode laser in atomic physics. Contemp. Phys. 26, 443 (1985)ADSGoogle Scholar
  129. [8.101]
    E.D. Hinkley, K.W. Nill, F.A. Blum: ‘Infrared spectroscopy with tunable lasers.’ In: Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther, Topics Appl. Phys., Vol.2 (Springer, Berlin, Heidelberg 1976)Google Scholar
  130. [8.102]
    C.E. Wieman, L. Hollberg: Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1 (1991)Google Scholar
  131. K.B. MacAdam, A. Steinbach, C. Wieman: A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 60, 1098 (1992)ADSGoogle Scholar
  132. L. Ricci, M. Weidemüller, T. Esslinger, A. Herrerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch: A compact grating-stabilized diode laser system for atomic physics. Opt. Commun. 117, 541 (1995)ADSGoogle Scholar
  133. U. Gustafsson, J. Alnis, S. Svanberg: Atomic spectroscopy with violet laser diodes. Am. J. Phys. 68, 660 (2000)ADSGoogle Scholar
  134. [8.103]
    H.I. Schiff, G.I. Macay, J. Bechara: ‘The use of tunable diode laser absorption spectroscopy for atmospheric measurements.’ In: Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist, Chemical Physics Series Vol. 127 (John Wiley, New York 1994) p. 239Google Scholar
  135. P. Werle: Spectroscopic trace gas analysis using semiconductor diode lasers. Spectrochim. Acta A 52, 805 (1996)ADSGoogle Scholar
  136. P. Ljung, O. Axner: Measurements of rubidium in standard reference samples by wavelength-modulation diode laser absorption spectrometry in a graphite furnace. Spectrochim. Acta B 52, 305 (1997)ADSGoogle Scholar
  137. A. Zybin, C. Schnürer-Patschan, M.A. Bolshov, K. Niemax: Elemental analysis by diode laser spectroscopy. Trends Anal. Chem. 17, 513 (1998)Google Scholar
  138. T. Imasaka: Analytical molecular spectroscopy with diode lasers. Spectrochim. Acta Rev. 15, 329 (1993)Google Scholar
  139. A.W. Mantz: A review of spectroscopic applications of tunable semiconductor lasers. Spectrochim. Acta A 51, 221 (1995)Google Scholar
  140. A.W. Mantz: A review of the applicability of tunable diode-laser spectroscopy at high sensitivity. Microchem. J. 50, 351 (1994)Google Scholar
  141. [8.104]
    T.F. Johnston Jr., T.J. Johnston: ‘Angle matched doubling in LiIO3 intracavity to a ring dye laser.’ In: Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol.40 (Springer, Berlin, Heidelberg 1983) p. 417Google Scholar
  142. [8.105]
    B. Couillaud, L.A. Bloomfield, T.W. Hänsch: Generation of continouswave radiation near 243 nm by sum frequency mixing in an external ring cavity. Opt. Lett. 8, 259 (1983)ADSGoogle Scholar
  143. [8.106]
    A.S. Pine: ‘IR Spectroscopy via difference-frequency generation.’ In: Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten, Springer Ser. Opt. Ser., Vol. 7 (Springer, Berlin, Heidelberg 1977) p. 376Google Scholar
  144. [8.107]
    S. Singe: In Handbook of Laser Science and Technology, Vol. 3, ed. by M.J. Weber (CRC Press, Boca Raton, FL 1986)Google Scholar
  145. [8.108]
    D.S. Chemla, J. Zyss (eds.): Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1, 2 (Academic Press, Orlando 1987)Google Scholar
  146. [8.109]
    R.C. Eckardt, Y.X. Fan, M.M. Fejer, W.J. Kozlovsky, C.N. Nabors, R.L. Byer, R.K. Route, R.S. Feigelson: ‘Recent developments in nonlinear optical materials.’ In: Laser Spectroscopy VIII, ed. by W. Persson, S. Svanberg, Springer Ser. Opt. Sci., Vol. 55 (Springer, Berlin, Heidelberg 1987) p. 426Google Scholar
  147. [8.110]
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan: Handbook of Nonlinear Optical Crystals, Springer Ser. Opt. Sci., Vol.64 (Springer, Berlin, Heidelberg 1991)Google Scholar
  148. [8.111]
    J. Webjörn, F. Laurell, G. Arvidsson: Blue light generated by frequencydoubling of laser diode light in a lithium niobate channel waveguide. IEEE Photonics Technol. Lett. 1, 316 (1989)ADSGoogle Scholar
  149. [8.112]
    U. Simon, S. Waltman, I. Loa, L. Hollberg, F. Tittel: J. Opt. Soc. Am. B 12, 323 (1995)ADSGoogle Scholar
  150. [8.113]
    M. Yamada, N. Nata, M. Saitoh, K. Watanabe: First-order quasi-phase matched LiNbO3 waveguide. Appl. Phys. Lett. 62, 435 (1993)ADSGoogle Scholar
  151. [8.114]
    S.E. Harris: Tunable optical parametric oscillators. Proc. IEEE 57, 2096 (1969)Google Scholar
  152. [8.115]
    Y.X. Fan, R.L. Byer: Progress in optical parametric oscillators. SPIE Int. Soc. Opt. Eng. 461, 27 (1984)ADSGoogle Scholar
  153. [8.116]
    R. Zerne, J. Larsson, S. Svanberg: Determination of radiative lifetimes in the 3d 10 np 2 P sequence of neutral copper by time-resolved VUV laser spectroscopy. Phys. Rev. A 49, 128 (1994)ADSGoogle Scholar
  154. J. Larsson, R. Zerne, A. Persson, C.-G. Wahlström, S. Svanberg: Determination of radiative lifetimes in the 3snp 1 P 1 sequence of Mg I using time-resolved VUV spectroscopy. Z. Physik D 27, 329 (1993)ADSGoogle Scholar
  155. [8.117]
    R. Hilbig, G. Hilber, A. Lago, B. Wolff, R. Wallenstein: Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases. Comments At. Mol. Phys. 18, 157 (1986)Google Scholar
  156. R. Hilbig, G. Hilber, A. Timmermann, R. Wallenstein: ‘Generation of coherent tunable VUV radiation.’ In: Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol.40 (Springer, Heidelberg, Berlin 1983) p. 387Google Scholar
  157. G. Hilber, A. Lago, R. Wallenstein: ‘Generation and application of coherent tunable VUV radiation at 60 to 200 nm.’ In: Laser Spectroscopy VIII, ed. by W. Persson, S. Svanberg, Springer Ser. Opt. Sci., Vol. 55 (Springer, Berlin, Heidelberg 1987) p. 446Google Scholar
  158. [8.118]
    P.P. Sorokin, J.A. Armstrong, R.W. Dreyfus, R.T. Hodgeson, J.R. Lankard, L.H. Manganaro, J.J. Wynne: ‘Generation of vacuum ultraviolet radiation by non-linear mixing in atomic and ionic vapors.’ In: Laser Spectroscopy, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p.46Google Scholar
  159. J.F. Rentjes: Nonlinear Optical Parametric Processes in Liquids and Gases (Academic Press, New York 1984)Google Scholar
  160. W. Jamroz, B.P. Stoicheff: Generation of tunable coherent vacuumultraviolet radiation. Progress in Optics XX, Vol. 325 (North-Holland, Amsterdam 1983)Google Scholar
  161. [8.119]
    C.R. Vidal: Coherent VUV sources for high-resolution spectroscopy. Appl. Opt. 19, 3897 (1980)ADSGoogle Scholar
  162. [8.120]
    T.J. Mcllrath, R.R. Freeman (eds.): Laser Techniques for Extreme Ultraviolet Spectroscopy, Conf. Proc. Series, No. 90 (Am. Inst. Phys., New York 1982)Google Scholar
  163. [8.121]
    S.E. Harris, T.B. Lucatorto (eds.): Laser Techniques in the Extreme Ultraviolet, Conf. Proc. Series, No. 119 (Am. Inst. Phys., New York 1984)Google Scholar
  164. [8.122]
    D.T. Attwood, J. Bokor (eds.): Short Wavelength Coherent Radiation: Generation and Application, Conf. Proc. Series, No. 147 (Am. Inst. Phys., New York 1986)Google Scholar
  165. [8.123]
    R.W. Falcone, J. Kirz (eds.): Short Wavelength Coherent Radiation: Generation and Applications (Opt. Soc. Am., Washington, DC 1988)Google Scholar
  166. C. Yamanaka (ed.): Short-Wavelength Lasers, Springer Proc. Phys., Vol. 30 (Springer, Berlin, Heidelberg 1988)Google Scholar
  167. [8.124]
    S. Svanberg, A. L’Huillier, C.-G. Wahlström: Atomic physics using shortwavelength coherent radiation. Nucl. Instrum. Methods Phys. Res. A 398, 55 (1997)ADSGoogle Scholar
  168. S. Svanberg: High-power lasers and their applications. Adv. Quantum Chem. 30, 209 (1998)ADSGoogle Scholar
  169. U. Berzinsh, S. Svanberg: Atomic radiative lifetimes measured by pulsed laser spectroscopy in the UV/VUV spectral region. Adv. Quantum Chem. 30, 283 (1998)Google Scholar
  170. [8.125]
    B. Ya Zeldovich, V.I. Popovichev, V.V. Ragulsky, F.S. Faizullov: Connection between the wavefronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering. ZhETF Pis. Red. 15, 160 (1972); JETP Lett. 15, 109 (1972ADSGoogle Scholar
  171. O.Yu. Nosach, V.I. Popovichev, V.V. Ragulsky, F.S. Faizullov: Cancellation of phase distortions in an amplifying medium with a Brillouin mirror. ZhETF Pis. Red. 16, 617 (1972); JETP Lett. 16, 435 (1972ADSGoogle Scholar
  172. [8.126]
    R.W. Hellwarth: Generation of time-reversed wave fronts by nonlinear refraction. J. Opt. Soc. Am. 67, 1 (1977)ADSGoogle Scholar
  173. A. Yariv: On transmission and recovery of three-dimensional image information in optical waveguides. J. Opt. Soc. Am. 66, 301 (1976)ADSGoogle Scholar
  174. [8.127]
    B. Ya. Zel’dovich, N.F. Pilipetsky, V.V. Shkunov: Principles of Phase Conjugation, Springer Ser. Opt. Sci., Vol.42 (Springer, Berlin, Heidelberg 1985)Google Scholar
  175. V.V. Shkunov, B. Ya. Zel’dovich: Optical phase conjugation. Sci. Am. 253(6), 40 (1985)Google Scholar
  176. D.M. Pepper: Applications of optical phase conjugation. Sci. Am. 254(1), 56 (1986)MathSciNetGoogle Scholar
  177. [8.128]
    H.J. Eichler, P. Gunther, D.W. Pohl: Laser Induced Dynamic Gratings, Springer Ser. Opt. Sci., Vol. 50 (Springer, Berlin, Heidelberg 1986)Google Scholar
  178. [8.129]
    M.C. Gower, D. Proch (eds.): Optical Phase Conjugation (Springer, Berlin, Heidelberg 1994)Google Scholar
  179. [8.130]
    D.T. Hon: Pulse compression by stimulated Brioullin scattering. Opt. Lett. 5, 516 (1980)ADSGoogle Scholar
  180. [8.131]
    S. Schiemann, W. Ubachs, W. Hogervorst: Efficient temporal compression of coherent ns-pulses in a compact SBS generator-amplifier setup. IEEE J. Quantum Electron. 33, 358 (1997); Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps), ibid. 34, 407 (1998ADSGoogle Scholar
  181. [8.132]
    Z.-S. Li, J. Norin, A. Persson, C.-G. Wahlström, S. Svanberg, P.S. Doidge, E. Biémont: Radiative properties of neutral germanium obtained from excited state lifetime and branching ratio measurements and comparison with theoretical calculations. Phys. Rev. A 60, 198 (1999)ADSGoogle Scholar
  182. [8.133]
    V. Wilke, W. Smidt: Tunable coherent radiation source covering a spectral range from 185-880nm. Appl. Phys. 18, 177 (1979); see also Appl. Phys. 18, 235 (1979ADSGoogle Scholar
  183. [8.134]
    J. Paisner, S. Hargrove: ‘A tunable laser system for UV, visible, and IR regions.’ In: Energy and Technology Review (Lawrence Livermore Nat’l Lab., Livermore 1979)Google Scholar
  184. A.P. Hickman, J.A. Paisner, W.K. Bishel: Theory of multiwave propagation and frequency conversion in a Raman medium. Phys. Rev. A 33, 1788 (1986)ADSGoogle Scholar
  185. [8.135]
    F. Moya, S.A.J. Druet, J.P. Taran: ‘Rotation-vibration spectroscopy of gases by coherent anti-Stokes Raman scattering: Application to concentration and temperature measurements.’ In: Laser Spectroscopy, ed. by S. Haroche, J.C. Pebay Peyroula, T.W. Hänsch, S.E. Harris (Springer, Berlin, Heidelberg 1975)Google Scholar
  186. [8.136]
    M. Aldén, H. Edner, S. Svanberg: Coherent anti-Stokes Raman spectroscopy (CARS) applied to combustion probing. Phys. Scr. 27, 29 (1983)ADSGoogle Scholar
  187. [8.137]
    A.C. Eckbreth: BOXCARS: Crossed beam phase-matched CARS generation in gases. Appl. Phys. Lett. 32, 421 (1978)ADSGoogle Scholar
  188. [8.138]
    N. Bloembergen: Nonlinear Optics (Benjamin, New York 1977)Google Scholar
  189. [8.139]
    Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)Google Scholar
  190. [8.140]
    M. Schubert, B. Wilhelmi: Nonlinear Optics and Quantum Electronics, Theoretical Concepts (Wiley, New York 1986)Google Scholar
  191. [8.141]
    P.N. Butcher, D. Cotter: The Elements of Nonlinear Optics (Cambridge University Press, Cambridge 1990)Google Scholar
  192. [8.142]
    R.W. Boyd: Nonlinear Optics (Academic Press, San Diego 1992)Google Scholar
  193. [8.143]
    E.G. Sauter: Nonlinear Optics (Wiley, New York 1996)Google Scholar
  194. [8.144]
    V.S. Letokhov, V.P. Chebotayev: Nonlinear Laser Spectroscopy, Springer Ser. Opt. Sci., Vol.4 (Springer, Berlin, Heidelberg 1977)Google Scholar
  195. [8.145]
    M.D. Levenson, S. Kano: Introduction to Nonlinear Spectroscopy, 2nd edn. (Academic Press, New York 1988)Google Scholar
  196. [8.146]
    H. Mocker, R.J. Collins: Mode competition and self-locking effects in a Qswitched ruby laser. Appl. Phys. Lett. 7, 270 (1965)ADSGoogle Scholar
  197. A.J. De Maria, D.A. Stetser, H. Heynau: Self mode-locking of lasers with saturable absorbers. Appl. Phys. Lett. 8, 174 (1966)ADSGoogle Scholar
  198. [8.147]
    E.P. Ippen, C.V. Shank, A. Dienes: Passive mode-locking of the CW dye laser, Appl. Phys. Lett. 21, 348 (1972)ADSGoogle Scholar
  199. [8.148]
    R.L. Fork, B.I. Greene, C.V. Shank: Generation of optical pulses shorter than 0.1 ps by colliding pulse mode-locking, Appl. Phys. Lett. 38, 671 (1981)ADSGoogle Scholar
  200. [8.149]
    R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank: Compression of optical pulses to six fs by using cubic phase compression, Opt. Lett. 12, 483 (1987)ADSGoogle Scholar
  201. [8.150]
    L. Xu, C. Spielmann, F. Krausz, R. Szipöcs: Ultrabroadband ring oscillator for sub-10-fs pulse generation. Opt. Lett. 21, 1259 (1996)ADSGoogle Scholar
  202. [8.151]
    D.E. Spence, P.N. Kean, W. Sibbett: 60 fs pulse generation from a selfmode-locked Ti:sapphire laser. Opt. Lett. 16, 42 (1991)Google Scholar
  203. [8.152]
    U. Morgner, F.X. Kärtner, S.H. Cho, Y. Shen, H.A. Haus, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tshudi: Opt. Lett. 24, 411 (1999)ADSGoogle Scholar
  204. D.H. Sutter, G. Steinmeyer, L. Gallman, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi: Semiconductor saturableabsorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24, 631 (1999)ADSGoogle Scholar
  205. [8.153]
    A. Baltuska, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma: Optical pulse compression to 5 fs at a 1-MHz repetition rate. Opt. Lett. 22, 102 (1997)ADSGoogle Scholar
  206. M. Nisoli, S. De Silvresti, O. Svelto, R. Szipöcs, F. Ferencz, Ch. Spielmann, S. Sartania, F. Krausz: Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522 (1997)ADSGoogle Scholar
  207. [8.154]
    G.H.C. New: The generation of ultrashort laser pulses. Rep. Prog. Phys. 46, 877 (1983)ADSGoogle Scholar
  208. S. de Silvestri, P. Laporta, V. Magni: Generation and applications of femtosecond laser pulses. Europhys. News 17(9), 105 (1986)Google Scholar
  209. T.F. Johnston Jr.: ‘Tunable dye lasers.’ In: Encyclopedia of Physical Science and Technology, Vol. 14 (Academic Press, New York 1987)Google Scholar
  210. B. Couillaud, V. Fossati-Bellani: Modelocked lasers and ultrashort pulses. Lasers & Appl. (January 1985) pp. 79–83 and (February 1985) pp. 91-94Google Scholar
  211. [8.155]
    S.L. Shapiro (ed.): Ultrashort Light Pulses, 2nd edn. Topics Appl. Phys., Vol. 18 (Springer, Berlin, Heidelberg 1984)Google Scholar
  212. W. Kaiser (ed.): Ultrashort Laser Pulses and Applications, 2nd edn. Springer Ser. Opt. Sci., Vol.60 (Springer, Berlin, Heidelberg 1993)Google Scholar
  213. [8.156]
    P.M.W. French: The generation of ultrashort laser pulses. Rep. Prog. Phys. 58, 169 (1995)ADSGoogle Scholar
  214. [8.157]
    I.N. Duling III (ed.): Compact Sources of Ultrashort Pulses (Cambridge University Press, Cambridge 1995)Google Scholar
  215. [8.158]
    J.-C. Diels, W. Rudolph: Ultrashort Laser Pulse Phenomena (Academic Press, San Diego 1996)Google Scholar
  216. [8.159]
    C. Rullières (ed.): Femtosecond Laser Pulses (Springer, Berlin, Heidelberg 1998)Google Scholar
  217. [8.160]
    D. Strickland, G. Mourou: Compression of amplified chirped optical pulses. Opt. Commun. 56, 219 (1985)ADSGoogle Scholar
  218. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou: Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. QE-24, 398 (1988)ADSGoogle Scholar
  219. [8.161]
    S. Svanberg, J. Larsson, A. Persson, C.-G. Wahlström: Lund High-Power Laser Facility — Systems and first results, Phys. Scr. 49, 187 (1994)ADSGoogle Scholar
  220. [8.162]
    M.H.R. Hutchinson: Terawatt lasers. Contemp. Phys. 30, 355 (1989)ADSGoogle Scholar
  221. [8.163]
    M.D. Perry, G. Mourou: Terawatt to petawatt subpicosecond lasers, Science 264, 917 (1994)ADSGoogle Scholar
  222. M.D. Perry, D Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, V. Yanovsky: Petawatt laser pulses. Opt. Lett. 24, 160 (1999)ADSGoogle Scholar
  223. M.D. Perry, R.D. Boyd, J.A. Britten, D. Decker, B.W. Shore, C. Shannon, E. Shults: High-efficiency multi-layer dielectric diffraction gratings. Opt. Lett. 20, 940 (1995)ADSGoogle Scholar
  224. [8.164]
    S. Backus, Ch.G. Durfee III, M.M. Murnane, H.C. Kapteyn: High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207 (1998)ADSGoogle Scholar
  225. [8.165]
    C.P.J. Barty, W. White, W. Sibbett, R. Trebino (eds.): Ultrafast Optics. IEEE J. Sel. Top. Quantum Electron. 4, No. 2 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations