Radio-Frequency Spectroscopy

Part of the Advanced Texts in Physics book series (ADTP)


Whereas the resolution in optical investigations of free atoms is limited by different broadening mechanisms in the light source and the spectral equipment, resonance methods yield a linewidth which is limited essentially only by the Heisenberg uncertainty relation. For investigations of ground- and meta-stable states two methods, Optical Pumping (OP) and Atomic-Beam Magnetic Resonance (ABMR) can be utilized. In the second method, a spatial deflection of free atoms is used, while the first method is an optical resonance method. For studies of short-lived excited states two additional optical precision methods are available: Optical Double Resonance (ODR) and Level Crossing (LC) Spectroscopy. Resonance techniques can also be used for investigating liquids and solids. Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR) and Electron-Nuclear Double Resonance (ENDOR) will be discussed. As the radio-frequency techniques make use of magnetic resonance, a general description of this phenomenon will be given.


Nuclear Magnetic Resonance Electron Spin Resonance Global Position System Atomic Beam Resonance Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [7.1]
    N. Ramsey: Molecular Beams (Clarendon, Oxford 1956; Paperback 1985)Google Scholar
  2. J.M. Pendlebury, K.F. Smith: Molecular beams. Contemp. Phys. 28, 3 (1987)ADSCrossRefGoogle Scholar
  3. [7.2]
    J.F. O’Hanlon: A User Guide to Vacuum Technology, 2nd edn. (Wiley, New York 1989)Google Scholar
  4. [7.3]
    J.M. Lafferty: Foundations of Vacuum Science and Technology (Wiley, New York 1998)Google Scholar
  5. [7.4]
    A.N. Nesmeyanov: Vapor Pressure of the Elements (Academic Press, New York 1963)Google Scholar
  6. [7.5]
    R.E. Honig, D.A. Kramer: RCA Rev. 30, 285 (1969)Google Scholar
  7. [7.6]
    O. Stern, W. Gerlach: Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Das magnetische Moment des Silberatoms. Z. Physik 9, 349, 353 (1922)Google Scholar
  8. [7.7]
    I.I. Rabi, J.R. Zacharias, S. Millman, P. Kusch: A new method of measuring nuclear magnetic moment. Phys. Rev. 53, 318 (1938)ADSCrossRefGoogle Scholar
  9. [7.8]
    N.F. Ramsey: A new molecular beamresonance method. Phys. Rev. 76, 996 (1949); A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695 (1950); Phase shifts in the molecular beam method of separated oscillating fields. Phys. Rev. 84, 506 (195ADSCrossRefGoogle Scholar
  10. [7.9]
    M.G.H. Gustavsson, A.-M. Mårtensson-Pendrill: Four decades of hyperfine anomaly. Adv. Quantum Chem. 30, 343 (1998)ADSCrossRefGoogle Scholar
  11. [7.10]
    C. Ekström, I. Lindgren: ‘Atomic beam experiments at the ISOLDE facility at CERN.’ In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p. 201Google Scholar
  12. [7.11]
    C. Ekström: Spins and moments of nuclei far from stability determined by on-line atomic-beam techniques. Adv. Quantum Chem. 30, 361 (1998)ADSCrossRefGoogle Scholar
  13. [7.12]
    W.J. Childs: Case Studies. Atomic Phys. 3, 215 (1973)Google Scholar
  14. [7.13]
    S. Büttgenbach, G. Meisel, S. Penselin, K.H. Schneider: A new method for the production of atomic beams of highly refractory elements and first atomic beam magnetic resonances in Ta181. Z. Physik 230, 329 (1970)ADSCrossRefGoogle Scholar
  15. H. Rubinsztein, I. Lindgren, L. Lindström, H. Riedl, A. Rosén: Atomic beam measurements on refractory elements. Nucl. Instrum. Methods 119, 269 (1974)ADSCrossRefGoogle Scholar
  16. [7.14]
    U. Brinkmann, J. Goschler, A. Steudel, H. Walther: Experimente mit Erdalkaliatomen in Metastabilen Zuständen. Z. Physik 228, 427 (1969)ADSCrossRefGoogle Scholar
  17. S. Garpman, G. Lidö, S. Rydberg, S. Svanberg: Lifetimes of some highly excited levels in the Pb-I spectrum measured by the Hanle method. Z. Physik 241, 217 (1971)ADSCrossRefGoogle Scholar
  18. [7.15]
    S. Penselin: ‘Recent developments and results of the atomic beam magnetic resonance method.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 463Google Scholar
  19. [7.16]
    W.J. Childs: Overview of laser-radiofrequency double-resonance studies of atomic, molecular and ionic beams. Phys. Rep. 211, 113 (1992)ADSCrossRefGoogle Scholar
  20. [7.17]
    A. Kastler: Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantification spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique. J. Phys. Radium 11, 255 (1950); Méthodes optiques d’étude de la résonance magnétique. Physica 17, 191 (1951); Optical methods of atomic orientation and of magnetic resonance. J. Opt. Soc. Am. 47, 460 (195CrossRefGoogle Scholar
  21. [7.18]
    H.J. Besch, U. Köpf, E.W. Otten: Optical pumping of short-lived beta emitters. Phys. Lett. B 25, 120 (1967)ADSCrossRefGoogle Scholar
  22. E.W. Otten: ‘Hyperfine and isotope shift measurements far from stability by optical pumping.’ In: Atomic Physics 5, ed. by R. Marrus, M. Prior, H. Shugart (Plenum, New York 1977) p. 239Google Scholar
  23. [7.19]
    J. Bonn, G. Huber, H.J. Kluge, U. Köpf, L. Kugler, E.W. Otten, J. Rodrigues: ‘Orientation of short-lived mercury isotopes by means of optical pumping detected by β and γ radiation.’ In: Atomic Physics 3, ed. by S.J. Smith, G.K. Walters (Plenum, New York 1973) p. 471Google Scholar
  24. [7.20]
    R. Bernheim: Optical Pumping (Benjamin, New York 1965)Google Scholar
  25. [7.21]
    W. Happer: Optical pumping. Rev. Mod. Phys. 44, 169 (1972)ADSCrossRefGoogle Scholar
  26. [7.22]
    G.W. Series: Thirty years of optical pumping. Contemp. Phys. 22, 487 (1981)Google Scholar
  27. [7.23]
    M. Arditi, T.R. Carver: Optical detection of zero-field hyperfine structure in Na23. Phys. Rev. 109, 1012 (1958); Frequency shift of the zero-field hyperfine splitting of Cs133 produced by various buffer gases. Phys. Rev. 112, 449 (1958ADSCrossRefGoogle Scholar
  28. [7.24]
    H.M. Goldenberg, D. Kleppner, N.F. Ramsey: Atomic hydrogen maser. Phys. Rev. Lett. 5, 361 (1960)ADSCrossRefGoogle Scholar
  29. D. Kleppner, H.M. Goldenberg, N.F. Ramsey: Properties of the hydrogen maser. Appl. Opt. 1, 55 (1962)ADSCrossRefGoogle Scholar
  30. S.B. Crampton, D. Kleppner, N.F. Ramsey: Hyperfine structure of ground state atomic hydrogen. Phys. Rev. Lett. 11, 338 (1963)ADSCrossRefGoogle Scholar
  31. [7.25]
    P. Karpaschoff: Frequency and Time (Academic Press, London 1978)Google Scholar
  32. H. Hellwig: Atomic frequency standards. Proc. IEEE 63, 212 (1974)ADSCrossRefGoogle Scholar
  33. J. Vanier, C. Audoin: The Quantum Physics of Atomic Frequency Standards (Hilger, Bristol 1989)Google Scholar
  34. F.L. Walls: Frequency standards based on atomic hydrogen. Proc. IEEE 74, 142 (1986)ADSCrossRefGoogle Scholar
  35. D.J. Wineland: Frequency standards based on stored ions. Proc. IEEE 74, 147 (1986)ADSCrossRefGoogle Scholar
  36. Time and Frequency. Special issue of Proc. IEEE 79(7) (1991)Google Scholar
  37. W.M. Itano, N.F. Ramsey: Accurate measurement of time. Sci. Am. 269(1), 56 (1993)ADSCrossRefGoogle Scholar
  38. F.G. Mayor: The Quantum Beat — The Physical Principles of Atomic Clocks (Springer, Berlin, Heidelberg 1998)Google Scholar
  39. P.F. Fisk: Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60, 761 (1997)ADSCrossRefGoogle Scholar
  40. [7.26]
    Th.A. Herring: The global positioning system. Sci. Am. 274(2) 32 (1996)MathSciNetCrossRefGoogle Scholar
  41. B. Hofmann-Wellenhof, H. Lichtenegger: GPS Theory and Practice, 4th edn. (Springer, Berlin, Heidelberg 1997)Google Scholar
  42. [7.27]
    G. Elgered, J.M. Johansson, B.O. Rönnäng, J.L. Davis: Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geophys. Res. Lett. 24, 2663 (1997)ADSCrossRefGoogle Scholar
  43. J.L. Davis, M.L. Cosmo, G. Elgered: ‘Using the Global Positioning System to study the atmosphere of the earth: Overview and prospects.’ In: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, IAG Symposia, Vol. 115, ed. by G. Beutler, G.W. Hein, W.G. Melbourne, G. Seeber (Springer, Berlin 1996) p. 233Google Scholar
  44. [7.28]
    A. Kastler, J. Brossel: La détection de la résonance magnétique des niveaux excités: L’effet de dépolarisation des radiations de résonance optique et de fluorescence. Comp. Rend. 229, 1213 (1949)Google Scholar
  45. [7.29]
    J. Brossel, F. Bitter: A new “double resonance” method for investigating atomic energy levels. Application to Hg 3P1. Phys. Rev. 86, 308 (1952)ADSCrossRefGoogle Scholar
  46. [7.30]
    G. Belin, I. Lindgren, I. Holmgren, S. Svanberg: Hyperfine interaction, Zeeman and Stark effects for excited states in potassium. Phys. Scr. 12, 287 (1975)ADSCrossRefGoogle Scholar
  47. [7.31]
    W. Hanle: Uber magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Physik 30, 93 (1924); Erg. Ex. Naturwiss. 4, 214 (1925ADSCrossRefGoogle Scholar
  48. [7.32]
    F.D. Colgrove, P.A. Franken, R.R. Lewis, R.H. Sands: Novel method of spectroscopy with applications to precision fine structure measurements. Phys. Rev. Lett. 3, 420 (1959)ADSCrossRefGoogle Scholar
  49. [7.33]
    G. Breit: Quantum theory of dispersion (continued). Pts. VI and VII. Rev. Mod. Phys. 5, 91 (1933)ADSzbMATHCrossRefGoogle Scholar
  50. [7.34]
    P. Franken: Interference effects in the resonance fluorescence of “crossed” excited states. Phys. Rev. 121, 508 (1961)ADSCrossRefGoogle Scholar
  51. [7.35]
    T.G. Eck, L.L. Foldy, H. Wiedner: Observation of “anticrossings” in optical resonance fluorescence. Phys. Rev. Lett. 10, 239 (1963)ADSCrossRefGoogle Scholar
  52. H. Wiedner, T.G. Eck: “Anticrossing” signals in resonance fluorescence. Phys. Rev. 153, 103 (1967)ADSCrossRefGoogle Scholar
  53. H.J. Beyer, H. Kleinpoppen: ‘Anticrossing spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 607Google Scholar
  54. [7.36]
    G. Belin, S. Svanberg: Electronic g J factors, natural lifetimes and electric quadrupole interaction in the np 2 P 3/2 series of the Rb I spectrum. Phys. Scr. 4, 269 (1971)ADSCrossRefGoogle Scholar
  55. [7.37]
    R. Gupta, S. Chang, C. Tai, W. Happer: Cascade radio-frequency spectroscopy of excited S and D states of rubidium; anomalous D-state hyperfine structure. Phys. Rev. Lett. 29, 695 (1972)ADSCrossRefGoogle Scholar
  56. R. Gupta, W. Happer, L. Lam, S. Svanberg: Hyperfine structure measurements of excited S states of the stable isotopes of potassium, rubidium and cesium by cascade radio-frequency spectroscopy. Phys. Rev. A 8, 2792 (1973)ADSCrossRefGoogle Scholar
  57. [7.38]
    M.E. Rose, R.L. Carovillano: Coherence effects in resonance fluorescence. Phys. Rev. 122, 1185 (1961)ADSCrossRefGoogle Scholar
  58. [7.39]
    G. zu Putlitz: ‘Double resonance and level-crossing spectroscopy.’ In: Atomic Physics, ed. by V.W. Hughes, B. Bederson, V.W. Cohen, F.M.J. Pichanick (Plenum, New York 1969)Google Scholar
  59. G. Moruzzi, F. Strumia (eds.): The Hanle Effect and Level-Crossing Spectroscopy (Plenum, New York 1991)Google Scholar
  60. [7.40]
    B. Budick: In: Advances in Atomic and Molecular Physics, ed. by R.D. Bates, I. Esterman (Academic Press, New York 1967)Google Scholar
  61. [7.41]
    W. Happer, R. Gupta: ‘Perturbed fluorescence spectroscopy.’ In: Progress in Atomic Spectroscopy, Pt. A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p. 391Google Scholar
  62. [7.42]
    E. Arimondo, M. Inguscio, P. Violino: Experimental determinations of the hyperfine structure in the alkali atoms. Rev. Mod. Phys. 49, 31 (1977)ADSCrossRefGoogle Scholar
  63. [7.43]
    P.R. Johnson, R. Pearson Jr.: Methods in Experimental Physics, Vol. 13, (Academic Press, New York 1976) p. 102Google Scholar
  64. [7.44]
    C.P. Slichter: Principles of Magnetic Resonance, 3rd edn. Springer Ser. Solid-State Sci., Vol. 1 (Springer, Berlin, Heidelberg 1990)Google Scholar
  65. [7.45]
    A.U. Rahman, M. Iqbal: Solving Problems with NMR (Academic Press, London 1995)Google Scholar
  66. [7.46]
    D.A. Skoog, D.M. West: Principles of Instrumental Analysis (Saunders, Philadelphia 1980)Google Scholar
  67. [7.47]
    R. Brewer, E.L. Hahn: Atomic memory. Sci. Am. 251(6), 42 (1984)ADSCrossRefGoogle Scholar
  68. [7.48]
    H. Gunther: NMR Spectroscopy — An Introduction (Wiley, Chichester 1985)Google Scholar
  69. [7.49]
    D.A.R. Williams: Nuclear Magnetic Resonance Spectroscopy (Wiley, Chichester 1986)Google Scholar
  70. [7.50]
    W. Kemp: NMR in Chemistry (McMillan, London 1986)Google Scholar
  71. [7.51]
    I.L. Pykett: NMR imaging in medicine. Sci. Am. 246(5), 54 (1982)CrossRefGoogle Scholar
  72. J. Mattson, M. Simon: The Story of MRI (Bar-Ilan University Press, Jericho, NY 1996)Google Scholar
  73. [7.52]
    D.R. Bailes, D.J. Bryant: NMR imaging. Contemp. Phys. 25, 441 (1984)ADSCrossRefGoogle Scholar
  74. [7.53]
    R.S. MacKay: Medical Images and Displays: Comparison of Nuclear Magnetic Resonance. Ultrasound, X-Rays and Other Modalities (Wiley, New York 1984)Google Scholar
  75. [7.54]
    R.A. Robb: Three-Dimensional Biomedical Imaging — Principles and Practice (VCH, New York 1994)Google Scholar
  76. [7.55]
    C.N. Guy: The second revolution in medical imaging. Contemp. Phys. 37, 15 (1996)ADSCrossRefGoogle Scholar
  77. [7.56]
    R. Kimmich: NMR-Tomography, Diffusometry, Relaxometry (Springer, Berlin, Heidelberg 1997)Google Scholar
  78. [7.57]
    M.S. Albert, G. Driehuys, W. Happer, B. Saam, C.S. Springer Jr., A. Wishnia: Biological magnetic resonanace imaging using laser-polarized Xe-129. Nature 370, 199 (1994)ADSCrossRefGoogle Scholar
  79. W. Happer: ‘Medical NMR sensing with laser polarized 3He and 129Xe.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann et al. (Springer, Berlin, Heidelberg 1997) p. 121Google Scholar
  80. [7.58]
    M. Ebert, T. Grossmann, W. Heil, E.W. Otten, R. Surkau, M. Leduc, P. Bachert, M.V. Knopp, L.R. Schad, M. Thelen: MRI-imaging with hyperpolarized 3He. Lancet 347, 9011 (1996)CrossRefGoogle Scholar
  81. [7.59]
    C.G. Aminoff, C. Larat, M. Leduc, B. Viana, D. Vivien: A powerful infrared laser for optical pumping of He. J. Lumin. 50, 21 (1991)CrossRefGoogle Scholar
  82. [7.60]
    F.D. Colgrove, L. D Schearer, G.K. Walters: Polarization of 3He gas by optical pumping. Phys. Rev. 132, 2561 (1963)ADSCrossRefGoogle Scholar
  83. [7.61]
    M. Bouchiat, T.-R. Carver, C.M. Varnum: Nuclear polarization in 3He gas induced by optical pumping and dipolar exchange. Phys. Rev. Lett. 5, 373 (1960)ADSCrossRefGoogle Scholar
  84. [7.62]
    T.G. Walker, W. Happer: Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629 (1997)ADSCrossRefGoogle Scholar
  85. [7.63]
    J. Becker, W. Heil, B. Krug, M. Leduc, M. Meyerhoff, P.J. Nacher, E.W. Otten, Th. Prokscha, L.D. Schearer, R. Surkau: Study of mechanical compression of spin-polarized 3He gas. Nucl. Instrum. Methods A 346, 45 (1994)ADSCrossRefGoogle Scholar
  86. [7.64]
    W. Heil, H. Humblot, E.W. Otten, M. Schäfer, R. Surkau, M. Leduc: Very long relaxation times of spin-polarized 3He in metal coated cells. Phys. Lett. A 201, 337 (1995)ADSCrossRefGoogle Scholar
  87. [7.65]
    E.W. Otten: ‘Interdisciplinary experiments with polarized noble gases.’ In: Atomic Physics 15, ed. by H.B. van Linden van den Heuvell, J.T.M. Walraven, M.W. Reynolds, Amsterdam 1996 (World Scientific, Singapore 1997), p. 113Google Scholar
  88. E. Otten: ‘Polarized, compressed He gas and its applications.’ In: Atomic Physics Methods in Modern Research, ed. by K. Jungmann et al. (Springer, Berlin, Heidelberg 1997) p. 105Google Scholar
  89. [7.66]
    P.D. Perry, Th.R. Carver, S.O. Sari, S.E. Schnatterly: Optically pumped and monitored electron-nuclear double resonance in alkali halides. Phys. Rev. Lett. 22, 326 (1969)ADSCrossRefGoogle Scholar
  90. [7.67]
    R.S. Alger: Electron Paramagnetic Resonance (Wiley, New York 1968)Google Scholar
  91. [7.68]
    J.E. Wertz: Electron Spin Resonance: Elementary Theory and Practical Applications (Chapman and Hall, New York 1986)Google Scholar
  92. [7.69]
    T.K. Ishii (ed.): Handbook of Microwave Technology, Vols. 1, 2 (Academic Press, London 1995)Google Scholar
  93. [7.70]
    J.J. Davies: Optically detected magnetic resonance and its applications. Contemp. Phys. 17, 275 (1976)ADSCrossRefGoogle Scholar
  94. [7.71]
    C.H. Townes, A.L. Schawlow: Microwave Spectroscopy (Dover, New York 1975)Google Scholar
  95. [7.72]
    H.W. Kroto: Molecular Rotation Spectra (Wiley, London 1975)Google Scholar
  96. [7.73]
    W. Gordy, R.L. Cook: Microwave Molecular Spectra, 3rd edn., Techniques of Chemistry, Vol. XVIII (Wiley, New York 1984)Google Scholar
  97. [7.74]
    T. Lund (ed.): Surveillance of environmental pollution and resources by electromagnetic waves. NATO Adv. St. Inst. Ser. (Reidel, Dordrecht 1978)Google Scholar
  98. [7.75]
    E. Schanda: Physical Fundamentals of Remote Sensing (Springer, Berlin, Heidelberg 1986)Google Scholar
  99. [7.76]
    D.T. Gjessing: Remote surveillance by electromagnetic waves for air — water — land (Ann Arbor Science, Ann Arbor 1978)Google Scholar
  100. [7.77]
    K.A. Browning: Uses of radar in metrology. Contemp. Phys. 27, 499 (1986)ADSCrossRefGoogle Scholar
  101. [7.78]
    Ch.G. Collier: Applications of Weather Radar Systems, 2nd edn. (Wiley, New York 1996)Google Scholar
  102. [7.79]
    R.J. Doviak, D.S. Zrnic: Doppler Radar and Weather Observation, 2nd edn. (Academic Press, London 1993)Google Scholar
  103. [7.80]
    M.A. Janssens (ed.): Atmospheric Remote Sensing by Microwave Radiometry (Wiley, New York 1993)Google Scholar
  104. [7.81]
    E. Schanda: Microwave radiometry applications to remote sensing. In: [7.74]Google Scholar
  105. [7.82]
    E.P.W. Attema: The radar signature of natural surfaces and its application in active microwave remote sensing. In: [7.74]Google Scholar
  106. [7.83]
    Ch. Elachi: Radar images of the Earth from space. Sci. Am. 247(6), 46 (1982)CrossRefGoogle Scholar
  107. [7.84]
    W. Noack (ed.): X-SAR Picture Book (Springer, Berlin, Heidelberg 1996)Google Scholar
  108. [7.85]
    D.L. Evans, E.R. Stofan, T.J. Jones, L.M. Godwin: Earth from sky. Sci. Am. 271(6), 44 (1994)CrossRefGoogle Scholar
  109. [7.86]
    Courtesy: J. Askne, CTHGoogle Scholar
  110. [7.87]
    S. Haykin, E.O. Lewis, R.K. Raney, J.R. Rossiter: Remote Sensing of Sea Ice and Icebergs (Wiley, New York 1994)Google Scholar
  111. [7.88]
    A. Gustavsson, P.O. Frölind, H. Hellsten, T. Jonsson, B. Larsson, G. Stenström: The airborne VHF SAR system CARABAS. Proc. IEEE Geoscience Remote Sensing Symp., IGARSS'93, Tokyo, Japan, Vol.2, pp. 558–562, August 1993Google Scholar
  112. [7.89]
    O.E.H. Rydbeck: ‘Interstellar molecules.’ In: Kosmos 1974, ed. by N.R. Nilsson (Swedish Phys. Soc., Stockholm 1975)Google Scholar
  113. [7.90]
    M. Elitzur: Physical characteristics of astronomical masers. Rev. Mod. Phys. 54, 1225 (1982)ADSCrossRefGoogle Scholar
  114. D.F. Dickinson: Cosmic masers. Sci. Am. 238(6), 68 (1978)ADSCrossRefGoogle Scholar
  115. [7.91]
    A.W. Clegg, G.E. Nedoluka (eds.): Astrophysical Masers (Springer, Berlin, Heidelberg 1993)Google Scholar
  116. [7.92]
    M. Elitzar:Masers in the sky. Sci. Am. 272(2), 52 (1995)Google Scholar
  117. [7.93]
    W.M. Irvine, P.F. Goldsmith, A. Hjalmarsson: ‘Chemical abundances in molecular clouds.’ In: Interstellar Processes, ed. by D.J. Hollenback, H.A. Thronson Jr. (Reidel, Dordrecht 1987)Google Scholar
  118. G. Winnewisser, G.C. Pelz: The Physics and Chemistry of Interstellar Molecular Clouds, Springer Lecture Notes on Physics Vol. 459 (Springer, Berlin, Heidelberg 1995)Google Scholar
  119. [7.94]
    J. Lequeux, E. Roueff: Interstellar molecules. Phys. Rep. 200, 241 (1991)ADSCrossRefGoogle Scholar
  120. [7.95]
    U.N. Rao, A. Weber (eds.): Spectroscopy of the Earth’s Atmosphere and Interstellar Medium (Academic Press, London 1992)Google Scholar
  121. [7.96]
    A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins: Observation of a rapidly pulsating radio source. Nature 217, 709 (1968)ADSCrossRefGoogle Scholar
  122. [7.97]
    R.A. Hulse, J.H. Taylor: Discovery of a pulsar in a binary system. Astrophys. J. 195, L51 (1975)ADSCrossRefGoogle Scholar
  123. [7.98]
    J.H. Taylor, L.A. Fowler, P.M. McCulloch: Measurements of general relativistic effects in the binary pulsar PSR 1913 + 16. Nature 277, 437 (1979)ADSCrossRefGoogle Scholar
  124. [7.99]
    J. Dietrich: Realizing LIGO. Engineering and Science 64(2), 8 (1998) http://www.ligo.caltech.eduweb/about/factsheet.html /LIGO-
  125. [7.100]
    K. Rohlfs: Tools of Radio Astronomy (Springer, Berlin, Heidelberg 1986)Google Scholar
  126. [7.101]
    A.S. Webster, M.S. Longair: Millimetre and sub-millimetre astronomy. Contemp. Phys. 25, 519 (1984)ADSCrossRefGoogle Scholar
  127. [7.102]
    A.C.S. Readhead: Radio astronomy and very long baseline interferometry. Sci. Am. 246(6), 38 (1982)ADSCrossRefGoogle Scholar
  128. [7.103]
    A.R. Thompson, J. Moran, G.W. Swenson Jr.: Interferometry and Synthesis in Radio Astronomy (Wiley, New York 1986)Google Scholar
  129. [7.104]
    P. Morrison, J. Billingham, J. Wolfe: The Search for Extraterrestial Intelligence (prepared by NASA) (Dover, New York 1979; Academic Press, New York 1986)Google Scholar
  130. [7.105]
    P. Horowitz, C. Sagan: Five year of project META: An all-sky narrow-band radio search for extraterrestrial signals. Astrophys. J. 415, 218 (1993)Google Scholar
  131. [7.106]

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations